bims-nurfca Biomed News
on NRF2 and Cancer
Issue of 2024‒02‒25
nine papers selected by
Caner Geyik, Istinye University



  1. Bioorg Chem. 2024 Feb 13. pii: S0045-2068(24)00117-2. [Epub ahead of print]145 107212
      As a vital hallmarker of cancer, the metabolic reprogramming has been shown to play a pivotal role in tumour occurrence, metastasis and drug resistance. Amongst a vast variety of signalling molecules and metabolic enzymes involved in the regulation of cancer metabolism, two key transcription factors Nrf1 and Nrf2 are required for redox signal transduction and metabolic homeostasis. However, the regulatory effects of Nrf1 and Nrf2 (both encoded by Nfe2l1 and Nfe2l2, respectively) on the metabolic reprogramming of hepatocellular carcinoma cells have been not well understood to date. Here, we found that the genetic deletion of Nrf1 and Nrf2 from HepG2 cells resulted in distinct metabolic reprogramming. Loss of Nrf1α led to enhanced glycolysis, reduced mitochondrial oxygen consumption, enhanced gluconeogenesis and activation of the pentose phosphate pathway in the hepatocellular carcinoma cells. By striking contrast, loss of Nrf2 attenuated the glycolysis and gluconeogenesis pathways, but with not any significant effects on the pentose phosphate pathway. Moreover, knockout of Nrf1α also caused fat deposition and increased amino acid synthesis and transport, especially serine synthesis, whilst Nrf2 deficiency did not cause fat deposition, but attenuated amino acid synthesis and transport. Further experiments revealed that such distinctive metabolic programming of between Nrf1α-/- and Nrf2-/- resulted from substantial activation of the PI3K-AKT-mTOR signalling pathway upon the loss of Nrf1, leading to increased expression of critical genes for the glucose uptake, glycolysis, the pentose phosphate pathway, and the de novo lipid synthesis, whereas deficiency of Nrf2 resulted in the opposite phenomenon by inhibiting the PI3K-AKT-mTOR pathway. Altogether, these provide a novel insight into the cancer metabolic reprogramming and guide the exploration of a new strategy for targeted cancer therapy.
    Keywords:  AKT; HIF1; Liver cancer; Metabolic reprogramming; Nrf1; Nrf2; PI3K; SREBP; Signal transduction pathway; Transcriptional regulation; mTOR
    DOI:  https://doi.org/10.1016/j.bioorg.2024.107212
  2. Cell Oncol (Dordr). 2024 Feb 22.
      PURPOSE: Growth differentiating Factor 15 (GDF15) is linked to several cancers, but its effect on chemoresistance in colorectal cancer (CRC) remains unclear. Here, we investigated the role of GDF15 in the chemotherapeutic response of CRC patients to oxaliplatin (L-OHP).METHODS: GDF15 levels in serum and tumour tissues were detected in CRC patients have received L-OHP-based neoadjuvant chemotherapy. The effects of GDF15 neutralization or GDF15 knockdown on cell proliferation, apoptosis and intracellular reactive oxygen species (ROS) levels were analysed in vitro and in vivo. Co-immunoprecipitation (Co-IP), Chromatin Immunoprecipitation (ChIP) and luciferase reporter assays were used to explore the interaction between GDF15 and Nrf2.
    RESULTS: In this study, we found that GDF15 alleviates oxidative stress to induce chemoresistance of L-OHP in CRC. Mechanically, GDF15 posttranscriptionally regulates protein stability of Nrf2 through the canonical PI3K/AKT/GSK3β signaling pathway, and in turn, Nrf2 acts as a transcription factor to regulate GDF15 expression to form a positive feedback loop, resulting in the maintenance of redox homeostasis balance in CRC. Furthermore, a positive correlation between GDF15 and Nrf2 was observed in clinical CRC samples, and simultaneous overexpression of both GDF15 and Nrf2 was associated with poor prognosis in CRC patients treated with L-OHP. Simultaneous inhibition of both GDF15 and Nrf2 significantly increases the response to L-OHP in an L-OHP-resistant colorectal cancer cells-derived mouse xenograft model.
    CONCLUSION: This study identified a novel GDF15-Nrf2 positive feedback loop that drives L-OHP resistance and suggested that the GDF15-Nrf2 axis is a potential therapeutic target for the treatment of L-OHP-resistant CRC.
