bims-orenst Biomed News
on Organs-on-chips and engineered stem cell models
Issue of 2022‒06‒26
seven papers selected by
Joram Mooiweer
University of Groningen


  1. Nat Biomed Eng. 2022 Jun 23.
      Environmental enteric dysfunction (EED)-a chronic inflammatory condition of the intestine-is characterized by villus blunting, compromised intestinal barrier function and reduced nutrient absorption. Here we show that essential genotypic and phenotypic features of EED-associated intestinal injury can be reconstituted in a human intestine-on-a-chip lined by organoid-derived intestinal epithelial cells from patients with EED and cultured in nutrient-deficient medium lacking niacinamide and tryptophan. Exposure of the organ chip to such nutritional deficiencies resulted in congruent changes in six of the top ten upregulated genes that were comparable to changes seen in samples from patients with EED. Chips lined with healthy epithelium or with EED epithelium exposed to nutritional deficiencies resulted in severe villus blunting and barrier dysfunction, and in the impairment of fatty acid uptake and amino acid transport; and the chips with EED epithelium exhibited heightened secretion of inflammatory cytokines. The organ-chip model of EED-associated intestinal injury may facilitate the analysis of the molecular, genetic and nutritional bases of the disease and the testing of candidate therapeutics for it.
    DOI:  https://doi.org/10.1038/s41551-022-00899-x
  2. Methods Mol Biol. 2022 ;2492 117-128
      Brain-on-a-chip is a miniaturized engineering platform to mimic the structural and functional aspects of brain tissue. We describe a method to construct a three-dimensional (3D) brain-on-a-chip in this chapter. We firstly portray the method of a brain-on-a-chip model with cocultured mice neurons, microglia, and astrocytes to mimic brain tissue and membrane-free perfusion with endothelial cells, in which we successfully build the blood-brain barrier to screen neurotoxicity. Then we describe a method to construct a brain-on-a-chip with human induced pluripotent stem cell (iPSC)-derived neurons and astrocytes to simulate human brain behavior. This platform consists of neuronal tissue with extracellular matrix (ECM)-embedded GABAergic neurons and astrocytes and a perfusion channel with dynamic flow. We also include the broader applicability test of this model using an organophosphate (OP), malathion, to induce acute and chronic neurotoxicity, and then using butyrylcholinesterase (BuChE) as an exogenous bioscavenger of OP. Following the methods listed in this chapter, we are able to measure the neurotoxic effects on construct integrity, viability, and total AChE and BuChE activity.
    Keywords:  Bioscavenger; Brain-on-a-chip model; ChE activity; Induced pluripotent stem cell (iPSC); Neurotoxicity; Organophosphate (OP); Three-dimensional cell culture; Viability
    DOI:  https://doi.org/10.1007/978-1-0716-2289-6_6
  3. Methods Mol Biol. 2022 ;2492 225-240
      An in vitro blood-brain barrier (BBB) model must be highly reproducible and imitate as much as possible the properties of the in vivo environment, from both the functional and anatomical point of view. In our latest work, a BBB prototype was implemented through the use of human primary brain cells and then integrated in a microfluidic platform (Lauranzano et al., Adv Biosyst 3:e1800335, 2019). Here we describe, step by step, the setting of a customized bio-mimetic platform, which uses human brain endothelial cells and primary astrocytic cells to allow the study of the complex interactions between the immune system and the brain in healthy and neuroinflammatory conditions. The model can be exploited to investigate the neuroimmune communication at the blood-brain interface and to examine the transmigration of patient-derived lymphocytes in order to envisage cutting-edge strategies to restore barrier integrity and block the immune cell influx into the CNS.
    Keywords:  Blood–brain barrier in vitro model; Microfluidic; Neurovascular unit; Primary human astrocyte cultures; Primary human astrocyte isolation; T cell transmigration
    DOI:  https://doi.org/10.1007/978-1-0716-2289-6_12
  4. Methods Mol Biol. 2022 ;2492 175-190
      The blood-brain barrier (BBB) consists of a tight network of blood capillaries in the brain that separate the circulatory system from the central nervous system. Its particular properties are based on the dynamic interaction between cerebral endothelial cells and other surrounding cells, especially astrocytes. We have designed and synthesized a three-dimensional scaffold that recapitulates the main hallmarks of the BBB extracellular matrix and serves as a platform to co-culture human brain microvascular endothelial cells and human cortical astrocytes. The scaffold can be exposed to flow, thereby allowing the study of flow-mediated pathways at the BBB.
