bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2020‒11‒01
twelve papers selected by
Ralitsa Radostinova Madsen
University College London Cancer Institute


  1. Sci Transl Med. 2020 Oct 28. pii: eaay3724. [Epub ahead of print]12(567):
    Hettiarachchi SU, Li YH, Roy J, Zhang F, Puchulu-Campanella E, Lindeman SD, Srinivasarao M, Tsoyi K, Liang X, Ayaub EA, Nickerson-Nutter C, Rosas IO, Low PS.
      Idiopathic pulmonary fibrosis (IPF) is a lethal disease with an average life expectancy of 3 to 5 years. IPF is characterized by progressive stiffening of the lung parenchyma due to excessive deposition of collagen, leading to gradual failure of gas exchange. Although two therapeutic agents have been approved from the FDA for IPF, they only slow disease progression with little impact on outcome. To develop a more effective therapy, we have exploited the fact that collagen-producing myofibroblasts express a membrane-spanning protein, fibroblast activation protein (FAP), that exhibits limited if any expression on other cell types. Because collagen-producing myofibroblasts are only found in fibrotic tissues, solid tumors, and healing wounds, FAP constitutes an excellent marker for targeted delivery of drugs to tissues undergoing pathologic fibrosis. We demonstrate here that a low-molecular weight FAP ligand can be used to deliver imaging and therapeutic agents selectively to FAP-expressing cells. Because induction of collagen synthesis is associated with phosphatidylinositol 3-kinase (PI3K) activation, we designed a FAP-targeted PI3K inhibitor that selectively targets FAP-expressing human IPF lung fibroblasts and potently inhibited collagen synthesis. Moreover, we showed that administration of the inhibitor in a mouse model of IPF inhibited PI3K activation in fibrotic lungs, suppressed production of hydroxyproline (major building block of collagen), reduced collagen deposition, and increased mouse survival. Collectively, these studies suggest that a FAP-targeted PI3K inhibitor might be promising for treating IPF.
    DOI:  https://doi.org/10.1126/scitranslmed.aay3724
  2. Nat Commun. 2020 Oct 30. 11(1): 5488
    Lee KM, Guerrero-Zotano AL, Servetto A, Sudhan DR, Lin CC, Formisano L, Jansen VM, González-Ericsson P, Sanders ME, Stricker TP, Raj G, Dean KM, Fiolka R, Cantley LC, Hanker AB, Arteaga CL.
      The 17q23 amplicon is associated with poor outcome in ER+ breast cancers, but the causal genes to endocrine resistance in this amplicon are unclear. Here, we interrogate transcriptome data from primary breast tumors and find that among genes in 17q23, PRR11 is a key gene associated with a poor response to therapeutic estrogen suppression. PRR11 promotes estrogen-independent proliferation and confers endocrine resistance in ER+ breast cancers. Mechanistically, the proline-rich motif-mediated interaction of PRR11 with the p85α regulatory subunit of PI3K suppresses p85 homodimerization, thus enhancing insulin-stimulated binding of p110-p85α heterodimers to IRS1 and activation of PI3K. PRR11-amplified breast cancer cells rely on PIK3CA and are highly sensitive to PI3K inhibitors, suggesting that PRR11 amplification confers PI3K dependence. Finally, genetic and pharmacological inhibition of PI3K suppresses PRR11-mediated, estrogen-independent growth. These data suggest ER+/PRR11-amplified breast cancers as a novel subgroup of tumors that may benefit from treatment with PI3K inhibitors and antiestrogens.
    DOI:  https://doi.org/10.1038/s41467-020-19291-x
  3. Nat Cell Biol. 2020 Oct 26.
    García-Prat L, Perdiguero E, Alonso-Martín S, Dell'Orso S, Ravichandran S, Brooks SR, Juan AH, Campanario S, Jiang K, Hong X, Ortet L, Ruiz-Bonilla V, Flández M, Moiseeva V, Rebollo E, Jardí M, Sun HW, Musarò A, Sandri M, Sol AD, Sartorelli V, Muñoz-Cánoves P.