    Keywords:  Chemoresistance; Colorectal cancer; GDF15; Nrf2; Redox homeostasis
    DOI:  https://doi.org/10.1007/s13402-024-00918-w
  3. J Ovarian Res. 2024 Feb 23. 17(1): 49
      Ovarian cancer is a significant challenge in women's health due to the lack of effective screening and diagnostic methods, often leading to late detection and the highest mortality rate among all gynecologic tumors worldwide. Recent research has shown that ovarian cancer has an "iron addiction" phenotype which makes it vulnerable to ferroptosis inducers. We tested the combination of NRF2-targeted inhibitors with GPX4-targeted inhibitors in ovarian cancer through in vitro and in vivo experiment. The data showed that combination treatment effectively suppressed adherent cell growth, inhibited suspended cell spheroid formation, and restrained the ability of spheroid formation in 3D-culture. Mechanistically, the combination induced accumulation of ROS, 4-HNE, as well as activation of caspase-3 which indicates that this combination simultaneously increases cell ferroptosis and apoptosis. Notably, inhibition of GPX4 or NRF2 can suppress ovarian cancer spreading and growth in the peritoneal cavity of mice, while the combination of NRF2 inhibitor ML385 with GPX4 inhibitors showed a significant synergistic effect compared to individual drug treatment in a syngeneic mouse ovarian cancer model. Overall, these findings suggest that combining NRF2 inhibitors with GPX4 inhibitors results in a synergy suppression of ovarian cancer in vitro and in vivo, and maybe a promising therapeutic strategy for the treatment of ovarian cancer.
    Keywords:  Apoptosis; Ferroptosis; GPX4; NRF2; Ovarian cancer
    DOI:  https://doi.org/10.1186/s13048-024-01366-8
  4. Transl Oncol. 2024 Feb 19. pii: S1936-5233(24)00036-6. [Epub ahead of print]43 101911
      Oxaliplatin (OXA)-based chemotherapy is one of the first-line treatments for advanced gastric cancer. However, the potential risk for chemotherapy-induced hepatic injury can hinder its effectiveness. Polyene phosphatidylcholine (PPC) is often used as a hepatoprotective agent to counter OXA-induced hepatic injury; however, its impact on the antitumour effectiveness of OXA remains uncertain. Our retrospective study examined 98 patients with stage IV gastric cancer to assess the impact of PPC on progression-free survival (PFS) and disease control rate (DCR). Furthermore, in vitro and in vivo assays were conducted to elucidate the combined biological effects of OXA and PPC (OXA+PPC) on gastric cancer. RNA sequencing, luciferase reporter assays, live/dead cell assays, immunofluorescence, and western blotting were used to identify the activated signalling pathways and downstream factors post OXA+PPC treatment. The findings indicated that PPC served as an independent prognostic factor, correlating with prolonged PFS and improved DCR in patients with gastric cancer. The combination of OXA and PPC significantly inhibited tumour cell growth both in vitro and in vivo. RNA sequencing revealed that OXA+PPC treatment amplified reactive oxygen species and ferroptosis signalling pathways. Mechanistically, OXA+PPC upregulated the expression of haem oxygenase-1 by promoting the nuclear migration of nuclear factor erythroid 2-related factor (Nrf2), thereby enhancing its transcriptional activity. Drug-molecule docking analysis demonstrated that PPC competitively bound to the peptide structural domains of both Nrf2 and Kelch-like ECH-associated protein 1 (KEAP1), accounting for the increased translocation of Nrf2. In conclusion, our study reveals the synergistic antitumour potential of PPC and OXA while protecting patients against hepatic injury. This suggests a promising combined treatment approach for patients with advanced gastric cancer.
