bims-numges Biomed News
on Nucleotide metabolism and genome stability
Issue of 2021‒08‒29
thirty-two papers selected by
Sean Rudd
Karolinska Institutet


  1. DNA Repair (Amst). 2021 Aug 13. pii: S1568-7864(21)00165-8. [Epub ahead of print]107 103209
      The toxic lesion emanating from chemotherapy that targets the DNA was initially debated, but eventually the DNA double strand break (DSB) ultimately prevailed. The reasoning was in part based on the perception that repairing a fractured chromosome necessitated intricate processing or condemned the cell to death. Genetic evidence for the DSB model was also provided by the extreme sensitivity of cells that were deficient in DSB repair. In particular, sensitivity characterized cells harboring mutations in the hereditary breast/ovarian cancer genes, BRCA1 or BRCA2, that function in the repair of DSBs by homologous recombination (HR). Along with functions in HR, BRCA proteins were found to prevent DSBs by protecting stalled replication forks from nuclease degradation. Coming full-circle, BRCA mutant cancer cells that gained resistance to genotoxic chemotherapy often displayed restored DNA repair by HR and/or restored fork protection (FP) implicating that the therapy was tolerated when DSB repair was intact or DSBs were prevented. Despite this well-supported paradigm that has been the impetus for targeted cancer therapy, here we argue that the toxic DNA lesion conferring response is instead single stranded DNA (ssDNA) gaps. We discuss the evidence that persistent ssDNA gaps formed in the wake of DNA replication rather than DSBs are responsible for cell killing following treatment with genotoxic chemotherapeutic agents. We also highlight that proteins, such as BRCA1, BRCA2, and RAD51 known for canonical DSB repair also have critical roles in normal replication as well as replication gap suppression (RGS) and repair. We review the literature that supports the idea that widespread gap induction proximal to treatment triggers apoptosis in a process that does not need or stem from DSB induction. Lastly, we discuss the clinical evidence for gaps and how to exploit them to enhance genotoxic chemotherapy response.
    Keywords:  BRCA-RAD51 pathway; Fork protection; Homologous recombination; Replication gap suppression; Replication stress; Single stranded DNA
    DOI:  https://doi.org/10.1016/j.dnarep.2021.103209
  2. Genes (Basel). 2021 Jul 27. pii: 1146. [Epub ahead of print]12(8):
      The emergence of precision medicine from the development of Poly (ADP-ribose) polymerase (PARP) inhibitors that preferentially kill cells defective in homologous recombination has sparked wide interest in identifying and characterizing additional DNA repair enzymes that are synthetic lethal with HR factors. DNA polymerase theta (Polθ) is a validated anti-cancer drug target that is synthetic lethal with HR factors and other DNA repair proteins and confers cellular resistance to various genotoxic cancer therapies. Since its initial characterization as a helicase-polymerase fusion protein in 2003, many exciting and unexpected activities of Polθ in microhomology-mediated end-joining (MMEJ) and translesion synthesis (TLS) have been discovered. Here, we provide a short review of Polθ's DNA repair activities and its potential as a drug target and highlight a recent report that reveals Polθ as a naturally occurring reverse transcriptase (RT) in mammalian cells.
    Keywords:  DNA polymerase; RNA; double-strand break repair; reverse transcriptase; reverse transcription; translesion synthesis
    DOI:  https://doi.org/10.3390/genes12081146
  3. Bioessays. 2021 Aug 26. e2100157
      It has become apparent that difficulties to replicate telomeres concern not only the very ends of eukaryotic chromosomes. The challenges already start when the replication fork enters the telomeric repeats. The obstacles encountered consist mainly of noncanonical nucleic acid structures that interfere with replication if not resolved. Replication stress at telomeres promotes the formation of so-called fragile telomeres displaying an abnormal appearance in metaphase chromosomes though their exact molecular nature remains to be elucidated. A substantial number of factors is required to counteract fragility. In this review we promote the hypothesis that telomere fragility is not caused directly by an initial insult during replication but it results as a secondary consequence of DNA repair of damaged replication forks by the homologous DNA recombination machinery. Incomplete DNA synthesis at repair sites or partial chromatin condensation may become apparent as telomere fragility. Fragility and DNA repair during telomere replication emerges as a common phenomenon which exacerbates in multiple disease conditions.
