bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2021‒03‒14
sixteen papers selected by
Ralitsa Radostinova Madsen
University College London Cancer Institute

  1. Genetics. 2021 Mar 03. 217(1): 1-12
      Glycolysis and fatty acid (FA) synthesis directs the production of energy-carrying molecules and building blocks necessary to support cell growth, although the absolute requirement of these metabolic pathways must be deeply investigated. Here, we used Drosophila genetics and focus on the TOR (Target of Rapamycin) signaling network that controls cell growth and homeostasis. In mammals, mTOR (mechanistic-TOR) is present in two distinct complexes, mTORC1 and mTORC2; the former directly responds to amino acids and energy levels, whereas the latter sustains insulin-like-peptide (Ilp) response. The TORC1 and Ilp signaling branches can be independently modulated in most Drosophila tissues. We show that TORC1 and Ilp-dependent overgrowth can operate independently in fat cells and that ubiquitous over-activation of TORC1 or Ilp signaling affects basal metabolism, supporting the use of Drosophila as a powerful model to study the link between growth and metabolism. We show that cell-autonomous restriction of glycolysis or FA synthesis in fat cells retrains overgrowth dependent on Ilp signaling but not TORC1 signaling. Additionally, the mutation of FASN (Fatty acid synthase) results in a drop in TORC1 but not Ilp signaling, whereas, at the cell-autonomous level, this mutation affects none of these signals in fat cells. These findings thus reveal differential metabolic sensitivity of TORC1- and Ilp-dependent growth and suggest that cell-autonomous metabolic defects might elicit local compensatory pathways. Conversely, enzyme knockdown in the whole organism results in animal death. Importantly, our study weakens the use of single inhibitors to fight mTOR-related diseases and strengthens the use of drug combination and selective tissue-targeting.
    Keywords:  cell-autonomous effect; fatty acid synthesis; glycolysis; homeostasis
  2. Ther Clin Risk Manag. 2021 ;17 193-207
      The PI3K/AKT/mTOR pathway has long been known to play a major role in the growth and survival of cancer cells. Breast tumors often harbor PIK3CA gene alterations, which therefore constitute a rational drug target. However, it has taken many years to demonstrate clinically-relevant efficacy of PI3K inhibition and eventually attain regulatory approvals. As data on PI3K inhibitors continue to mature, this review updates and summarizes the current state of the science, including the prognostic role of PIK3CA alterations in breast cancer; the evolution of PI3K inhibitors; the clinical utility of the first-in-class oral selective PI3Kα inhibitor, alpelisib; PIK3CA mutation detection techniques; and adverse effect management. PIK3CA-mutated breast carcinomas predict survival benefit from PI3K inhibitor therapy. The pan-PI3K inhibitor, buparlisib and the beta-isoform-sparing PI3K inhibitor, taselisib, met efficacy endpoints in clinical trials, but pictilisib did not; moreover, poor tolerability of these three drugs abrogated further clinical trials. Alpelisib is better tolerated, with a more manageable toxicity profile; the principal adverse events, hyperglycemia, rash and diarrhea, can be mitigated by intensive monitoring and timely intervention, thereby enabling patients to remain adherent to clinically beneficial treatment. Alpelisib plus endocrine therapy shows promising efficacy for treating postmenopausal women with HR+/HER2- advanced breast cancer. Available evidence supporting using alpelisib after disease progression on first-line endocrine therapy with or without CDK4/6 inhibitors justifies PIK3CA mutation testing upon diagnosing HR+/HER2- advanced breast cancer, which can be done using either tumor tissue or circulating tumor DNA. With appropriate toxicity management and patient selection using validated testing methods, all eligible patients can potentially benefit from this new treatment. Further clinical trials to assess combinations of hormone therapy with PI3K, AKT, mTOR, or CDK 4/6 inhibitors, or studies in men and women with other breast subtypes are ongoing.