      Tissue regeneration declines with ageing but little is known about whether this arises from changes in stem-cell heterogeneity. Here, in homeostatic skeletal muscle, we identify two quiescent stem-cell states distinguished by relative CD34 expression: CD34High, with stemness properties (genuine state), and CD34Low, committed to myogenic differentiation (primed state). The genuine-quiescent state is unexpectedly preserved into later life, succumbing only in extreme old age due to the acquisition of primed-state traits. Niche-derived IGF1-dependent Akt activation debilitates the genuine stem-cell state by imposing primed-state features via FoxO inhibition. Interventions to neutralize Akt and promote FoxO activity drive a primed-to-genuine state conversion, whereas FoxO inactivation deteriorates the genuine state at a young age, causing regenerative failure of muscle, as occurs in geriatric mice. These findings reveal transcriptional determinants of stem-cell heterogeneity that resist ageing more than previously anticipated and are only lost in extreme old age, with implications for the repair of geriatric muscle.
    DOI:  https://doi.org/10.1038/s41556-020-00593-7
  4. Nat Genet. 2020 Nov;52(11): 1139-1143
    Balmain A.
      Cancer is driven by genomic mutations in 'cancer driver' genes, which have essential roles in tumor development. These mutations may be caused by exposure to mutagens in the environment or by endogenous DNA-replication errors in tissue stem cells. Recent observations of abundant mutations, including cancer driver mutations, in histologically normal human tissues suggest that mutations alone are not sufficient for tumor development, thus prompting the question of how single mutant cells give rise to neoplasia. In a concept supported by decades-old data from mouse tumor models, non-mutagenic tumor-promoting agents have been posited to activate the proliferation of dormant mutated cells, thus generating actively growing lesions, with the promotion stage as the rate-limiting step in tumor formation. Non-mutagenic promoting agents, either endogenous or environmental, may therefore have a more important role in human cancer etiology than previously thought.
    DOI:  https://doi.org/10.1038/s41588-020-00727-5
  5. Nat Genet. 2020 Nov;52(11): 1208-1218
    Kinker GS, Greenwald AC, Tal R, Orlova Z, Cuoco MS, McFarland JM, Warren A, Rodman C, Roth JA, Bender SA, Kumar B, Rocco JW, Fernandes PACM, Mader CC, Keren-Shaul H, Plotnikov A, Barr H, Tsherniak A, Rozenblatt-Rosen O, Krizhanovsky V, Puram SV, Regev A, Tirosh I.
      Cultured cell lines are the workhorse of cancer research, but the extent to which they recapitulate the heterogeneity observed among malignant cells in tumors is unclear. Here we used multiplexed single-cell RNA-seq to profile 198 cancer cell lines from 22 cancer types. We identified 12 expression programs that are recurrently heterogeneous within multiple cancer cell lines. These programs are associated with diverse biological processes, including cell cycle, senescence, stress and interferon responses, epithelial-mesenchymal transition and protein metabolism. Most of these programs recapitulate those recently identified as heterogeneous within human tumors. We prioritized specific cell lines as models of cellular heterogeneity and used them to study subpopulations of senescence-related cells, demonstrating their dynamics, regulation and unique drug sensitivities, which were predictive of clinical response. Our work describes the landscape of heterogeneity within diverse cancer cell lines and identifies recurrent patterns of heterogeneity that are shared between tumors and specific cell lines.
    DOI:  https://doi.org/10.1038/s41588-020-00726-6
  6. Elife. 2020 Oct 27. pii: e56969. [Epub ahead of print]9
    Ghosh AC, Tattikota SG, Liu Y, Comjean A, Hu Y, Barrera V, Ho Sui SJ, Perrimon N.