    Keywords:  DNA repair; DNA replication; fragility; replication stress; telomere
    DOI:  https://doi.org/10.1002/bies.202100157
  4. Genes (Basel). 2021 Aug 10. pii: 1229. [Epub ahead of print]12(8):
      The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
    Keywords:  BRCA2; DNA repair; fork protection; genome stability; homologous recombination
    DOI:  https://doi.org/10.3390/genes12081229
  5. Int J Mol Sci. 2021 Aug 16. pii: 8796. [Epub ahead of print]22(16):
      Post-translational modification of the DNA replication machinery by ubiquitin and SUMO plays key roles in the faithful duplication of the genetic information. Among other functions, ubiquitination and SUMOylation serve as signals for the extraction of factors from chromatin by the AAA ATPase VCP. In addition to the regulation of DNA replication initiation and elongation, we now know that ubiquitination mediates the disassembly of the replisome after DNA replication termination, a process that is essential to preserve genomic stability. Here, we review the recent evidence showing how active DNA replication restricts replisome ubiquitination to prevent the premature disassembly of the DNA replication machinery. Ubiquitination also mediates the removal of the replisome to allow DNA repair. Further, we discuss the interplay between ubiquitin-mediated replisome disassembly and the activation of CDK1 that is required to set up the transition from the S phase to mitosis. We propose the existence of a ubiquitin-CDK1 relay, where the disassembly of terminated replisomes increases CDK1 activity that, in turn, favors the ubiquitination and disassembly of more replisomes. This model has important implications for the mechanism of action of cancer therapies that induce the untimely activation of CDK1, thereby triggering premature replisome disassembly and DNA damage.
    Keywords:  CDK1; DNA replication; SUMO; USP7; mitosis; ubiquitin
    DOI:  https://doi.org/10.3390/ijms22168796
  6. Biomolecules. 2021 Aug 21. pii: 1249. [Epub ahead of print]11(8):
      Transcription-replication interactions occur when DNA replication encounters genomic regions undergoing transcription. Both replication and transcription are essential for life and use the same DNA template making conflicts unavoidable. R-loops, DNA supercoiling, DNA secondary structure, and chromatin-binding proteins are all potential obstacles for processive replication or transcription and pose an even more potent threat to genome integrity when these processes co-occur. It is critical to maintaining high fidelity and processivity of transcription and replication while navigating through a complex chromatin environment, highlighting the importance of defining cellular pathways regulating transcription-replication interaction formation, evasion, and resolution. Here we discuss how transcription influences replication fork stability, and the safeguards that have evolved to navigate transcription-replication interactions and maintain genome integrity in mammalian cells.
    Keywords:  DNA replication; R-loops; replication stress; transcription
    DOI:  https://doi.org/10.3390/biom11081249
  7. Cancers (Basel). 2021 Aug 17. pii: 4132. [Epub ahead of print]13(16):
      As poly-(ADP)-ribose polymerase (PARP) inhibition is synthetic lethal with the deficiency of DNA double-strand (DSB) break repair by homologous recombination (HR), PARP inhibitors (PARPi) are currently used to treat breast cancers with mutated BRCA1/2 HR factors. Unfortunately, the increasingly high rate of PARPi resistance in clinical practice has dented initial hopes. Multiple resistance mechanisms and acquired vulnerabilities revealed in vitro might explain this setback. We describe the mechanisms and vulnerabilities involved, including newly identified modes of regulation of DSB repair that are now being tested in large cohorts of patients and discuss how they could lead to novel treatment strategies to improve the therapeutic index of PARPi.
    Keywords:  PARP inhibitor; breast cancer; homologous recombination deficiency; resistance
    DOI:  https://doi.org/10.3390/cancers13164132
  8. Nucleic Acids Res. 2021 Aug 24. pii: gkab743. [Epub ahead of print]
      Multiple pathways mediate the repair of DNA double-strand breaks (DSBs), with numerous mechanisms responsible for driving choice between the pathways. Previously, we reported that mutating five putative phosphorylation sites on the non-homologous end joining (NHEJ) factor, Ku70, results in sustained retention of human Ku70/80 at DSB ends and attenuation of DSB repair via homologous recombination (HR). In this study, we generated a knock-in mouse, in which the three conserved putative phosphorylation sites of Ku70 were mutated to alanine to ablate potential phosphorylation (Ku703A/3A), in order to examine if disrupting DSB repair pathway choice by modulating Ku70/80 dynamics at DSB ends results in enhanced genomic instability and tumorigenesis. The Ku703A/3A mice developed spontaneous and have accelerated chemical-induced hepatocellular carcinoma (HCC) compared to wild-type (Ku70+/+) littermates. The HCC tumors from the Ku703A/3A mice have increased γH2AX and 8-oxo-G staining, suggesting decreased DNA repair. Spontaneous transformed cell lines from Ku703A/3A mice are more radiosensitive, have a significant decrease in DNA end resection, and are more sensitive to the DNA cross-linking agent mitomycin C compared to cells from Ku70+/+ littermates. Collectively, these findings demonstrate that mutating the putative Ku70 phosphorylation sites results in defective DNA damage repair and disruption of this process drives genomic instability and accelerated development of HCC.
