bims-pimaco Biomed News
on PI3K and MAPK signalling in colorectal cancer
Issue of 2021‒03‒21
twelve papers selected by
Lucas B. Zeiger
Beatson Institute for Cancer Research


  1. Biochem J. 2021 Mar 26. 478(6): 1199-1225
      PI3Ks are important lipid kinases that produce phosphoinositides phosphorylated in position 3 of the inositol ring. There are three classes of PI3Ks: class I PI3Ks produce PIP3 at plasma membrane level. Although D. melanogaster and C. elegans have only one form of class I PI3K, vertebrates have four class I PI3Ks called isoforms despite being encoded by four different genes. Hence, duplication of these genes coincides with the acquisition of coordinated multi-organ development. Of the class I PI3Ks, PI3Kα and PI3Kβ, encoded by PIK3CA and PIK3CB, are ubiquitously expressed. They present similar putative protein domains and share PI(4,5)P2 lipid substrate specificity. Fifteen years after publication of their first isoform-selective pharmacological inhibitors and genetically engineered mouse models (GEMMs) that mimic their complete and specific pharmacological inhibition, we review the knowledge gathered in relation to the redundant and selective roles of PI3Kα and PI3Kβ. Recent data suggest that, further to their redundancy, they cooperate for the integration of organ-specific and context-specific signal cues, to orchestrate organ development, physiology, and disease. This knowledge reinforces the importance of isoform-selective inhibitors in clinical settings.
    Keywords:  PI3K; genetically engineered mouse models; lipid signalling; pharmacological inhibitors
    DOI:  https://doi.org/10.1042/BCJ20210004
  2. J Natl Cancer Inst. 2021 Mar 18. pii: djab042. [Epub ahead of print]
      BACKGROUND: First-line therapeutic strategies for patients with BRAFV600E-mutated (BRAFmt) metastatic colorectal cancer (mCRC) mainly rely on subgroup analyses from randomized controlled trials (RCTs). We aimed at assessing the prognostic and predictive impact of BRAFmt for the efficacy of targeted therapies with first-line chemotherapy.METHODS: Individual patient data from first-line RCTs with BRAF and KRAS status data in the ARCAD database were pooled. Progression-free survival and overall survival (OS) were assessed using Kaplan-Meier and Cox models. Outcomes were compared between treatment groups that were concurrently randomized whenever possible.
    RESULTS: 6391 patients from 10 RCTs were included: 573 BRAFmt (9.0%), 2059 KRASmt (32.2%) and 3759 double wild-type (58.8%). BRAFmt mCRC patients experienced statistically significantly poorer OS than those with KRASmt (adjusted hazard ratio [HRadj] =1.46, 95% confidence interval [95%CI] = 1.30-1.64) and patients with double wild-type tumors (HRadj =2.14, 95%CI = 1.94-2.36). Anti-EGFR agents did not improve progression-free survival or OS of BRAFmt mCRC patients, based on 4 RCTs testing chemotherapy ± anti-EGFR (HRadj =0.96, 95%CI = 0.71-1.30 and HRadj =0.85, 95%CI = 0.66-1.14, respectively).
    CONCLUSION: Our data suggest that the addition of anti-EGFR agents to chemotherapy is ineffective as first-line treatment for BRAFmt mCRC patients.
    Keywords:  BRAF; Colorectal cancer; anti-EGFR; antiangiogenic; prognosis; survival
    DOI:  https://doi.org/10.1093/jnci/djab042
  3. Br J Cancer. 2021 Mar 19.
      BACKGROUND: Epidemiological studies and meta-analyses show an association between statin use and a reduced incidence of colorectal cancer (CRC). We have shown that statins act on CRC through bone morphogenetic protein (BMP) signalling, but the exact cellular targets and underlying mechanism of statin action remain elusive. In this study, we set out to assess the influence of statins on global cancer cell signalling by performing an array-based kinase assay using immobilised kinase substrates spanning the entire human kinome.METHODS: CRC cells with or without Lovastatin treatment were used for kinome analysis. Findings on kinome arrays were further confirmed by immunoblotting with activity-specific antibodies. Experiments in different CRC cell lines using immunoblotting, siRNA-mediated knockdown and treatment with specific BMP inhibitor Noggin were performed. The relevance of in vitro findings was confirmed in xenografts and in CRC patients treated with Simvastatin.
