bims-plasge Biomed News
on Plastid genes
Issue of 2019‒05‒05
four papers selected by
Vera S. Bogdanova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

  1. Nat Genet. 2019 May;51(5): 896-904
      Introgression is a potential source of beneficial genetic diversity. The contribution of introgression to adaptive evolution and improvement of wheat as it was disseminated worldwide remains unknown. We used targeted re-sequencing of 890 diverse accessions of hexaploid and tetraploid wheat to identify wild-relative introgression. Introgression, and selection for improvement and environmental adaptation, each reduced deleterious allele burden. Introgression increased diversity genome wide and in regions harboring major agronomic genes, and contributed alleles explaining a substantial proportion of phenotypic variation. These results suggest that historic gene flow from wild relatives made a substantial contribution to the adaptive diversity of modern bread wheat.
  2. Nat Genet. 2019 May;51(5): 857-864
      We report a map of 4.97 million single-nucleotide polymorphisms of the chickpea from whole-genome resequencing of 429 lines sampled from 45 countries. We identified 122 candidate regions with 204 genes under selection during chickpea breeding. Our data suggest the Eastern Mediterranean as the primary center of origin and migration route of chickpea from the Mediterranean/Fertile Crescent to Central Asia, and probably in parallel from Central Asia to East Africa (Ethiopia) and South Asia (India). Genome-wide association studies identified 262 markers and several candidate genes for 13 traits. Our study establishes a foundation for large-scale characterization of germplasm and population genomics, and a resource for trait dissection, accelerating genetic gains in future chickpea breeding.
  3. F1000Res. 2019 ;8 348
      Plant seeds are essential for human beings, constituting 70% of carbohydrate resources worldwide; examples include rice, wheat, and corn. In angiosperms, fertilization of the egg by a sperm cell is required for seed formation; therefore, fertilization failure results in no seed formation, except in the special case of apomixis. Initially, plants produce many pollen grains inside the anthers; once the pollen grain is deposited onto the top of the pistil, the pollen tube elongates until it reaches the ovule. Generally, only one pollen tube is inserted into the ovule; however, we previously found that if fertilization by the first pollen tube fails, a second pollen tube could rescue fertilization via the so-called fertilization recovery system (FRS). Our previous reports also demonstrated that failed fertilization results in pollen tube-dependent ovule enlargement morphology (POEM), enlarged seeds, and partial seed coat formation if the pollen tube releases the pollen tube contents into the ovule. However, we have not determined whether all the ovules enlarge or produce seed coats if an ovule accepts the pollen tube contents. Therefore, we conducted a partial seed coat formation experiment taking into account both the FRS and POEM phenomena. Notably, the ratios of failed fertilization and the ovules with partial seed coats matched, indicating that all ovules initiate seed coat formation if the fertilization fails but the pollen tube contents enter the ovule. In addition, we confirmed that the agl62 mutant , defective in early endosperm formation, showed seed coat initiation with and without fertilization, indicating that for a normal seed coat initiation, fertilization is not required; however, for the completion of normal seed coat formation, both normal fertilization and endosperm formation are required. Further molecular evidence is required to understand these phenomena because very few factors related to FRS and POEM have been identified.
    Keywords:  AGL62; Arabidopsis; GCS1; Pollen tube; Seed coat initiation; fertilization recovery system; pollen tube contents; pollen tube-dependent ovule enlargement morphology
  4. Front Plant Sci. 2019 ;10 403
      Parthenocarpy arises when an ovary develops into fruit without pollination/fertilization. The mechanisms involved in genetic parthenocarpy have attracted attention because of their potential application in plant breeding and also for their elucidation of the mechanisms involved in early fruit development. We have isolated and characterized a novel small parthenocarpic fruit and flower (spff) mutant in the tomato (Solanum lycopersicum) cultivar Micro-Tom. This plant showed both vegetative and reproductive phenotypes including dwarfism of floral organs, male sterility, delayed flowering, altered axillary shoot development, and parthenocarpic production of small fruits. Genome-wide single nucleotide polymorphism array analysis coupled with mapping-by-sequencing using next generation sequencing-based high-throughput approaches resulted in the identification of a candidate locus responsible for the spff mutant phenotype. Subsequent linkage analysis and RNA interference-based silencing indicated that these phenotypes were caused by a loss-of-function mutation of a single gene (Solyc04g077010), which encodes a receptor-like protein kinase that was expressed in vascular bundles in young buds. Cytological and transcriptomic analyses suggested that parthenocarpy in the spff mutant was associated with enlarged ovarian cells and with elevated expression of the gibberellin metabolism gene, GA20ox1. Taken together, our results suggest a role for Solyc04g077010 in male organ development and indicate that loss of this receptor-like protein kinase activity could result in parthenocarpy.
    Keywords:  Solanum lycopersicum; fruit set; gene mapping; in situ hybridization; male sterility; next generation sequencing