    DOI:  https://doi.org/10.1093/nar/gkab743
  9. Front Cell Infect Microbiol. 2021 ;11 670564
      Trypanosomatids are a group of primitive unicellular eukaryotes that can cause diseases in plants, insects, animals, and humans. Kinetoplast genome integrity is key to trypanosomatid cell survival and viability. Kinetoplast DNA (kDNA) is usually under attack by reactive oxygen and nitric species (ROS and RNS), damaging the DNA, and the cells must remove and repair those oxidatively generated lesions in order to survive and proliferate. Base excision repair (BER) is a well-conserved pathway for DNA repair after base damage, single-base loss, and single-strand breaks, which can arise from ROS, RSN, environmental genotoxic agents, and UV irradiation. A powerful BER system has been described in the T. cruzi kinetoplast and it is mainly carried out by DNA polymerase β (pol β) and DNA polymerase β-PAK (pol β-PAK), which are kinetoplast-located in T. cruzi as well as in other trypanosomatids. Both pol β and pol β-PAK belong to the X-family of DNA polymerases (pol X family), perform BER in trypanosomatids, and display intrinsic 5-deoxyribose phosphate (dRP) lyase and DNA polymerase activities. However, only Pol β-PAK is able to carry out trans-lesion synthesis (TLS) across 8oxoG lesions. T. cruzi cells overexpressing pol β are more resistant to ROS and are also more efficient to repair 8oxoG compared to control cells. Pol β seems to play a role in kDNA replication, since it associates with kinetoplast antipodal sites in those development stages in trypanosomatids which are competent for cell replication. ROS treatment of cells induces the overexpression of pol β, indicating that plays a role in kDNA repair. In this review, we will summarize the main features of trypanosomatid minicircle kDNA replication and the biochemical characteristics of pol β-like enzymes and their involvement in BER and kDNA replication. We also summarize key structural features of trypanosomatid pol β compared to their mammalian (human) counterpart.
    Keywords:  BER; DNA polymerase beta; Trypanosoma cruzi; kinetoplast DNA; trypanosomatids
    DOI:  https://doi.org/10.3389/fcimb.2021.670564
  10. Front Cell Dev Biol. 2021 ;9 636615
      To preserve genome integrity when faced with DNA lesions, cells activate and coordinate a multitude of DNA repair pathways to ensure timely error correction or tolerance, collectively called the DNA damage response (DDR). These interconnecting damage response pathways are molecular signal relays, with protein kinases (PKs) at the pinnacle. Focused efforts in model eukaryotes have revealed intricate aspects of DNA repair PK function, including how they direct DDR pathways and how repair reactions connect to wider cellular processes, including DNA replication and transcription. The Kinetoplastidae, including many parasites like Trypanosoma spp. and Leishmania spp. (causative agents of debilitating, neglected tropical infections), exhibit peculiarities in several core biological processes, including the predominance of multigenic transcription and the streamlining or repurposing of DNA repair pathways, such as the loss of non-homologous end joining and novel operation of nucleotide excision repair (NER). Very recent studies have implicated ATR and ATM kinases in the DDR of kinetoplastid parasites, whereas DNA-dependent protein kinase (DNA-PKcs) displays uncertain conservation, questioning what functions it fulfills. The wide range of genetic manipulation approaches in these organisms presents an opportunity to investigate DNA repair kinase roles in kinetoplastids and to ask if further kinases are involved. Furthermore, the availability of kinase inhibitory compounds, targeting numerous eukaryotic PKs, could allow us to test the suitability of DNA repair PKs as novel chemotherapeutic targets. Here, we will review recent advances in the study of trypanosomatid DNA repair kinases.
    Keywords:  DNA damage; DNA repair; PIKK; kinetoplastids; protein kinases; trypanosomatids
    DOI:  https://doi.org/10.3389/fcell.2021.636615
  11. DNA Repair (Amst). 2021 Aug 13. pii: S1568-7864(21)00139-7. [Epub ahead of print]107 103183
      Our nuclear genomes are complexed with histone proteins to form nucleosomes, the repeating units of chromatin which function to package and limit unscheduled access to the genome. In response to helix-distorting DNA lesions and DNA double-strand breaks, chromatin is disassembled around the DNA lesion to facilitate DNA repair and it is reassembled after repair is complete to reestablish the epigenetic landscape and regulating access to the genome. DNA damage also triggers decondensation of the local chromatin structure, incorporation of histone variants and dramatic transient increases in chromatin mobility to facilitate the homology search during homologous recombination. Here we review the current state of knowledge of these changes in histone and chromatin dynamics in response to DNA damage, the molecular mechanisms mediating these dynamics, as well as their functional contributions to the maintenance of genome integrity to prevent human diseases including cancer.
