bims-nurfca Biomed News
on NRF2 and Cancer
Issue of 2023‒11‒05
four papers selected by
Caner Geyik, Istinye University



  1. Cell Death Dis. 2023 Oct 28. 14(10): 707
      Aspirin and its active metabolite salicylate have emerged as promising agents for the chemoprevention of colorectal cancer (CRC). Moreover, aspirin suppresses the progression of established CRCs. However, the underlying molecular mechanisms are not completely understood. Here we found that salicylate induces the expression of the miR-34a and miR-34b/c genes, which encode tumor suppressive microRNAs, in a p53-independent manner. Salicylate activated AMPK, thereby activating NRF2, which directly induced miR-34a/b/c expression via ARE motifs. In addition, salicylate suppressed c-MYC, a known repressor of NRF2-mediated transactivation, via activating AMPK. The suppression of c-MYC by salicylate was necessary for NRF2-mediated activation of miR-34a/b/c. Inactivation of miR-34a/b/c largely abrogated the inhibitory effects of salicylate on migration, invasion and metastasis formation by CRC cells. In the future, aspirin and its derivates may be used therapeutically to activate miR-34a and miR-34b/c in tumors that have lost p53.
    DOI:  https://doi.org/10.1038/s41419-023-06226-9
  2. PLoS One. 2023 ;18(11): e0283705
      Fructosamine-3-kinase (FN3K) is involved in the deglycation of Nrf2, a significant regulator of oxidative stress in cancer cells. However, the intricate functional aspects of FN3K and Nrf2 in breast cancers have not been explored vividly. The objectives of this study are to design the human FN3K protein using homology modeling followed by the screening of several anticancer molecules and examining their efficacy to modulate FN3K activity, Nrf2-mediated antioxidant signalling. Methods pertinent to homology modeling, virtual screening, molecular docking, molecular dynamics simulations, assessment of ADME properties, cytotoxicity assays for anticancer molecules of natural/synthetic origin in breast cancer cells (BT-474, T-47D), and Western blotting were used in this study. The screened anticancer molecules including kinase inhibitors of natural and synthetic origin interacted with the 3-dimensional structure of the catalytic domain in human FN3K protein designed through homology modeling by significant CDOCKER interaction energies. Subsequently, gefitinib, sorafenib, neratinib, tamoxifen citrate, and cyclosporine A enhanced the expression of FN3K in BT-474 cell lines with simultaneous alteration in Nrf2-driven antioxidant signalling. Oxaliplatin significantly downregulated FN3K expression and modulated Nrf2-driven antioxidant signalling when compared to cisplatin and other anticancer drugs. Hence, the study concluded the potential implications of existing anticancer drugs to modulate FN3K activity in breast cancers.
    DOI:  https://doi.org/10.1371/journal.pone.0283705
  3. Redox Biol. 2023 Oct 21. pii: S2213-2317(23)00346-4. [Epub ahead of print]68 102945
      Receptor tyrosine kinase (RTK), c-Met, is overexpressed and hyper active in renal cell carcinoma (RCC). Most of the therapeutic agents mediate cancer cell death through increased oxidative stress. Induction of c-Met in renal cancer cells promotes the activation of redox-sensitive transcription factor Nrf2 and cytoprotective heme oxygenase-1 (HO-1), which can mediate therapeutic resistance against oxidative stress. c-Met/RTK inhibitor, Cabozantinib, has been approved for the treatment of advanced RCC. However, acquired drug resistance is a major hurdle in the clinical use of cabozantinib. Honokiol, a naturally occurring phenolic compound, has a great potential to downregulate c-Met-induced pathways. In this study, we found that a novel combination treatment with cabozantinib + Honokiol inhibits the growth of renal cancer cells in a synergistic manner through increased production of reactive oxygen species (ROS); and it significantly facilitates apoptosis-and autophagy-mediated cancer cell death. Activation of c-Met can induce Rubicon (a negative regulator of autophagy) and p62 (an autophagy adaptor protein), which can stabilize Nrf2. By utilizing OncoDB online database, we found a positive correlation among c-Met, Rubicon, p62 and Nrf2 in renal cancer. Interestingly, the combination treatment significantly downregulated Rubicon, p62 and Nrf2 in RCC cells. In a tumor xenograft model, this combination treatment markedly inhibited renal tumor growth in vivo; and it is associated with decreased expression of Rubicon, p62, HO-1 and vessel density in the tumor tissues. Together, cabozantinib + Honokiol combination can significantly inhibit c-Met-induced and Nrf2-mediated anti-oxidant pathway in renal cancer cells to promote increased oxidative stress and tumor cell death.
    Keywords:  Honokiol; Nrf2; Oxidative stress; Renal cancer; c-Met
    DOI:  https://doi.org/10.1016/j.redox.2023.102945
  4. Am J Chin Med. 2023 Oct 31. 1-20
      Radiotherapy plays a crucial role in the multimodal treatment of breast cancer. However, radioresistance poses a significant challenge to its effectiveness, hindering successful cancer therapy. Emerging evidence indicates that Nrf2 and HIF-1[Formula: see text] are critical regulators of cellular anti-oxidant responses and that their overexpression significantly promotes radioresistance. Wogonin (WG), the primary component isolated from Scutellaria baicalensis, exhibits potential antitumor and reversal of multidrug resistance activities. Nevertheless, the role of WG in radioresistance remains unclear. This study aims to explore the effects of WG on the radioresistance of breast cancer. Our results indicate that Nrf2 and HIF-1[Formula: see text] overexpression was observed in breast cancer tissues and was correlated with the histological grading of the disease. Radiation further increased the levels of Nrf2 and HIF-1[Formula: see text] in breast cancer cells. However, WG demonstrated the ability to induce cell apoptosis and reverse radioresistance by inhibiting the Nrf2/HIF-1[Formula: see text] pathway. These effects were also confirmed in xenograft mice models. Mechanistically, WG enhanced the level of the Nrf2 inhibitor Keap1 through reducing CpG methylation in the promoter region of the Keap1 gene. Consequently, the Nrf2/HIF-1[Formula: see text] pathway, along with the Nrf2- and HIF-1[Formula: see text]-dependent protective responses, were suppressed. Taken together, our findings demonstrate that WG can epigenetically regulate the Keap1 gene, inhibit the Nrf2/HIF-1[Formula: see text] pathway, induce apoptosis in breast cancer cells, and diminish acquired radioresistance. This study offers potential strategies to overcome the limitations of current radiotherapy for breast cancer.
    Keywords:  Breast Cancer; HIF-1[Formula: see text]; Nrf2; Radioresistance; Wogonin
    DOI:  https://doi.org/10.1142/S0192415X23500969