    RESULTS: Kinome analysis can distinguish between non-specific, toxic effects caused by 10 µM of Lovastatin and specific effects on cell signalling caused by 2 µM Lovastatin. Statins induce upregulation of PTEN activity leading to downregulation of the PI3K/Akt/mTOR signalling. Treatment of cells with the specific BMP inhibitor Noggin as well as PTEN knockdown and transfection of cells with a constitutively active form of AKT abolishes the effect of Lovastatin on mTOR phosphorylation. Experiments in xenografts and in patients treated with Simvastatin confirm statin-mediated BMP pathway activation, activation of PTEN and downregulation of mTOR signalling.
    CONCLUSIONS: Statins induce BMP-specific activation of PTEN and inhibition of PI3K/Akt/mTOR signalling in CRC.
    DOI:  https://doi.org/10.1038/s41416-021-01318-9
  4. Autophagy. 2021 Mar 18. 1-19
      Increased macroautophagy/autophagy and lysosomal activity promote tumor growth, survival and chemo-resistance. During acute starvation, autophagy is rapidly engaged by AMPK (AMP-activated protein kinase) activation and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) inhibition to maintain energy homeostasis and cell survival. TFEB (transcription factor E3) and TFE3 (transcription factor binding to IGHM enhancer 3) are master transcriptional regulators of autophagy and lysosomal activity and their cytoplasm/nuclear shuttling is controlled by MTORC1-dependent multisite phosphorylation. However, it is not known whether and how the transcriptional activity of TFEB or TFE3 is regulated. We show that AMPK mediates phosphorylation of TFEB and TFE3 on three serine residues, leading to TFEB and TFE3 transcriptional activity upon nutrient starvation, FLCN (folliculin) depletion and pharmacological manipulation of MTORC1 or AMPK. Collectively, we show that MTORC1 specifically controls TFEB and TFE3 cytosolic retention, whereas AMPK is essential for TFEB and TFE3 transcriptional activity. This dual and opposing regulation of TFEB and TFE3 by MTORC1 and AMPK is reminiscent of the regulation of another critical regulator of autophagy, ULK1 (unc-51 like autophagy activating kinase 1). Surprisingly, we show that chemoresistance is mediated by AMPK-dependent activation of TFEB, which is abolished by pharmacological inhibition of AMPK or mutation of serine 466, 467 and 469 to alanine residues within TFEB. Altogether, we show that AMPK is a key regulator of TFEB and TFE3 transcriptional activity, and we validate AMPK as a promising target in cancer therapy to evade chemotherapeutic resistance.AbbreviationsACACA: acetyl-CoA carboxylase alpha; ACTB: actin beta; AICAR: 5-aminoimidazole-4-carboxamide ribonucleotide; AMPK: AMP-activated protein kinase; AMPKi: AMPK inhibitor, SBI-0206965; CA: constitutively active; CARM1: coactivator-associated arginine methyltransferase 1; CFP: cyan fluorescent protein; CLEAR: coordinated lysosomal expression and regulation; DKO: double knock-out; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DQ-BSA: self-quenched BODIPY® dye conjugates of bovine serum albumin; EBSS: Earle's balanced salt solution; FLCN: folliculin; GFP: green fluorescent protein; GST: glutathione S-transferases; HD: Huntington disease; HTT: huntingtin; KO: knock-out; LAMP1: lysosomal associated membrane protein 1; MEF: mouse embryonic fibroblasts; MITF: melanocyte inducing transcription factor; MTORC1: MTOR complex 1; PolyQ: polyglutamine; RPS6: ribosomal protein S6; RT-qPCR: reverse transcription quantitative polymerase chain reaction; TCL: total cell lysates; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; TKO: triple knock-out; ULK1: unc-51 like autophagy activating kinase 1.