    Keywords:  Chromatin; DNA end resection; Homologous recombination; Non-homologous End Joining
    DOI:  https://doi.org/10.1016/j.dnarep.2021.103183
  12. Genes (Basel). 2021 Jul 28. pii: 1158. [Epub ahead of print]12(8):
      Maintaining genomic stability is vital for cells as well as individual organisms. The meiotic recombination-related gene MRE11 (meiotic recombination 11) is essential for preserving genomic stability through its important roles in the resection of broken DNA ends, DNA damage response (DDR), DNA double-strand breaks (DSBs) repair, and telomere maintenance. The post-translational modifications (PTMs), such as phosphorylation, ubiquitination, and methylation, regulate directly the function of MRE11 and endow MRE11 with capabilities to respond to cellular processes in promptly, precisely, and with more diversified manners. Here in this paper, we focus primarily on the PTMs of MRE11 and their roles in DNA response and repair, maintenance of genomic stability, as well as their association with diseases such as cancer.
    Keywords:  DDR; MRE11; PTM; disease
    DOI:  https://doi.org/10.3390/genes12081158
  13. Int J Mol Sci. 2021 Aug 18. pii: 8874. [Epub ahead of print]22(16):
      Apurinic/apyrimidinic (AP) endonucleases Nfo (Escherichia coli) and APE1 (human) represent two conserved structural families of enzymes that cleave AP-site-containing DNA in base excision repair. Nfo and APE1 have completely different structures of the DNA-binding site, catalytically active amino acid residues and catalytic metal ions. Nonetheless, both enzymes induce DNA bending, AP-site backbone eversion into the active-site pocket and extrusion of the nucleotide located opposite the damage. All these stages may depend on local stability of the DNA duplex near the lesion. Here, we analysed effects of natural nucleotides located opposite a lesion on catalytic-complex formation stages and DNA cleavage efficacy. Several model DNA substrates that contain an AP-site analogue [F-site, i.e., (2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran] opposite G, A, T or C were used to monitor real-time conformational changes of the tested enzymes during interaction with DNA using changes in the enzymes' intrinsic fluorescence intensity mainly caused by Trp fluorescence. The extrusion of the nucleotide located opposite F-site was recorded via fluorescence intensity changes of two base analogues. The catalytic rate constant slightly depended on the opposite-nucleotide nature. Thus, structurally different AP endonucleases Nfo and APE1 utilise a common strategy of damage recognition controlled by enzyme conformational transitions after initial DNA binding.
    Keywords:  DNA repair; abasic site; apurinic/apyrimidinic endonuclease; conformational dynamics; damaged DNA; stopped-flow enzyme kinetics
    DOI:  https://doi.org/10.3390/ijms22168874
  14. J Med Chem. 2021 Aug 24.
      Eukaryotes have evolved two major pathways to repair potentially lethal DNA double-strand breaks. Homologous recombination represents a precise, DNA-template-based mechanism available during the S and G2 cell cycle phase, whereas non-homologous end joining, which requires DNA-dependent protein kinase (DNA-PK), allows for fast, cell cycle-independent but less accurate DNA repair. Here, we report the discovery of BAY-8400, a novel selective inhibitor of DNA-PK. Starting from a triazoloquinoxaline, which had been identified as a hit from a screen for ataxia telangiectasia and Rad3-related protein (ATR) inhibitors with inhibitory activity against ATR, ATM, and DNA-PK, lead optimization efforts focusing on potency and selectivity led to the discovery of BAY-8400. In in vitro studies, BAY-8400 showed synergistic activity of DNA-PK inhibition with DNA damage-inducing targeted alpha therapy. Combination of PSMA-targeted thorium-227 conjugate BAY 2315497 treatment of human prostate tumor-bearing mice with BAY-8400 oral treatment increased antitumor efficacy, as compared to PSMA-targeted thorium-227 conjugate monotherapy.