    Keywords:  HR+/HER2− advanced/metastatic breast cancer; PIK3CA mutation test; alpelisib PI3K alpha-selective inhibitor; prognosis; survival benefit; toxicity management
  3. Cancer Res. 2021 Mar 08. pii: canres.3232.2020. [Epub ahead of print]
      PI3Kα inhibitors have shown clinical activity in PIK3CA-mutated estrogen receptor-positive (ER+) breast cancer patients. Using whole genome CRISPR/Cas9 sgRNA knockout screens, we identified and validated several negative regulators of mTORC1 whose loss confers resistance to PI3Kα inhibition. Among the top candidates were TSC1, TSC2, TBC1D7, AKT1S1, STK11, MARK2, PDE7A, DEPDC5, NPRL2, NPRL3, C12orf66, SZT2 and ITFG2. Loss of these genes invariably results in sustained mTOR signaling under pharmacological inhibition of the PI3K-AKT pathway. Moreover, resistance could be prevented or overcome by mTOR inhibition, confirming the causative role of sustained mTOR activity in limiting the sensitivity to PI3Kα inhibition. Cumulatively, genomic alterations affecting these genes are identified in about 15% of PIK3CA-mutated breast tumors and appear to be mutually exclusive. This study improves our understanding of the role of mTOR signaling restoration in leading to resistance to PI3Kα inhibition and proposes therapeutic strategies to prevent or revert this resistance.
  4. Crit Rev Oncol Hematol. 2021 Mar 03. pii: S1040-8428(21)00072-X. [Epub ahead of print] 103284
      A systematic review (SR) and meta-analysis were conducted to determine the prevalence of PI3K-AKT-mTOR signaling pathway mutations in patients with head and neck cancer (HNC). Overall, 105 studies comprising 8,630 patients and 1,306 mutations were selected. The estimated mutations prevalence was 13% for PIK3CA (95% confidence interval [CI] = 11-14; I2 = 82%; p < 0.0001), 4% for PTEN (95% CI = 3-5; I2 = 55%; p < 0.0001), 3% for MTOR (95% CI = 2-4; I2 = 5%; p = 0.40), and 2% for AKT (95% CI = 1-2; I2 = 50%; p = 0.0001). We further stratified the available data of the participants according to risk factors and tumor characteristics, including HPV infection, tobacco use, alcohol exposure, TNM stage, and histological tumor differentiation, and performed subgroup analysis. We identified significant associations between PI3K-AKT-mTOR pathway-associated mutations and advanced TNM stage (odds ratio [OR] = 0.20; 95% CI = 0.09-0.44; I² = 71%; p = 0.0001) and oropharyngeal HPV-positive tumors and PIK3CA mutations (OR = 17.48; 95% CI = 4.20-72.76; I² = 69%; p < 0.0002). No associations were found between alcohol and tobacco exposure, and tumor differentiation grade. This SR demonstrated that the PI3K-AKT-mTOR pathway emerges as a potential prognostic factor and could offer a molecular basis for future studies on therapeutic targeting in HNC patients.
    Keywords:  Head and Neck Cancer; Meta-analysis; Mutation; PI3K-AKT-mTOR Pathway; Systematic review
  5. Nat Commun. 2021 Mar 12. 12(1): 1661
      CRISPR-Cas9 viability screens are increasingly performed at a genome-wide scale across large panels of cell lines to identify new therapeutic targets for precision cancer therapy. Integrating the datasets resulting from these studies is necessary to adequately represent the heterogeneity of human cancers and to assemble a comprehensive map of cancer genetic vulnerabilities. Here, we integrated the two largest public independent CRISPR-Cas9 screens performed to date (at the Broad and Sanger institutes) by assessing, comparing, and selecting methods for correcting biases due to heterogeneous single-guide RNA efficiency, gene-independent responses to CRISPR-Cas9 targeting originated from copy number alterations, and experimental batch effects. Our integrated datasets recapitulate findings from the individual datasets, provide greater statistical power to cancer- and subtype-specific analyses, unveil additional biomarkers of gene dependency, and improve the detection of common essential genes. We provide the largest integrated resources of CRISPR-Cas9 screens to date and the basis for harmonizing existing and future functional genetics datasets.
  6. EMBO J. 2021 Mar 09. e105776
      In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large-scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre- to post-implantation epiblast in utero. We identified 496 naïve state-associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.