    Keywords:  AMP-activated protein kinase; autophagy; drug resistance; lysosomal biogenesis; mechanistic target of rapamycin kinase; phosphorylation; transcription factor E3; transcription factor EB
    DOI:  https://doi.org/10.1080/15548627.2021.1898748
  5. Front Oncol. 2021 ;11 602596
      
    Keywords:  BRAF mutation; RAS mutation; colorectal cancer; metastatic disease; targeted therapies
    DOI:  https://doi.org/10.3389/fonc.2021.602596
  6. Eur J Pharmacol. 2021 Mar 15. pii: S0014-2999(21)00194-1. [Epub ahead of print] 174041
      P2X7 receptor (P2X7R) plays an important role in regulating the growth of tumor cells. However, the role of P2X7R in colorectal cancer (CRC) has remained poorly understood. Therefore, in this study, in vivo and in vitro experiments were performed to investigate the effect of P2X7R on the proliferation of CRC. The results showed that P2X7R was expressed in CRC cell lines (SW620 and HCT116). ATP and BzATP increased the expression of P2X7R in CRC cells, while the application of P2X7R antagonist A438079 and AZD9056 decreased the P2X7R expression induced by BzATP. Moreover, ATP and BzATP induced the activation of P2X7R to promote the proliferation, migration and invasion of CRC cells. Conversely, A438079, AZD9056 or siRNA transfection targeting P2X7R (siP2X7R) knockdown P2X7R expression inhibited the proliferation and migration of CRC cells. TGF-β1 promoted the migration and invasion of CRC cells, while the application of P2X7R antagonist could inhibit TGF-β1 induced migration of CRC cells. Furthermore, activation of P2X7R increased the expression of Vimentin, Snail, Fibronectin and decreased the expression of E-cadherin. While reducing the expression of P2X7R could inhibit these genes expression. In addition, ATP and BzATP increased the expression of p-Akt, p-GSK-3beta and β-catenin via P2X7R. P13/Akt pathway inhibitor LY294002 inhibited the proliferation of CRC cells, and the P13/Akt signaling was required for BzATP induced the proliferation of CRC cells. Our conclusion is that P2X7R mediated the PI3K/Akt/GSK-3beta signaling to promote the proliferation and EMT of CRC, indicating that P2X7R may be used as a potential therapeutic target for CRC.
    Keywords:  P13/Akt; P2X7 receptor; colorectal cancer; proliferation
    DOI:  https://doi.org/10.1016/j.ejphar.2021.174041
  7. Cell Rep. 2021 Mar 16. pii: S2211-1247(21)00135-2. [Epub ahead of print]34(11): 108821
      Loss of integrin-mediated attachment to extracellular matrix (ECM) proteins can trigger a variety of cellular changes that affect cell viability. Foremost among these is the activation of anoikis, caspase-mediated cell death induced by ECM detachment. In addition, loss of ECM attachment causes profound alterations in cellular metabolism, which can lead to anoikis-independent cell death. Here, we describe a surprising role for serum and glucocorticoid kinase-1 (SGK1) in the promotion of energy production when cells are detached. Our data demonstrate that SGK1 activation is necessary and sufficient for ATP generation during ECM detachment and anchorage-independent growth. More specifically, SGK1 promotes a substantial elevation in glucose uptake because of elevated GLUT1 transcription. In addition, carbon flux into the pentose phosphate pathway (PPP) is necessary to accommodate elevated glucose uptake and PPP-mediated glyceraldehyde-3-phosphate (G3P) is necessary for ATP production. Thus, our data show SGK1 as master regulator of glucose metabolism and cell survival during ECM-detached conditions.
