bims-plasge Biomed news
on Plastid genes
Issue of 2018‒09‒09
four papers selected by
Vera S. Bogdanova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences


  1. Mol Genet Genomics. 2018 Sep 01.
    Obala J, Saxena RK, Singh VK, Kumar CVS, Saxena KB, Tongoona P, Sibiya J, Varshney RK.
      Pigeonpea is an important source of dietary protein to over a billion people globally, but genetic enhancement of seed protein content (SPC) in the crop has received limited attention for a long time. Use of genomics-assisted breeding would facilitate accelerating genetic gain for SPC. However, neither genetic markers nor genes associated with this important trait have been identified in this crop. Therefore, the present study exploited whole genome re-sequencing (WGRS) data of four pigeonpea genotypes (~ 12X coverage) to identify sequence-based markers and associated candidate genes for SPC. By combining a common variant filtering strategy on available WGRS data with knowledge of gene functions in relation to SPC, 108 sequence variants from 57 genes were identified. These genes were assigned to 19 GO molecular function categories with 56% belonging to only two categories. Furthermore, Sanger sequencing confirmed presence of 75.4% of the variants in 37 genes. Out of 30 sequence variants converted into CAPS/dCAPS markers, 17 showed high level of polymorphism between low and high SPC genotypes. Assay of 16 of the polymorphic CAPS/dCAPS markers on an F2 population of the cross ICP 5529 (high SPC) × ICP 11605 (low SPC), resulted in four of the CAPS/dCAPS markers significantly (P < 0.05) co-segregated with SPC. In summary, four markers derived from mutations in four genes will be useful for enhancing/regulating SPC in pigeonpea crop improvement programs.
    Keywords:  Cajanus cajan; Common variant analysis; Next generation sequencing; Seed protein content; Sequence variants; Whole-genome resequencing
    DOI:  https://doi.org/10.1007/s00438-018-1484-8
  2. Gene. 2018 Aug 29. pii: S0378-1119(18)30937-5. [Epub ahead of print]679 1-10
    Guan H, Huang B, Chen M, Wang X, Song S, Liu H, Chen R, Hao Y.
      Members of the LEUNIG gene family have recently emerged as key players in gene repression, affecting several developmental mechanisms in plants, especially flower development. LEUNIG proteins function via recruiting adaptor SEUSS proteins. Nevertheless, no systematic studies on the LEUNIG and SEUSS gene families have been undertaken in tomato (Solanum lycopersicum, a fleshy fruit-bearing model plant, belonging to the Solanaceae family). Here, we present the results of a genome-wide analysis of tomato LEUNIG and SEUSS genes. In our study, we identified three SlLUG and four SlSEU genes. All three SlLUG full-length proteins contained the LEUNIG canonical domains (LUFS and two WD40 repeats), and the four full-length SlSEU genes contained the Lim-binding domain. All the members of the SlLUG and SlSEU family proteins were localized to the nucleus. All the SlSEU and SlLUG genes were detected in the tomato tissues tested. Expression analysis showed that the SlLUGs and SlSEUs exhibited tissue-specific expression, and that they responded to exogenous plant hormone and stress treatment. Protein-protein interaction analysis showed that only SlLUGs, but not SlSEUs, interacted with SlYABBY. Only a weak interaction between SlLUG1 and SlSEU3 was observed among all the SlLUG and SlSEU proteins. Taken together, these findings may help elucidate the roles played by SlLUG and SlSEU family members in plant growth and development.
    Keywords:  LEUNIG; LUG; SEU; SEUSS; Solanum lycopersicum; Tomato
    DOI:  https://doi.org/10.1016/j.gene.2018.08.075
  3. Curr Opin Plant Biol. 2018 Aug 30. pii: S1369-5266(18)30048-7. [Epub ahead of print]47 9-15
    Rizza A, Jones AM.
      The gibberellin phytohormones regulate growth and development throughout the plant lifecycle. Upstream regulation and downstream responses to gibberellins vary across cells and tissues, developmental stages, environmental conditions, and plant species. The spatiotemporal distribution of gibberellins is the result of an ensemble of biosynthetic, catabolic and transport activities, each of which can be targeted to influence gibberellin levels in space and time. Understanding gibberellin distributions has recently benefited from discovery of transport proteins capable of importing gibberellins as well as novel methods for detecting gibberellins with high spatiotemporal resolution. For example, a genetically-encoded fluorescent biosensor for gibberellins was deployed in Arabidopsis and revealed gibberellin gradients in rapidly elongating tissues. Although cellular accumulations of gibberellins are hypothesized to regulate cell growth in developing embryos, germinating seeds, elongating stems and roots, and developing floral organs, understanding the quantitative relationship between cellular gibberellin levels and cellular growth awaits further investigation. It is also unclear how spatiotemporal gibberellin distributions result from myriad endogenous and environmental factors directing an ensemble of known gibberellin enzymatic and transport steps.
    DOI:  https://doi.org/10.1016/j.pbi.2018.08.001
  4. Plant Physiol Biochem. 2018 Aug 23. pii: S0981-9428(18)30362-0. [Epub ahead of print]132 18-32
    Tang H, Song Y, Guo J, Wang J, Zhang L, Niu N, Ma S, Zhang G, Zhao H.
      This study used cytology, cytochemistry, and non-targeted metabolomics to investigate the distribution characteristic of polysaccharides, lipids, and all the metabolites present during five wheat (Triticum aestivum L.) anther developmental stages to provide insights into wheat anther development. Anthers were collected from the tetrad through trinucleate stages, and 1.5% (w/v) acetocarmine and 4',6-diamidino-2-phenylindole staining were used to confirm the developmental stage and visualize the nuclei, respectively. Polysaccharides and lipids were detected by staining with periodic acid-Schiff and Sudan Black B, respectively. The integrated optical density of the tapetum and microspores were calculated using IPP6.0 software. Furthermore, the metabolites were identified by gas chromatograph system coupled with a Pegasus HT time-of-flight mass spectrometer (GC-TOF-MS). The results indicated that the interior and exterior surface cells of anthers are orderly. Pollen was rich in numerous nutrient substances (e.g., lipids, insoluble carbohydrates, and others), and formed a normal sperm cell that contained three nuclei, i.e., one vegetative nuclei and two reproductive nuclei in the mature pollen. Semi-thin sectioning indicated that the tapetum cells degraded progressively from the tetrad to late uninucleate stage and disappeared from the bi-to trinucleate stages. Moreover, nutrient substances (lipids and insoluble carbohydrates) accumulated, were synthesized in the pollen, and gradually increased from the tetrad to trinucleate stages. Finally, the metabolomics results identified that 146 metabolites were present throughout the wheat anther developmental stages. Principal component analysis, hierarchical cluster analysis, and metabolite-metabolite correlation revealed distinct dynamic changes in metabolites. The metabolism of organic acids, amino acids, sugars, fatty acids, amines, polyols, and nucleotides were interrelated and involved in the tricarboxylic acid (TCA) cycle and glycolysis. Furthermore, their interactions were revealed using an integrated metabolic map, which indicated that the TCA cycle and glycolysis were very active during anther development to provide the required energy for anther and pollen development. Our study provides valuable insights into the mechanisms of substance metabolism in wheat anthers and can be used for possible application by metabolic engineers for the improvement of cell characteristics or creating new compounds and molecular breeders in improving pollen fertility or creating the ideal male sterile line, to improve wheat yield per unit area to address global food security.
    Keywords:  Anther; Cytochemistry; Fertility; Metabolome; Triticum aestivum L.
    DOI:  https://doi.org/10.1016/j.plaphy.2018.08.024