      PDGF/VEGF ligands regulate a plethora of biological processes in multicellular organisms via autocrine, paracrine and endocrine mechanisms. We investigated organ-specific metabolic roles of Drosophila PDGF/VEGF-like factors (Pvfs). We combine genetic approaches and single-nuclei sequencing to demonstrate that muscle-derived Pvf1 signals to the Drosophila hepatocyte-like cells/oenocytes to suppress lipid synthesis by activating the Pi3K/Akt1/TOR signaling cascade in the oenocytes. Functionally, this signaling axis regulates expansion of adipose tissue lipid stores in newly eclosed flies. Flies emerge after pupation with limited adipose tissue lipid stores and lipid level is progressively accumulated via lipid synthesis. We find that adult muscle-specific expression of pvf1 increases rapidly during this stage and that muscle-to-oenocyte Pvf1 signaling inhibits expansion of adipose tissue lipid stores as the process reaches completion. Our findings provide the first evidence in a metazoan of a PDGF/VEGF ligand acting as a myokine that regulates systemic lipid homeostasis by activating TOR in hepatocyte-like cells.
    Keywords:  D. melanogaster; genetics; genomics
    DOI:  https://doi.org/10.7554/eLife.56969
  7. Endocr Connect. 2020 Oct 01. pii: EC-20-0311. [Epub ahead of print]
    Crezee T, Petrulea M, Piciu D, Jaeger M, Smit JW, Plantinga TS, Georgescu CE, Netea-Maier R.
      The PI3K-Akt-mTOR pathway plays a central role in the development of non-medullary thyroid carcinoma (NMTC). Although somatic mutations have been identified in these genes in NMTC patients, the role of germline variants has not been investigated. Here, we selected frequently occurring genetic variants in AKT1, AKT2, AKT3, PIK3CA and MTOR and have assessed their effect on NMTC susceptibility, progression and clinical outcome in a Dutch discovery cohort (154 patients, 188 controls) and a Romanian validation cohort (159 patients, 260 controls). Significant associations with NMTC susceptibility were observed for AKT1 polymorphisms rs3803304, rs2494732 and rs2498804 in the Dutch discovery cohort, of which the AKT1 rs3803304 association was confirmed in the Romanian validation cohort. No associations were observed between PI3K-Akt-mTOR polymorphisms and clinical parameters including histology, TNM staging, treatment response and clinical outcome. Functionally, cells bearing the associated AKT1 rs3803304 risk allele exhibit increased levels of phosphorylated Akt protein, potentially leading to elevated signaling activity of the oncogenic Akt pathway. All together, germline encoded polymorphisms in the PI3K-Akt-mTOR pathway could represent important risk factors in development of NMTC.
    DOI:  https://doi.org/10.1530/EC-20-0311
  8. Sci Rep. 2020 Oct 27. 10(1): 18316
    Saji M, Kim CS, Wang C, Zhang X, Khanal T, Coombes K, La Perle K, Cheng SY, Tsichlis PN, Ringel MD.
      The Akt family is comprised of three unique homologous proteins with isoform-specific effects, but isoform-specific in vivo data are limited in follicular thyroid cancer (FTC), a PI3 kinase-driven tumor. Prior studies demonstrated that PI3K/Akt signaling is important in thyroid hormone receptor βPV/PV knock-in (PV) mice that develop metastatic thyroid cancer that most closely resembles FTC. To determine the roles of Akt isoforms in this model we crossed Akt1-/-, Akt2-/-, and Akt3-/- mice with PV mice. Over 12 months, thyroid size was reduced for the Akt null crosses (p < 0.001). Thyroid cancer development and local invasion were delayed in only the PVPV-Akt1 knock out (KO) mice in association with increased apoptosis with no change in proliferation. Primary-cultured PVPV-Akt1KO thyrocytes uniquely displayed a reduced cell motility. In contrast, loss of any Akt isoform reduced lung metastasis while vascular invasion was reduced with Akt1 or 3 loss. Microarray of thyroid RNA displayed incomplete overlap between the Akt KO models. The most upregulated gene was the dendritic cell (DC) marker CD209a only in PVPV-Akt1KO thyroids. Immunohistochemistry demonstrated an increase in CD209a-expressing cells in the PVPV-Akt1KO thyroids. In summary, Akt isoforms exhibit common and differential functions that regulate local and metastatic progression in this model of thyroid cancer.