    Keywords:  exit from naïve pluripotency; haploid ES cells; naïve to formative transition; signalling; systems biology
  7. Curr Opin Cell Biol. 2021 Mar 04. pii: S0955-0674(21)00018-1. [Epub ahead of print]71 15-20
      The generation of phosphoinositides (PIs) with spatial and temporal control is a key mechanism in cellular organization and signaling. The synthesis of PIs is mediated by PI kinases, proteins that are able to phosphorylate unique substrates at specific positions on the inositol headgroup to generate signaling molecules. Phosphatidylinositol 5 phosphate 4 kinase (PIP4K) is one such lipid kinase that is able to specifically phosphorylate phosphatidylinositol 5 phosphate, the most recently discovered PI to generate the well-known and abundant PI, phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2]. PIP4K appears to be encoded only in metazoan genomes, and several genetic studies indicate important physiological functions for these enzymes in metabolism, immune function, and growth control. PIP4K has recently been reported to localize to multiple cellular compartments, including the nucleus, plasma membrane, endosomal systems, and autophagosome. However, the biochemical activity of these enzymes that is relevant to these physiological functions remains elusive. We review recent developments in this area and highlight emerging roles for these enzymes in cellular organization.
    Keywords:  Autophagy; Class I PI3K; Endocytosis; PI5P; PIP4K; Receptor tyrosine kinase signaling
  8. Am J Physiol Cell Physiol. 2021 Mar 10.
      Endothelial cell (EC) migration is critical for healing arterial injuries, such as those that occur with angioplasty. Impaired reendothelialization following arterial injury contributes to vessel thrombogenicity, intimal hyperplasia, and restenosis. Oxidized lipid products, including lysophosphatidylcholine (lysoPC) induce TRPC6 externaliza-tion leading to increased [Ca2+]i, activation of calpains and alterations of the EC cytoskeletal structure that inhibit migration. The p110α and p110δ catalytic subunit isoforms of phosphatidylinositol 3-kinase (PI3K) regulate lysoPC-induced TRPC6 externalization in vitro. The goal of this study is to assess the in vivo relevance of those in vitro findings to arterial healing following a denuding injury in hypercholesterolemic mice treated with pharmacologic inhibitors of the p110α and p110δ isoforms of PI3K and a general PI3K inhibitor. Pharmacologic inhibition of the p110α or the p110δ isoform of PI3K partially preserves healing in hypercholesterolemic male mice, similar to a general PI3K inhibitor. Interestingly, the p110α, p110δ, and the general PI3K inhibitor do not improve arterial healing after injury in hypercholesterolemic female mice. These results indicate a potential new role for isoform-specific PI3K inhibitors in male patients following arterial injury/intervention. The results also identify significant gender differences in the response to PI3K inhibition in the cardiovascular system, where female gender generally has a cardioprotective effect. This study provides a foundation to investigate the mechanism for the gender differences in response to PI3K inhibition to develop a more generally applicable treatment option.
    Keywords:  PI3-kinase; TRPC6; arterial healing; p110a; p110d
  9. Nat Commun. 2021 Mar 12. 12(1): 1623
      The signalling pathways underpinning cell growth and invasion use overlapping components, yet how mutually exclusive cellular responses occur is unclear. Here, we report development of 3-Dimensional culture analyses to separately quantify growth and invasion. We identify that alternate variants of IQSEC1, an ARF GTPase Exchange Factor, act as switches to promote invasion over growth by controlling phosphoinositide metabolism. All IQSEC1 variants activate ARF5- and ARF6-dependent PIP5-kinase to promote PI(3,4,5)P3-AKT signalling and growth. In contrast, select pro-invasive IQSEC1 variants promote PI(3,4,5)P3 production to form invasion-driving protrusions. Inhibition of IQSEC1 attenuates invasion in vitro and metastasis in vivo. Induction of pro-invasive IQSEC1 variants and elevated IQSEC1 expression occurs in a number of tumour types and is associated with higher-grade metastatic cancer, activation of PI(3,4,5)P3 signalling, and predicts long-term poor outcome across multiple cancers. IQSEC1-regulated phosphoinositide metabolism therefore is a switch to induce invasion over growth in response to the same external signal. Targeting IQSEC1 as the central regulator of this switch may represent a therapeutic vulnerability to stop metastasis.