    DOI:  https://doi.org/10.1021/acs.jmedchem.1c00762
  15. DNA Repair (Amst). 2021 Aug 10. pii: S1568-7864(21)00163-4. [Epub ahead of print]107 103207
      Sequencing of cancer genomes revealed a rich landscape of somatic single nucleotide variants, structural changes of chromosomes, as well as chromosomal copy number alterations. These chromosome changes are highly variable, and simple translocations, deletions or duplications have been identified, as well as complex events that likely arise through activity of several interconnected processes. Comparison of the cancer genome sequencing data with our knowledge about processes important for maintenance of genome stability, namely DNA replication, repair and chromosome segregation, provides insights into the mechanisms that may give rise to complex chromosomal patterns, such as chromothripsis, a complex form of multiple focal chromosome rearrangements. In addition, observations gained from model systems that recapitulate the rearrangements patterns under defined experimental conditions suggest that mitotic errors and defective DNA replication and repair contribute to their formation. Here, we review the molecular mechanisms that contribute to formation of chromosomal aberrations observed in cancer genomes.
    Keywords:  Aneuploidy; Cancer; Cancer genetics; Chromosomal rearrangements; Chromothripsis; Genome instability; Numerical aberrations
    DOI:  https://doi.org/10.1016/j.dnarep.2021.103207
  16. ACS Pharmacol Transl Sci. 2021 Aug 13. 4(4): 1449-1461
      The DNA-damage-activated checkpoint protein CHK1 is required to prevent replication or mitosis in the presence of unrepaired DNA damage. Inhibitors of CHK1 (CHK1i) circumvent this checkpoint and enhance cell killing by DNA-damaging drugs. CHK1i also elicit single-agent cytotoxicity in a small subset of cell lines. Resolving the mechanisms underlying the single-agent activity may permit patient stratification and targeted therapy against sensitive tumors. Our recent comparison of three CHK1i demonstrated that they all inhibited protein synthesis only in sensitive cells. LY2606368, the most selective of these CHK1i, was used in the current study. Comparison across a panel of cell lines demonstrated that sensitive cells died upon incubation with LY2606368, whereas resistant cells underwent growth inhibition and/or cytostasis but failed to die. Sensitive cells exhibited inhibition of protein synthesis, elevated DNA damage, impaired DNA repair, and subsequently death. The consequence of CHK1 inhibition involved activation of cyclin A/CDK2 and MUS81, resulting in DNA damage. This damage led to activation of AMPK, dephosphorylation of 4E-BP1, and inhibition of protein synthesis. Inhibition of MUS81 prevented activation of AMPK, while inhibition of AMPK enhanced DNA repair and cell survival. The activation of AMPK may involve a combination of LKB1 and CaMKKβ. This study raises questions concerning the potential importance of the inhibition of protein synthesis in response to other drugs, alone or in combination with CHK1i. It also highlights the importance of clearly discriminating among growth inhibition, cytostasis, and cell death, as only the latter is likely to result in tumor regression.
    DOI:  https://doi.org/10.1021/acsptsci.1c00150
  17. Cell Cycle. 2021 Aug 25. 1-15
      Telomeres protect chromosome ends from nucleolytic degradation, uncontrolled recombination by DNA repair enzymes and checkpoint signaling, and they provide mechanisms for their maintenance by semiconservative DNA replication, telomerase and homologous recombination. The telomeric long noncoding RNA TERRA is transcribed from a large number of chromosome ends. TERRA has been implicated in modulating telomeric chromatin structure and checkpoint signaling, and in telomere maintenance by homology directed repair, and telomerase - when telomeres are damaged or very short. Recent work indicates that TERRA association with telomeres involves the formation of DNA:RNA hybrid structures that can be formed post transcription by the RAD51 DNA recombinase, which in turn may trigger homologous recombination between telomeric repeats and telomere elongation. In this review, we describe the mechanisms of TERRA recruitment to telomeres, R-loop formation and its regulation by shelterin proteins. We discuss the consequences of R-loop formation, with regard to telomere maintenance by DNA recombination and how this may impinge on telomere replication while counteracting telomere shortening in normal cells and in ALT cancer cells, which maintain telomeres in the absence of telomerase.
