bims-nurfca Biomed News
on NRF2 and Cancer
Issue of 2023‒06‒25
four papers selected by
Caner Geyik
Istinye University


  1. Heliyon. 2023 Jun;9(6): e17075
      Background: Nrf2, an essential and fascinating transcription factor, enjoys a dual property in the occurrence and development of inflammation and cancer. For over two decades, numerous studies regarding Nrf2 in cancer have been reported, whereas there is still a lack of a scientometrics and visualization analysis of Nrf2 in cancer. Hence, a scientometric study regarding the oxidative stress modulator Nrf2 was implemented.Methods: After the quality screening, we defined 7168 relevant studies from 2000 to 2021. CiteSpace, VOSviewer, R software, and GraphPad Prism were used for the following scientometric study and visualization analysis, including field profiles, research hotspots, and future predictions.
    Results: The total number of publications and citations are 1058 and 54,690, respectively. After polynomial fitting curve analysis, two prediction functions of the annual publication number (y = 3.3909x2 - 13585x + 1 E+07) and citation number (185.45x2 - 743669x + 7 E+08) were generated. After scientometric analysis, we found that Biochemistry Molecular Biology correlates with Nrf2 in cancer highly, and Free Radical Biology and Medicine is a good choice for submitting Nrf2-related manuscripts. The current research hotspots of Nrf2 in cancer mainly focus on cancer therapy and its cellular and molecular mechanisms. "antioxidant response element (87.5)", "gene expression (43.98)", "antioxidant responsive element (21.14)", "chemoprevention (20.05)", "carcinogenesis (19.2)", "cancer chemoprevention (18.45)", "free radical (17.15)", "response element (14.17)", and "chemopreventive agent (14.04)" are important for cancer therapy study. In addition, "glutathione-S-transferase (47)", "keap1 (15.39)", and "heme oxygenase 1 gene (24.35)" are important for inflammation and cell fate study. More interestingly, by performing an "InfoMap" algorithm, the thematic map showed that the "immune response" is essential to oxidative stress modulator Nrf2 but not well developed, indicating it deserves further exploration.
    Conclusion: This study revealed field profiles, research hotspots, and future directions of oxidative stress modulator Nrf2 in inflammation and cancer research, and our findings will offer a vigorous roadmap for further studies in this field.
    Keywords:  Cancer; Immune response; Nrf2; Oxidative stress; Scientometric; Visualization
    DOI:  https://doi.org/10.1016/j.heliyon.2023.e17075
  2. Open Med (Wars). 2023 ;18(1): 20230729
      The miR-141-3p has been reported to participate in regulating autophagy and tumor-stroma interactions in ovarian cancer (OC). We aim to investigate whether miR-141-3p accelerates the progression of OC and its effect on macrophage 2 polarization by targeting the Kelch-like ECH-associated protein1-Nuclear factor E2-related factor2 (Keap1-Nrf2) pathway. SKOV3 and A2780 cells were transfected with miR-141-3p inhibitor and negative control to confirm the regulation of miR-141-3p on OC development. Moreover, the growth of tumors in xenograft nude mice treated by cells transfected with miR-141-3p inhibitor was established to further testify the role of miR-141-3p in OC. The expression of miR-141-3p was higher in OC tissue compared with non-cancerous tissue. Downregulation of miR-141-3p inhibited the proliferation, migration, and invasion of ovarian cells. Furthermore, miR-141-3p inhibition also suppressed M2-like macrophage polarization and in vivo OC progression. Inhibition of miR-141-3p significantly enhanced the expression of Keap1, the target gene of miR-141-3p, and thus downregulated Nrf2, while activation of Nrf2 reversed the reduction in M2 polarization by miR-141-3p inhibitor. Collectively, miR-141-3p contributes to tumor progression, migration, and M2 polarization of OC by activating the Keap1-Nrf2 pathway. Inhibition of miR-141-3p attenuates the malignant biological behavior of ovarian cells by inactivating the Keap1-Nrf2 pathway.
    Keywords:  Keap1; Nrf2; macrophage; miR-141-3p; ovarian cancer; polarization
    DOI:  https://doi.org/10.1515/med-2023-0729
  3. Eur J Pharmacol. 2023 Jun 15. pii: S0014-2999(23)00364-3. [Epub ahead of print] 175853
      Cisplatin, or DDP, is a highly successful and well-known chemotherapy drug used to treat cancer. Acquired resistance to chemotherapy is a major clinical concern, yet the mechanisms of this resistance are still unknown. Ferroptosis is a type of cell death distinct from other forms, fueled by a buildup of iron-associated lipid reactive oxygen species (ROS). Gaining insight into the process of ferroptosis could lead to novel treatments for overcoming cancer resistance. In this study, the combination of isoorientin (IO) and DDP treatment resulted in a significant decrease in the viability of drug-resistant cells, a substantial increase in intracellular iron, malondialdehyde (MDA) and ROS concentrations, a notable decrease in glutathione concentration, and the occurrence of ferroptosis in cells, as revealed by in vitro and in vivo experiments. Additionally, there was a decrease in the expression of nuclear factor-erythroid factor 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), and sirtuin 6 (SIRT6) proteins, and an increase in cellular ferroptosis. Isoorientin acts as a mediator to regulate cellular ferroptosis and reverse drug resistance in lung cancer cells by controlling the SIRT6/Nrf2/GPX4 signaling pathway. The findings of this study suggest that IO can promote ferroptosis and reverse drug resistance in lung cancer through the SIRT6/Nrf2/GPX4 signaling pathway, thus offering a theoretical basis for its potential clinical application.
    Keywords:  Ferroptosis; Isoorientin; Lung cancer; ROS; SIRT6/Nrf2/GPX4 pathway
    DOI:  https://doi.org/10.1016/j.ejphar.2023.175853
  4. Oncol Lett. 2023 Jul;26(1): 313
      Fenofibrate (FF) is a peroxisome proliferator- activated receptor (PPAR)-α agonist that is widely used for the treatment of hyperlipidemia. It has been shown to have pleiotropic actions beyond its hypolipidemic effect. FF has been shown to exert a cytotoxic effect on some cancer cells when used at higher than clinically relevant concentrations; on the other hand, its cytoprotective effect on normal cells has also been reported. The present study assessed the effect of FF on cisplatin (CDDP) cytotoxicity to lung cancer cells in vitro. The results demonstrated that the effect of FF on lung cancer cells depends on its concentration. FF at ≤50 µM, which is a clinically achievable blood concentration, attenuated CDDP cytotoxicity to lung cancer cells, whereas FF at ≥100 µM, albeit clinically unachievable, had an anticancer effect. The mechanism of FF attenuation of CDDP cytotoxicity involved PPAR-α-dependent aryl hydrocarbon receptor (AhR) expression, which in turn stimulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and antioxidant production, resulting in lung cancer cell protection from CDDP-evoked oxidative damage. In conclusion, the present study revealed that FF, at clinically relevant concentrations, attenuated CDDP cytotoxicity to lung cancer cells by enhancing the antioxidant defense system through activation of a pathway that involves the PPAR-α-PPAR response element-AhR xenobiotic response element-Nrf2-antioxidant response element. These findings suggested that concomitant use of FF with CDDP may compromise the efficacy of chemotherapy. Although the anticancer property of FF has recently attracted much attention, concentrations that exceed clinically relevant concentrations are required.
    Keywords:  AhR; PPAR-α; cisplatin; fenofibrate; nuclear factor erythroid 2-related factor 2; oxidants
    DOI:  https://doi.org/10.3892/ol.2023.13899