    Keywords:  Ferroptosis; Gastric cancer; Oxaliplatin; Polyene phosphatidylcholine
    DOI:  https://doi.org/10.1016/j.tranon.2024.101911
  5. Int J Mol Sci. 2024 Feb 14. pii: 2284. [Epub ahead of print]25(4):
      Active vitamin D derivatives (VDDs)-1α,25-dihydroxyvitamin D3/D2 and their synthetic analogs-are well-known inducers of cell maturation with the potential for differentiation therapy of acute myeloid leukemia (AML). However, their dose-limiting calcemic activity is a significant obstacle to using VDDs as an anticancer treatment. We have shown that different activators of the NF-E2-related factor-2/Antioxidant Response Element (Nrf2/ARE) signaling pathway, such as the phenolic antioxidant carnosic acid (CA) or the multiple sclerosis drug monomethyl fumarate (MMF), synergistically enhance the antileukemic effects of various VDDs applied at low concentrations in vitro and in vivo. This study aimed to investigate whether glutathione, the major cellular antioxidant and the product of the Nrf2/ARE pathway, can mediate the Nrf2-dependent differentiation-enhancing activity of CA and MMF in HL60 human AML cells. We report that glutathione depletion using L-buthionine sulfoximine attenuated the enhancing effects of both Nrf2 activators concomitant with downregulating vitamin D receptor (VDR) target genes and the activator protein-1 (AP-1) family protein c-Jun levels and phosphorylation. On the other hand, adding reduced glutathione ethyl ester to dominant negative Nrf2-expressing cells restored both the suppressed differentiation responses and the downregulated expression of VDR protein, VDR target genes, as well as c-Jun and P-c-Jun levels. Finally, using the transcription factor decoy strategy, we demonstrated that AP-1 is necessary for the enhancement by CA and MMF of 1α,25-dihydroxyvitamin D3-induced VDR and RXRα protein expression, transactivation of the vitamin D response element, and cell differentiation. Collectively, our findings suggest that glutathione mediates, at least in part, the potentiating effect of Nrf2 activators on VDDs-induced differentiation of AML cells, likely through the positive regulation of AP-1.
    Keywords:  activator protein-1; acute myeloid leukemia; buthionine sulfoximine; carnosic acid; monomethyl fumarate; vitamin D receptor
    DOI:  https://doi.org/10.3390/ijms25042284
  6. Cell Death Discov. 2024 Feb 17. 10(1): 87
      Human osteosarcoma (OS) is a relatively rare malignancy preferentially affecting long body bones which prognosis is often poor also due to the lack of effective therapies. Clinical management of this cancer basically relies on surgical removal of primary tumor coupled with radio/chemotherapy. Unfortunately, most osteosarcoma cells are resistant to conventional therapy, with the undergoing epithelial-mesenchymal transition (EMT) giving rise to gene expression reprogramming, thus increasing cancer cell invasiveness and metastatic potential. Alternative clinical approaches are thus urgently needed. In this context, the recently described ferroptotic cell death represents an attractive new strategy to efficiently kill cancer cells, since most chemoresistant and mesenchymal-shaped tumors display high susceptibility to pro-ferroptotic compounds. However, cancer cells have also evolved anti-ferroptotic strategies, which somehow sustain their survival upon ferroptosis induction. Indeed, here we show that osteosarcoma cell lines display heterogeneous sensitivity to ferroptosis execution, correlating with the mesenchymal phenotype, which is consistently affected by the expression of the well-known anti-ferroptotic factor ferroptosis suppressor protein 1 (FSP1). Interestingly, inhibiting the activity or expression of FSP1 restores cancer cell sensitivity to ferroptosis. Moreover, we also found that: i) AKRs might also contribute to resistance; ii) NRF2 enhances FSP1 expression upon ferroptosis induction; while iii) p53 contributes to the regulation of FSP1 basal expression in OS cells.In conclusion, FSP1 expression can potentially be used as a valuable predictive marker of OS sensitivity to ferroptosis and as a new potential therapeutic target.
    DOI:  https://doi.org/10.1038/s41420-024-01854-2
  7. Cancer Lett. 2024 Feb 17. pii: S0304-3835(24)00128-9. [Epub ahead of print]587 216735
      As the second most prevalent malignant tumor of head and neck, laryngeal squamous cell carcinoma (LSCC) imposes a substantial health burden on patients worldwide. Within recent years, resistance to oxidative stress and N6-methyladenosine (m6A) of RNA have been proved to be significantly involved in tumorigenesis. In current study, we investigated the oncogenic role of m6A modified long non coding RNAs (lncRNAs), specifically HOXA10-AS, and its downstream signaling pathway in the regulation of oxidative resistance in LSCC. Bioinformatics analysis revealed that heightened expression of HOXA10-AS was associated with the poor prognosis in LSCC patients, and N (6)-Methyladenosine (m6A) methyltransferase-like 3 (METTL3) was identified as a factor in promoting m6A modification of HOXA10-AS and further intensify its RNA stability. Mechanistically, HOXA10-AS was found to play as a competitive endogenous RNA (ceRNA) by sequestering miR-29 b-3p and preventing its downregulation of Integrin subunit alpha 6 (ITGA6), ultimately enhancing the oxidative resistance of tumor cells and promoting the malignant progression of LSCC. Furthermore, our research elucidated the mechanism by which ITGA6 accelerates Keap1 proteasomal degradation via enhancing TRIM25 expression, leading to increased Nrf2 stability and exacerbating its aberrant activation. Additionally, we demonstrated that ITGA6 enhances γ-secretase-mediated Notch signaling activation, ultimately promoting RBPJ-induced TRIM25 transcription. The current study provides the evidence supporting the effect of m6A modified HOXA10-AS and its downstream miR-29 b-3p/ITGA6 axis on regulating oxidative resistance and malignant progression in LSCC through the Notch and Keap1/Nrf2 pathways, and proposed that targeting this axis holds promise as a potential therapeutic approach for treating LSCC.