    Keywords:  R-loops; RAD51; TERRA; Telomeres; homologous recombination; shelterin proteins
    DOI:  https://doi.org/10.1080/15384101.2021.1962638
  18. Int J Mol Sci. 2021 Aug 07. pii: 8500. [Epub ahead of print]22(16):
      UV-induced DNA damage response and repair are extensively studied processes, as any malfunction in these pathways contributes to the activation of tumorigenesis. Although several proteins involved in these cellular mechanisms have been described, the entire repair cascade has remained unexplored. To identify new players in UV-induced repair, we performed a microarray screen, in which we found SerpinB10 (SPB10, Bomapin) as one of the most dramatically upregulated genes following UV irradiation. Here, we demonstrated that an increased mRNA level of SPB10 is a general cellular response following UV irradiation regardless of the cell type. We showed that although SPB10 is implicated in the UV-induced cellular response, it has no indispensable function in cell survival upon UV irradiation. Nonetheless, we revealed that SPB10 might be involved in delaying the duration of DNA repair in interphase and also in S-phase cells. Additionally, we also highlighted the interaction between SPB10 and H3. Based on our results, it seems that SPB10 protein is implicated in UV-induced stress as a "quality control protein", presumably by slowing down the repair process.
    Keywords:  Bomapin; SerpinB10; UV damage; replication; replication stress; serine protease inhibitor
    DOI:  https://doi.org/10.3390/ijms22168500
  19. Genes (Basel). 2021 Jul 28. pii: 1156. [Epub ahead of print]12(8):
      The nucleoli are subdomains of the nucleus that form around actively transcribed ribosomal RNA (rRNA) genes. They serve as the site of rRNA synthesis and processing, and ribosome assembly. There are 400-600 copies of rRNA genes (rDNA) in human cells and their highly repetitive and transcribed nature poses a challenge for DNA repair and replication machineries. It is only in the last 7 years that the DNA damage response and processes of DNA repair at the rDNA repeats have been recognized to be unique and distinct from the classic response to DNA damage in the nucleoplasm. In the last decade, the nucleolus has also emerged as a central hub for coordinating responses to stress via sequestering tumor suppressors, DNA repair and cell cycle factors until they are required for their functional role in the nucleoplasm. In this review, we focus on features of the rDNA repeats that make them highly vulnerable to DNA damage and the mechanisms by which rDNA damage is repaired. We highlight the molecular consequences of rDNA damage including activation of the nucleolar DNA damage response, which is emerging as a unique response that can be exploited in anti-cancer therapy. In this review, we focus on CX-5461, a novel inhibitor of Pol I transcription that induces the nucleolar DNA damage response and is showing increasing promise in clinical investigations.
    Keywords:  CX-5461; DNA damage response; RNA polymerase I; nucleolus; rDNA
    DOI:  https://doi.org/10.3390/genes12081156
  20. Molecules. 2021 Aug 13. pii: 4902. [Epub ahead of print]26(16):
      Hydroxycamptothecin (SN38) is a natural plant extract isolated from Camptotheca acuminate. It has a broad spectrum of anticancer activity through inhibition of DNA topoisomerase I, which could affect DNA synthesis and lead to DNA damage. Thus, the action of SN38 against cancers could inevitably affect endogenous levels of ribonucleotide (RNs) and deoxyribonucleotide (dRNs) that play critical roles in many biological processes, especially in DNA synthesis and repair. However, the exact impact of SN38 on RNs and dRNs is yet to be fully elucidated. In this study, we evaluated the anticancer effect and associated mechanism of SN38 in human colorectal carcinoma HCT 116 cells. As a result, SN38 could decrease the cell viability and induce DNA damage in a concentration-dependent manner. Furthermore, cell cycle arrest and intracellular nucleotide metabolism were perturbed due to DNA damage response, of which ATP, UTP, dATP, and TTP may be the critical metabolites during the whole process. Combined with the expression of deoxyribonucleoside triphosphates synthesis enzymes, our results demonstrated that the alteration and imbalance of deoxyribonucleoside triphosphates caused by SN38 was mainly due to the de novo nucleotide synthesis at 24 h, and subsequently the salvage pathways at 48 h. The unique features of SN38 suggested that it might be recommended as an effective supplementary drug with an anticancer effect.
    Keywords:  deoxyribonucleotide; hydroxycamptothecin; perturbation; ribonucleotide
    DOI:  https://doi.org/10.3390/molecules26164902
  21. Sci Adv. 2021 Aug;pii: eabb3799. [Epub ahead of print]7(35):
      Double-strand breaks (DSBs) are harmful lesions and a major cause of genome instability. Studies have suggested a link between the nuclear envelope and the DNA damage response. Here, we show that lamin B1, a major component of the nuclear envelope, interacts directly with 53BP1 protein, which plays a pivotal role in the DSB repair. This interaction is dissociated after DNA damage. Lamin B1 overexpression impedes 53BP1 recruitment to DNA damage sites and leads to a persistence of DNA damage, a defect in nonhomologous end joining and an increased sensitivity to DSBs. The identification of interactions domains between lamin B1 and 53BP1 allows us to demonstrate that the defect of 53BP1 recruitment and the DSB persistence upon lamin B1 overexpression are due to sequestration of 53BP1 by lamin B1. This study highlights lamin B1 as a factor controlling the recruitment of 53BP1 to DNA damage sites upon injury.