    Keywords:  Blood–brain barrier; Cerebrovascular disease; Flow loops; Fluid device; Shear stress; Vascular biology
    DOI:  https://doi.org/10.1007/978-1-0716-2289-6_10
  5. Anal Chem. 2022 Jun 23.
      Intestine is a common site of adverse drug effects in clinical trials; thus, improved in vitro models for preclinical screening of pharmaceutical compounds are sought. A planar, self-renewing human intestinal monolayer platform based on primary adult gastrointestinal stem cells, termed the 2D crypt model, has been developed to screen for the effects of various compounds on the intestinal epithelium. The 2D crypt platform is based on a standard 12-well plate format and consists of cell culture inserts with a collagen film overlaying an impermeable film patterned with an array of micron-scale holes. This two-chamber format enables a gradient of growth factors to be applied such that the tissue self-organizes into spatially segregated stem and differentiated cell compartments. The patterned monolayer mimics a gut epithelium in possessing a stem cell niche, migrating proliferative and differentiated cells. Once established, the 2D crypts replicate many aspects of in vivo physiology, including cell migration, maturation, and apoptotic cell death. The planar geometry of the system simplifies dosing, sampling, and imaging during assay. An immunofluorescence-based assay was established to quantitatively assess cell density, proliferation, migration, viability, and the abundance and localization of postmitotic lineages as a function of time. The model was used to perform a small-scale screen of compounds, including signaling molecules, endogenous hormones/cytokines, and microbial metabolites, on tissue homeostasis. Hit compounds that significantly impacted proliferation and/or differentiation were readily identified. The 2D crypt platform represents a significant innovation in the development of microphysiological systems for emulating the gut epithelium for compound screens.
    DOI:  https://doi.org/10.1021/acs.analchem.2c00905
  6. Methods Mol Biol. 2022 ;2508 69-77
      Three-dimensional (D) culture models are increasingly becoming the model of choice for studying different biological phenomena such as cell-cell interaction, drug resistance, and gene expression. These models include extracellular matrix (ECM) proteins that better model the in vivo conditions as it allows cells to have both cell-cell and cell-ECM contacts. In the context of the tumor microenvironment, there are additional types of cells present in addition to the ECM. Thus, an intermediate between 2D cell culture and in vivo mouse models can be desired to interrogate the interactions between multiple cell types under the influence of the ECM. Here we describe a 3D co-culture technique for studying breast cancer-adipocyte interactions. This technique could easily be modified to analyze interactions between other cancer cell types and different fibroblast-like cells.
    Keywords:  3D culture; Adipocytes; Breast cancer; Extracellular matrix; Immunofluorescence
    DOI:  https://doi.org/10.1007/978-1-0716-2376-3_7
  7. Biomaterials. 2022 Jun 16. pii: S0142-9612(22)00272-1. [Epub ahead of print]287 121632
      Infections with Staphylococcus aureus (S. aureus) have been reported from various organs ranging from asymptomatic colonization to severe infections and sepsis. Although considered an extracellular pathogen, S. aureus can invade and persist in professional phagocytes such as monocytes and macrophages. Its capability to persist and manipulate macrophages is considered a critical step to evade host antimicrobial reactions. We leveraged a recently established human liver-on-chip model to demonstrate that S. aureus specifically targets macrophages as essential niche facilitating bacterial persistence and phenotype switching to small colony variants (SCVs). In vitro, M2 polarization was found to favor SCV-formation and was associated with increased intracellular bacterial loads in macrophages, increased cell death, and impaired recruitment of circulating monocytes to sites of infection. These findings expand the knowledge about macrophage activation in the liver and its impact on bacterial persistence and dissemination in the course of infection.
    Keywords:  Liver; Macrophage polarization; Macrophages; Organ-on-chip; Persistence; Staphylococcus aureus
    DOI:  https://doi.org/10.1016/j.biomaterials.2022.121632