  10. Proc Natl Acad Sci U S A. 2021 Mar 16. pii: e2015786118. [Epub ahead of print]118(11):
      Zinc (Zn2+) is an essential metal in biology, and its bioavailability is highly regulated. Many cell types exhibit fluctuations in Zn2+ that appear to play an important role in cellular function. However, the detailed molecular mechanisms by which Zn2+ dynamics influence cell physiology remain enigmatic. Here, we use a combination of fluorescent biosensors and cell perturbations to define how changes in intracellular Zn2+ impact kinase signaling pathways. By simultaneously monitoring Zn2+ dynamics and kinase activity in individual cells, we quantify changes in labile Zn2+ and directly correlate changes in Zn2+ with ERK and Akt activity. Under our experimental conditions, Zn2+ fluctuations are not toxic and do not activate stress-dependent kinase signaling. We demonstrate that while Zn2+ can nonspecifically inhibit phosphatases leading to sustained kinase activation, ERK and Akt are predominantly activated via upstream signaling and through a common node via Ras. We provide a framework for quantification of Zn2+ fluctuations and correlate these fluctuations with signaling events in single cells to shed light on the role that Zn2+ dynamics play in healthy cell signaling.
    Keywords:  Akt; ERK; Ras; kinase signaling; zinc
  11. Blood. 2021 Mar 08. pii: blood.2020006765. [Epub ahead of print]
      Inhibitors of Bruton's tyrosine kinase (BTKi) and phosphatidylinositol 3-kinase delta (PI3Kδi) that target the B cell receptor (BCR) signaling pathway have revolutionized the treatment of chronic lymphocytic leukemia (CLL). While mutations associated with resistance to BTK inhibitors have been identified, limited data are available on mechanisms of resistance to PI3Kδi. Here we present findings from longitudinal whole-exome sequencing of multiply relapsed CLL patients (Ncases=28) enrolled in PI3Ki trials. The non-responder subgroup was characterized by baseline activating mutations in MAP2K1, BRAF and KRAS in 60% of patients. PI3Kδ inhibition failed to inhibit ERK phosphorylation (pERK) in non-responder CLL cells with and without mutations, while treatment with MEKi rescued ERK inhibition. Overexpression of MAP2K1 mutants in vitro led to increased basal and inducible pERK and resistance to idelalisib. These data demonstrate that MAPK/ERK activation plays a key role in resistance to PI3Kδi in CLL and provide rationale for combination therapy with PI3Kδ and ERK inhibitors.
  12. Cell Signal. 2021 Mar 06. pii: S0898-6568(21)00061-9. [Epub ahead of print] 109973
      Histamine induces chemotaxis of mast cells through the histamine H4 receptor. This involves the activation of small GTPases, Rac1 and Rac2, downstream of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Activation of the H4 receptor also results in phospholipase C (PLC)-mediated calcium mobilization; however, it is unclear whether the PLC‑calcium pathway interacts with the PI3K-Rac pathway. Here, we demonstrated that calcium mobilization regulates the PI3K-dependent activation of Rac GTPases through calmodulin. A PLC inhibitor (U73122) and an intracellular calcium chelator (BAPTA-AM) suppressed the histamine-induced activation of Rac, whereas the calcium ionophore ionomycin increased the active Rac GTPases, suggesting that intracellular calcium regulates the activation of Rac. The calmodulin antagonist (W-7) inhibited the histamine-induced activation of Rac and migration of mast cells, indicating that calmodulin mediates the effect of calcium. Inhibition of calcium/calmodulin signaling suppressed histamine-induced phosphorylation of Akt. The Akt inhibitor MK-2206 attenuated histamine-induced migration of mast cells. However, it did not suppress the activation of Rac GTPases. These results suggest that Rac GTPases and Akt play independent roles in the histamine-induced chemotaxis of mast cells. Our findings enable further elucidation of the molecular mechanism of histamine-induced chemotaxis of mast cells and help identify therapeutic targets for allergic and inflammatory conditions involving mast cell accumulation.