    DOI:  https://doi.org/10.1126/sciadv.abb3799
  22. Nat Rev Mol Cell Biol. 2021 Aug 24.
      The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation.
    DOI:  https://doi.org/10.1038/s41580-021-00394-2
  23. PLoS Genet. 2021 Aug;17(8): e1009717
      Accurate repair of DNA double-strand breaks (DSBs) is crucial for cell survival and genome integrity. In Escherichia coli, DSBs are repaired by homologous recombination (HR), using an undamaged sister chromosome as template. The DNA intermediates of this pathway are expected to be branched molecules that may include 4-way structures termed Holliday junctions (HJs), and 3-way structures such as D-loops and repair forks. Using a tool creating a site-specific, repairable DSB on only one of a pair of replicating sister chromosomes, we have determined how these branched DNA intermediates are distributed across a DNA region that is undergoing DSB repair. In cells, where branch migration and cleavage of HJs are limited by inactivation of the RuvABC complex, HJs and repair forks are principally accumulated within a distance of 12 kb from sites of recombination initiation, known as Chi, on each side of the engineered DSB. These branched DNA structures can even be detected in the region of DNA between the Chi sites flanking the DSB, a DNA segment not expected to be engaged in recombination initiation, and potentially degraded by RecBCD nuclease action. This is observed even in the absence of the branch migration and helicase activities of RuvAB, RadA, RecG, RecQ and PriA. The detection of full-length DNA fragments containing HJs in this central region implies that DSB repair can restore the two intact chromosomes, into which HJs can relocate prior to their resolution. The distribution of recombination intermediates across the 12kb region beyond Chi is altered in xonA, recJ and recQ mutants suggesting that, in the RecBCD pathway of DSB repair, exonuclease I stimulates the formation of repair forks and that RecJQ promotes strand-invasion at a distance from the recombination initiation sites.
    DOI:  https://doi.org/10.1371/journal.pgen.1009717
  24. EMBO J. 2021 Aug 23. e107988
      The intricate process of human mtDNA replication requires the coordinated action of both transcription and replication machineries. Transcription and replication events at the lagging strand of mtDNA prompt the formation of a stem-loop structure (OriL) and the synthesis of a ∼25 nt RNA primer by mitochondrial RNA polymerase (mtRNAP). The mechanisms by which mtRNAP recognizes OriL, initiates transcription, and transfers the primer to the replisome are poorly understood. We found that transcription initiation at OriL involves slippage of the nascent transcript. The transcript slippage is essential for initiation complex stability and its ability to translocate the mitochondrial DNA polymerase gamma, PolG, which pre-binds to OriL, downstream of the replication origin thus allowing for the primer synthesis. Our data suggest the primosome assembly at OriL-a complex of mtRNAP and PolG-can efficiently generate the primer, transfer it to the replisome, and protect it from degradation by mitochondrial endonucleases.
    Keywords:  POLRMT; PolG; mitochondrial replication; mitochondrial transcription; primosome
    DOI:  https://doi.org/10.15252/embj.2021107988
  25. Cell Death Differ. 2021 Aug 27.
      T cell-driven diseases account for considerable morbidity and disability globally and there is an urgent need for new targeted therapies. Both cancer cells and activated T cells have an altered redox balance, and up-regulate the DNA repair protein MTH1 that sanitizes the oxidized nucleotide pool to avoid DNA damage and cell death. Herein we suggest that the up-regulation of MTH1 in activated T cells correlates with their redox status, but occurs before the ROS levels increase, challenging the established conception of MTH1 increasing as a direct response to an increased ROS status. We also propose a heterogeneity in MTH1 levels among activated T cells, where a smaller subset of activated T cells does not up-regulate MTH1 despite activation and proliferation. The study suggests that the vast majority of activated T cells have high MTH1 levels and are sensitive to the MTH1 inhibitor TH1579 (Karonudib) via induction of DNA damage and cell cycle arrest. TH1579 further drives the surviving cells to the MTH1low phenotype with altered redox status. TH1579 does not affect resting T cells, as opposed to the established immunosuppressor Azathioprine, and no sensitivity among other major immune cell types regarding their function can be observed. Finally, we demonstrate a therapeutic effect in a murine model of experimental autoimmune encephalomyelitis. In conclusion, we show proof of concept of the existence of MTH1high and MTH1low activated T cells, and that MTH1 inhibition by TH1579 selectively suppresses pro-inflammatory activated T cells. Thus, MTH1 inhibition by TH1579 may serve as a novel treatment option against autoreactive T cells in autoimmune diseases, such as multiple sclerosis.