    Keywords:  SGK1; anoikis; glucose metabolism; pentose phosphate pathway; signal transduction
    DOI:  https://doi.org/10.1016/j.celrep.2021.108821
  8. Front Oncol. 2020 ;10 623048
      Tumor necrosis factor-induced protein-8 (TIPE) is highly expressed in colorectal cancer (CRC). Decoy receptor 3 (DcR3) is a soluble secreted protein that can antagonize Fas ligand (FasL)-induced apoptosis and promote tumorigenesis. It remains unclear whether TIPE can regulate DcR3 expression. In this study, we examined this question by analyzing the relationship between these factors in CRC. Bioinformatics and tissue microarrays were used to determine the expression of TIPE and DcR3 and their correlation in CRC. The expression of TIPE and DcR3 in colon cancer cells was detected. Plasma samples were collected from CRC patients, and DcR3 secretion was measured. Then, dual-luciferase reporter gene analysis was performed to assess the interaction between TIPE and DcR3. We exogenously altered TIPE expression and analyzed its function and influence on DcR3 secretion. Lipopolysaccharide (LPS) was used to stimulate TIPE-overexpressing HCT116 cells, and alterations in signaling pathways were detected. Additionally, inhibitors were used to confirm molecular mechanisms. We found that TIPE and DcR3 were highly expressed in CRC patients and that their expression levels were positively correlated. DcR3 was highly expressed in the plasma of cancer patients. We confirmed that TIPE and DcR3 were highly expressed in HCT116 cells. TIPE overexpression enhanced the transcriptional activity of the DcR3 promoter. TIPE activated the PI3K/AKT signaling pathway to regulate the expression of DcR3, thereby promoting cell proliferation and migration and inhibiting apoptosis. In summary, TIPE and DcR3 are highly expressed in CRC, and both proteins are associated with poor prognosis. TIPE regulates DcR3 expression by activating the PI3K/AKT signaling pathway in CRC, thus promoting cell proliferation and migration and inhibiting apoptosis. These findings may have clinical significance and promise for applications in the treatment or prognostication of CRC.
    Keywords:  PI3K/AKT signaling pathway; apoptosis; cell proliferation; colorectal cancer; migration
    DOI:  https://doi.org/10.3389/fonc.2020.623048
  9. Front Oncol. 2020 ;10 592130
      Background: Mitochondria are highly dynamic organelles which remain in a continuous state of fission/ fusion dynamics to meet the metabolic needs of a cell. However, this fission/fusion dynamism has been reported to be dysregulated in most cancers. Such enhanced mitochondrial fission is demonstrated to be positively regulated by some activating oncogenic mutations; such as those of KRAS (Kristen rat sarcoma viral oncogene homologue) or BRAF (B- rapidly accelerated fibrosarcoma), thereby increasing tumor progression/ chemotherapeutic resistance and metabolic deregulation. However, the underlying mechanism(s) are still not clear, thus highlighting the need to further explore possible mechanism(s) of intervention. We sought to investigate how BRAFV600E driven CRC (colorectal cancer) progression is linked to mitochondrial fission/fusion dynamics and whether this window could be exploited to target CRC progression.Methods: Western blotting was employed to study the differences in expression levels of key proteins regulating mitochondrial dynamics, which was further confirmed by confocal microscopy imaging of mitochondria in endogenously expressing BRAFWT and BRAFV600E CRC cells. Proliferation assays, soft agar clonogenic assays, glucose uptake/lactate production, ATP/ NADPH measurement assays were employed to study the extent of carcinogenesis and metabolic reprograming in BRAFV600E CRC cells. Genetic knockdown (shRNA/ siRNA) and/or pharmacologic inhibition of Dynamin related protein1/Pyruvate dehydrogenase kinase1 (DRP1/PDK1) and/or BRAFV600E were employed to study the involvement and possible mechanism of these proteins in BRAFV600E driven CRC. Statistical analyses were carried out using Graph Pad Prism v 5.0, data was analyzed by unpaired t-test and two-way ANOVA with appropriate post hoc tests.
    Results: Our results demonstrate that BRAFV600E CRC cells have higher protein levels of mitochondrial fission factor- DRP1/pDRP1S616 leading to a more fragmented mitochondrial state compared to those harboring BRAFWT . This fragmented mitochondrial state was found to confer glycolytic phenotype, clonogenic potential and metastatic advantage to cells harboring BRAFV600E . Interestingly, such fragmented mitochondrial state seemed positively regulated by mitochondrial PDK1 as observed through pharmacologic as well as genetic inhibition of PDK1.
    Conclusion: In conclusion, our data suggest that BRAFV600E driven colorectal cancers have fragmented mitochondria which confers glycolytic phenotype and growth advantage to these tumors, and such phenotype is dependent at least in part on PDK1- thus highlighting a potential therapeutic target.