    Keywords:  HOXA10-AS; LSCC; Notch; Nrf2; m6A
    DOI:  https://doi.org/10.1016/j.canlet.2024.216735
  8. J Pharm Pharmacol. 2024 Feb 23. pii: rgae017. [Epub ahead of print]
      OBJECTIVE: Brusatol (BT) is a quassinoid compound extracted from Brucea javanica that is a traditional Chinese herbal medicine. Brusatol possesses biological and medical activity, including antitumor, antileukemia, anti-inflammatory, antitrypanosomal, antimalarial, and antitobacco mosaic virus activity. To summarize and discuss the antitumor effects of BT and its mechanisms of actions, we compiled this review by combining the extensive relevant literature and our previous studies.METHODS: We searched and retrieved the papers that reported the pharmacological effects of BT and the mechanism of BT antitumor activity from PubMed until July 2023.
    KEY FINDINGS: Numerous studies have shown that BT is a unique nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor that acts on various signaling pathways and has good antitumor properties. Brusatol shows great potential in cancer therapy by inhibiting cell proliferation, blocking the cell cycle, promoting tumor cell differentiation, accelerating tumor cell apoptosis, inducing autophagy, suppressing angiogenesis, inhibiting tumor invasion and metastasis, and reversing multidrug resistance.
    CONCLUSION: This review summarizes recent updates on the antitumor activity and molecular mechanisms of BT and provides references for future development and clinical translation of BT and its derivatives as antitumor drugs.
    Keywords:  Brusatol; Malignant tumors; Molecular mechanism; Nrf2 inhibitor
    DOI:  https://doi.org/10.1093/jpp/rgae017
  9. J Exp Clin Cancer Res. 2024 Feb 21. 43(1): 52
      BACKGROUND: Osteosarcoma (OS) is one of most commonly diagnosed bone cancer. Circular RNAs (circRNAs) are a class of highly stable non-coding RNA, the majority of which have not been characterized functionally. The underlying function and molecular mechanisms of circRNAs in OS have not been fully demonstrated.METHOD: Microarray analysis was performed to identify circRNAs that are differentially-expressed between OS and corresponding normal tissues. The biological function of circKEAP1 was confirmed in vitro and in vivo. Mass spectrometry and western blot assays were used to identify the circKEAP1-encoded protein KEAP1-259aa. The molecular mechanism of circKEAP1 was investigated by RNA sequencing and RNA immunoprecipitation analyses.
    RESULTS: Here, we identified a tumor suppressor circKEAP1, originating from the back-splicing of exon2 of the KEAP1 gene. Clinically, circKEAP1 is downregulated in OS tumors and associated with better survival in cancer patients. N6-methyladenosine (m6A) at a specific adenosine leads to low expression of circKEAP1. Further analysis revealed that circKEAP1 contained a 777 nt long ORF and encoded a truncated protein KEAP1-259aa that reduces cell proliferation, invasion and tumorsphere formation of OS cells. Mechanistically, KEAP1-259aa bound to vimentin in the cytoplasm to promote vimentin proteasome degradation by interacting with the E3 ligase ARIH1. Moreover, circKEAP1 interacted with RIG-I to activate anti-tumor immunity via the IFN-γ pathway.
    CONCLUSION: Taken together, our findings characterize a tumor suppressor circKEAP1 as a key tumor suppressor regulating of OS cell stemness, proliferation and migration, providing potential therapeutic targets for treatment of OS.
    Keywords:  ARIH1; Osteosarcoma; Vimentin; circKEAP1
    DOI:  https://doi.org/10.1186/s13046-024-02971-7