bims-plasge Biomed News
on Plastid Genes
Issue of 2018‒05‒06
four papers selected by
Vera S. Bogdanova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

  1. Theor Appl Genet. 2018 Apr 28.
      KEY MESSAGE: The multiple synthetic derivatives platform described in this study will provide an opportunity for effective utilization of Aegilops tauschii traits and genes for wheat breeding. Introducing genes from wild relatives is the best option to increase genetic diversity and discover new alleles necessary for wheat improvement. A population harboring genomic fragments from the diploid wheat progenitor Aegilops tauschii Coss. in the background of bread wheat (Triticum aestivum L.) was developed by crossing and backcrossing 43 synthetic wheat lines with the common wheat cultivar Norin 61. We named this population multiple synthetic derivatives (MSD). To validate the suitability of this population for wheat breeding and genetic studies, we randomly selected 400 MSD lines and genotyped them by using Diversity Array Technology sequencing markers. We scored black glume as a qualitative trait and heading time in two environments in Sudan as a quantitative trait. Our results showed high genetic diversity and less recombination which is expected from the nature of the population. Genome-wide association (GWA) analysis showed one QTL at the short arm of chromosome 1D different from those alleles reported previously indicating that black glume in the MSD population is controlled by new allele at the same locus. For heading time, from the two environments, GWA analysis revealed three QTLs on the short arms of chromosomes 2A, 2B and 2D and two on the long arms of chromosomes 5A and 5D. Using the MSD population, which represents the diversity of 43 Ae. tauschii accessions representing most of its natural habitat, QTLs or genes and desired phenotypes (such as drought, heat and salinity tolerance) could be identified and selected for utilization in wheat breeding.
  2. Theor Appl Genet. 2018 Apr 28.
      KEY MESSAGE: We report molecular mapping and inheritance of restoration of fertility (Rf) in A4 hybrid system in pigeonpea. We have also developed PCR-based markers amenable to low-cost genotyping to identify fertility restorer lines. Commercial hybrids in pigeonpea are based on A4 cytoplasmic male sterility (CMS) system, and their fertility restoration is one of the key prerequisites for breeding. In this context, an effort has been made to understand the genetics and identify quantitative trait loci (QTL) associated with restoration of fertility (Rf). One F2 population was developed by crossing CMS line (ICPA 2039) with fertility restorer line (ICPL 87119). Genetic analysis has shown involvement of two dominant genes in regulation of restoration of fertility. In parallel, the genotyping-by-sequencing (GBS) approach has generated ~ 33 Gb data on the F2 population. GBS data have provided 2457 single nucleotide polymorphism (SNPs) segregating across the mapping population. Based on these genotyping data, a genetic map has been developed with 306 SNPs covering a total length 981.9 cM. Further QTL analysis has provided the region flanked by S8_7664779 and S8_6474381 on CcLG08 harboured major QTL explained up to 28.5% phenotypic variation. Subsequently, sequence information within the major QTLs was compared between the maintainer and the restorer lines. From this sequence information, we have developed two PCR-based markers for identification of restorer lines from non-restorer lines and validated them on parental lines of hybrids as well as on another F2 mapping population. The results obtained in this study are expected to enhance the efficiency of selection for the identification of restorer lines in hybrid breeding and may reduce traditional time-consuming phenotyping activities.
  3. Curr Opin Genet Dev. 2018 Apr 26. pii: S0959-437X(17)30186-7. [Epub ahead of print]49 106-114
      Transposable elements (TEs) were first identified through the polymorphisms they induced in plants and animals. Genomic studies have later revealed that TEs were highly abundant in eukaryotic genomes. Recently, more precise single individual genomic analyses have unravelled the huge diversity of TE insertions in many plant and animal species. In most cases the stress conditions behind this diversity are not known and neither is the adaptive capacity of these natural TE-induced variants. Here, we review some of the most recent examples of TE-related impacts on gene expression at the locus or the genome level and discuss the rich diversity of the TE repertoire and its potential role in adaptive evolution.
  4. Comput Biol Chem. 2018 Apr 22. pii: S1476-9271(17)30431-0. [Epub ahead of print]75 1-10
      Sugar beet (Beta vulgaris) is an important crop of sugar production in the world. Previous studies reported that sugar beet monosomic addition line M14 obtained from the intercross between Beta vulgaris L. (cultivated species) and B. corolliflora Zoss (wild species) exhibited tolerance to salt (up to 0.5 M NaCl) stress. To estimate a broad spectrum of genes involved in the M14 salt tolerance will help elucidate the molecular mechanisms underlying salt stress. Comparative transcriptomics was performed to monitor genes differentially expressed in the leaf and root samples of the sugar beet M14 seedlings treated with 0, 200 and 400 mM NaCl, respectively. Digital gene expression revealed that 3856 unigenes in leaves and 7157 unigenes in roots were differentially expressed under salt stress. Enrichment analysis of the differentially expressed genes based on GO and KEGG databases showed that in both leaves and roots genes related to regulation of redox balance, signal transduction, and protein phosphorylation were differentially expressed. Comparison of gene expression in the leaf and root samples treated with 200 and 400 mM NaCl revealed different mechanisms for coping with salt stress. In addition, the expression levels of nine unigenes in the reactive oxygen species (ROS) scavenging system exhibited significant differences in the leaves and roots. Our transcriptomics results have provided new insights into the salt-stress responses in the leaves and roots of sugar beet.
    Keywords:  ROS scavenging system; Salt stress; Sugar beet M14 line; Transcription factor; Transcriptome assembly; Transcriptomics