    DOI:  https://doi.org/10.1038/s41598-020-75529-0
  9. Sci Adv. 2020 Oct;pii: eabb8542. [Epub ahead of print]6(44):
    Chin AC, Gao Z, Riley AM, Furkert D, Wittwer C, Dutta A, Rojas T, Semenza ER, Felder RA, Pluznick JL, Jessen HJ, Fiedler D, Potter BVL, Snyder SH, Fu C.
      Sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) is one of the most abundant cell membrane proteins and is essential for eukaryotes. Endogenous negative regulators have long been postulated to play an important role in regulating the activity and stability of Na+/K+-ATPase, but characterization of these regulators has been elusive. Mechanisms of regulating Na+/K+-ATPase homeostatic turnover are unknown. Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7), generated by inositol hexakisphosphate kinase 1 (IP6K1), promotes physiological endocytosis and downstream degradation of Na+/K+-ATPase-α1. Deletion of IP6K1 elicits a twofold enrichment of Na+/K+-ATPase-α1 in plasma membranes of multiple tissues and cell types. Using a suite of synthetic chemical biology tools, we found that 5-InsP7 binds the RhoGAP domain of phosphatidylinositol 3-kinase (PI3K) p85α to disinhibit its interaction with Na+/K+-ATPase-α1. This recruits adaptor protein 2 (AP2) and triggers the clathrin-mediated endocytosis of Na+/K+-ATPase-α1. Our study identifies 5-InsP7 as an endogenous negative regulator of Na+/K+-ATPase-α1.
    DOI:  https://doi.org/10.1126/sciadv.abb8542
  10. Dev Cell. 2020 Oct 26. pii: S1534-5807(20)30763-2. [Epub ahead of print]55(2): 113-115
    Johnson NM, Lengner CJ.
      MTORC1 activity is critical for tissue regeneration in multiple organs and contexts. In this issue of Developmental Cell, Miao et al. describe upstream regulators of mTORC1 activity which promote paligenosis, a process where mature cells de-differentiate to acquire stem cell activity in the face of injury.
    DOI:  https://doi.org/10.1016/j.devcel.2020.10.001
  11. Cell Syst. 2020 Oct 21. pii: S2405-4712(20)30370-7. [Epub ahead of print]
    Gerosa L, Chidley C, Fröhlich F, Sanchez G, Lim SK, Muhlich J, Chen JY, Vallabhaneni S, Baker GJ, Schapiro D, Atanasova MI, Chylek LA, Shi T, Yi L, Nicora CD, Claas A, Ng TSC, Kohler RH, Lauffenburger DA, Weissleder R, Miller MA, Qian WJ, Wiley HS, Sorger PK.
      Targeted inhibition of oncogenic pathways can be highly effective in halting the rapid growth of tumors but often leads to the emergence of slowly dividing persister cells, which constitute a reservoir for the selection of drug-resistant clones. In BRAFV600E melanomas, RAF and MEK inhibitors efficiently block oncogenic signaling, but persister cells emerge. Here, we show that persister cells escape drug-induced cell-cycle arrest via brief, sporadic ERK pulses generated by transmembrane receptors and growth factors operating in an autocrine/paracrine manner. Quantitative proteomics and computational modeling show that ERK pulsing is enabled by rewiring of mitogen-activated protein kinase (MAPK) signaling: from an oncogenic BRAFV600E monomer-driven configuration that is drug sensitive to a receptor-driven configuration that involves Ras-GTP and RAF dimers and is highly resistant to RAF and MEK inhibitors. Altogether, this work shows that pulsatile MAPK activation by factors in the microenvironment generates a persistent population of melanoma cells that rewires MAPK signaling to sustain non-genetic drug resistance.
    Keywords:  BRAF(V600E) melanoma; MAPK pathway; cancer persistence; kinase inhibitors; kinetic modeling; non-genetic drug resistance; signaling plasticity; systems pharmacology; targeted therapy
    DOI:  https://doi.org/10.1016/j.cels.2020.10.002