    Keywords:  Akt; Chemotaxis; Histamine; Histamine H4 receptor; Mast cell; Rac GTPase
  13. Nat Commun. 2021 Mar 12. 12(1): 1659
      Human cell conversion technology has become an important tool for devising new cell transplantation therapies, generating disease models and testing gene therapies. However, while transcription factor over-expression-based methods have shown great promise in generating cell types in vitro, they often endure low conversion efficiency. In this context, great effort has been devoted to increasing the efficiency of current protocols and the development of computational approaches can be of great help in this endeavor. Here we introduce a computer-guided design tool that combines a computational framework for prioritizing more efficient combinations of instructive factors (IFs) of cellular conversions, called IRENE, with a transposon-based genomic integration system for efficient delivery. Particularly, IRENE relies on a stochastic gene regulatory network model that systematically prioritizes more efficient IFs by maximizing the agreement of the transcriptional and epigenetic landscapes between the converted and target cells. Our predictions substantially increased the efficiency of two established iPSC-differentiation protocols (natural killer cells and melanocytes) and established the first protocol for iPSC-derived mammary epithelial cells with high efficiency.
  14. Cell Rep. 2021 Mar 09. pii: S2211-1247(21)00131-5. [Epub ahead of print]34(10): 108817
      Primary cilia play a pivotal role in signal transduction and development and are known to serve as signaling hubs. Recent studies have shown that primary cilium dysfunction influences adipogenesis, but the mechanisms are unclear. Here, we show that mesenchymal progenitors C3H10T1/2 depleted of trichoplein, a key regulator of cilium formation, have significantly longer cilia than control cells and fail to differentiate into adipocytes. Mechanistically, the elongated cilia prevent caveolin-1- and/or GM3-positive lipid rafts from being assembled around the ciliary base where insulin receptor proteins accumulate, thereby inhibiting the insulin-Akt signaling. We further generate trichoplein knockout mice, in which adipogenic progenitors display elongated cilia and impair the lipid raft dynamics. The knockout mice on an extended high-fat diet exhibit reduced body fat and smaller adipocytes than wild-type (WT) mice. Overall, our results suggest a role for primary cilia in regulating adipogenic signal transduction via control of the lipid raft dynamics around cilia.
    Keywords:  Akt; adipogenesis; caveolae; ciliary base; insulin signaling; lipid rafts; obesity; primary cilia; trichoplein
  15. PLoS Genet. 2021 Mar;17(3): e1009410
      The telomere-bound shelterin complex is essential for chromosome-end protection and genomic stability. Little is known on the regulation of shelterin components by extracellular signals including developmental and environmental cues. Here, we show that human TRF1 is subjected to AKT-dependent regulation. To study the importance of this modification in vivo, we generate knock-in human cell lines carrying non-phosphorylatable mutants of the AKT-dependent TRF1 phosphorylation sites by CRISPR-Cas9. We find that TRF1 mutant cells show decreased TRF1 binding to telomeres and increased global and telomeric DNA damage. Human cells carrying non-phosphorylatable mutant TRF1 alleles show accelerated telomere shortening, demonstrating that AKT-dependent TRF1 phosphorylation regulates telomere maintenance in vivo. TRF1 mutant cells show an impaired response to proliferative extracellular signals as well as a decreased tumorigenesis potential. These findings indicate that telomere protection and telomere length can be regulated by extracellular signals upstream of PI3K/AKT activation, such as growth factors, nutrients or immune regulators, and this has an impact on tumorigenesis potential.
  16. Nat Nanotechnol. 2021 Mar 12.
      Endocytosis is a critical step in the process by which many therapeutic nanomedicines reach their intracellular targets. Our understanding of cellular uptake mechanisms has developed substantially in the past five years. However, these advances in cell biology have not fully translated to the nanoscience and therapeutics literature. Misconceptions surrounding the role of different endocytic pathways and how to study these pathways are hindering progress in developing improved nanoparticle therapies. Here, we summarize the latest insights into cellular uptake mechanisms and pathways. We highlight limitations of current systems to study endocytosis, particularly problems with non-specific inhibitors. We also summarize alternative genetic approaches to robustly probe these pathways and discuss the need to understand how cells endocytose particles in vivo. We hope that this critical assessment of the current methods used in studying nanoparticle uptake will guide future studies at the interface of cell biology and nanomedicine.