    Keywords:  BRAFV600E; DRP1; colorectal cancer; metabolic reprogramming; mitochondrial dynamics
    DOI:  https://doi.org/10.3389/fonc.2020.592130
  10. Proc Natl Acad Sci U S A. 2021 Mar 23. pii: e2022403118. [Epub ahead of print]118(12):
      Ras is regulated by a specific guanine nucleotide exchange factor Son of Sevenless (SOS), which facilitates the exchange of inactive, GDP-bound Ras with GTP. The catalytic activity of SOS is also allosterically modulated by an active Ras (Ras-GTP). However, it remains poorly understood how oncogenic Ras mutants interact with SOS and modulate its activity. Here, native ion mobility-mass spectrometry is employed to monitor the assembly of the catalytic domain of SOS (SOScat) with KRas and three cancer-associated mutants (G12C, G13D, and Q61H), leading to the discovery of different molecular assemblies and distinct conformers of SOScat engaging KRas. We also find KRasG13D exhibits high affinity for SOScat and is a potent allosteric modulator of its activity. A structure of the KRasG13D•SOScat complex was determined using cryogenic electron microscopy providing insight into the enhanced affinity of the mutant protein. In addition, we find that KRasG13D-GTP can allosterically increase the nucleotide exchange rate of KRas at the active site more than twofold compared to KRas-GTP. Furthermore, small-molecule Ras•SOS disruptors fail to dissociate KRasG13D•SOScat complexes, underscoring the need for more potent disruptors. Taken together, a better understanding of the interaction between oncogenic Ras mutants and SOS will provide avenues for improved therapeutic interventions.
    Keywords:  Ras proteins; Ras-SOS; cancer; native mass spectrometry
    DOI:  https://doi.org/10.1073/pnas.2022403118
  11. J Med Chem. 2021 Mar 15.
      KRAS, the most common oncogenic driver in human cancers, is controlled and signals primarily through protein-protein interactions (PPIs). The interaction between KRAS and SOS1, crucial for the activation of KRAS, is a typical, challenging PPI with a large contact surface area and high affinity. Here, we report that the addition of only one atom placed between Y884SOS1 and A73KRAS is sufficient to convert SOS1 activators into SOS1 inhibitors. We also disclose the discovery of BI-3406. Combination with the upstream EGFR inhibitor afatinib shows in vivo efficacy against KRASG13D mutant colorectal tumor cells, demonstrating the utility of BI-3406 to probe SOS1 biology. These findings challenge the dogma that large molecules are required to disrupt challenging PPIs. Instead, a "foot in the door" approach, whereby single atoms or small functional groups placed between key PPI interactions, can lead to potent inhibitors even for challenging PPIs such as SOS1-KRAS.
    DOI:  https://doi.org/10.1021/acs.jmedchem.0c01949
  12. Sci Rep. 2021 Mar 17. 11(1): 6163
      Colorectal cancer (CRC) is a major cancer, and its precise diagnosis is especially important for the development of effective therapeutics. In a series of metabolome analyses, the levels of very long chain fatty acids (VLCFA) were shown to be elevated in CRC tissues, although the endogenous form of VLCFA has not been fully elucidated. In this study we analyzed the amount of nonesterified fatty acids, acyl-CoA species, phospholipids and neutral lipids such as cholesterylesters using liquid-chromatography-mass spectrometry. Here we showed that VLCFA were accumulated in triacylglycerol (TAG) and nonesterified forms in CRC tissues. The levels of TAG species harboring a VLCFA moiety (VLCFA-TAG) were significantly correlated with that of nonesterified VLCFA. We also showed that the expression level of elongation of very long-chain fatty acids protein 1 (ELOVL1) is increased in CRC tissues, and the inhibition of ELOVL1 decreased the levels of VLCFA-TAG and nonesterified VLCFA in CRC cell lines. Our results suggest that the upregulation of ELOVL1 contributes to the accumulation of VLCFA-TAG and nonesterified VLCFA in CRC tissues.
    DOI:  https://doi.org/10.1038/s41598-021-85603-w