    DOI:  https://doi.org/10.1038/s41418-021-00854-4
  26. Genes (Basel). 2021 Jul 27. pii: 1143. [Epub ahead of print]12(8):
      The DNA-dependent protein kinase (DNA-PK) is composed of a DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Ku70/Ku80 heterodimer. DNA-PK is thought to act as the "sensor" for DNA double-stranded breaks (DSB), which are considered the most deleterious type of DNA damage. In particular, DNA-PKcs and Ku are shown to be essential for DSB repair through nonhomologous end joining (NHEJ). The phenotypes of animals and human individuals with defective DNA-PKcs or Ku functions indicate their essential roles in these developments, especially in neuronal and immune systems. DNA-PKcs are structurally related to Ataxia-telangiectasia mutated (ATM), which is also implicated in the cellular responses to DSBs. DNA-PKcs and ATM constitute the phosphatidylinositol 3-kinase-like kinases (PIKKs) family with several other molecules. Here, we review the accumulated knowledge on the functions of DNA-PKcs, mainly based on the phenotypes of DNA-PKcs-deficient cells in animals and human individuals, and also discuss its relationship with ATM in the maintenance of genomic stability.
    Keywords:  Ataxia–telangiectasia mutated (ATM); DNA damage response; DNA double-stranded break (DSB); DNA-dependent protein kinase (DNA-PK); DNA-dependent protein kinase catalytic subunit (DNA-PKcs); Ku; phosphatidylinositol 3-kinase-like kinase (PIKK); protein kinase
    DOI:  https://doi.org/10.3390/genes12081143
  27. Int J Mol Sci. 2021 Aug 18. pii: 8869. [Epub ahead of print]22(16):
      Osteosarcoma is a frequent and extremely aggressive type of pediatric cancer. New therapeutic approaches are needed to improve the overall survival of osteosarcoma patients. Our previous results suggest that NMNAT1, a key enzyme in nuclear NAD+ synthesis, facilitates the survival of cisplatin-treated osteosarcoma cells. A high-throughput cytotoxicity screening was performed to identify novel pathways or compounds linked to the cancer-promoting role of NMNAT1. Nine compounds caused higher toxicity in the NMNAT1 KO U2OS cells compared to their wild type counterparts, and actinomycin D (ActD) was the most potent. ActD-treatment of NMNAT1 KO cells increased caspase activity and secondary necrosis. The reduced NAD+ content in NMNAT1 KO cells was further decreased by ActD, which partially inhibited NAD+-dependent enzymes, including the DNA nick sensor enzyme PARP1 and the NAD+-dependent deacetylase SIRT1. Impaired PARP1 activity increased DNA damage in ActD-treated NMNAT1 knockout cells, while SIRT1 impairment increased acetylation of the p53 protein, causing the upregulation of pro-apoptotic proteins (NOXA, BAX). Proliferation was decreased through both PARP- and SIRT-dependent pathways. On the one hand, PARP inhibitors sensitized wild type but not NMNAT1 KO cells to ActD-induced anti-clonogenic effects; on the other hand, over-acetylated p53 induced the expression of the anti-proliferative p21 protein leading to cell cycle arrest. Based on our results, NMNAT1 acts as a survival factor in ActD-treated osteosarcoma cells. By inhibiting both PARP1- and SIRT1-dependent cellular pathways, NMNAT1 inhibition can be a promising new tool in osteosarcoma chemotherapy.
    Keywords:  NAD+; NMNAT1; PARP1; SIRT1; actinomycin D; apoptosis; cancer; chemotherapy; high throughput screening; osteosarcoma
    DOI:  https://doi.org/10.3390/ijms22168869
  28. Cell Rep. 2021 Aug 24. pii: S2211-1247(21)00971-2. [Epub ahead of print]36(8): 109537
      Increased DNA replication and metastasis are hallmarks of cancer progression, while deregulated proliferation often triggers sustained replication stresses in cancer cells. How cancer cells overcome the growth stress and proceed to metastasis remains largely elusive. Proliferating cell nuclear antigen (PCNA) is an indispensable component of the DNA replication machinery. Here, we show that phosphorylation of PCNA on tyrosine 211 (pY211-PCNA) regulates DNA metabolism and tumor microenvironment. Abrogation of pY211-PCNA blocks fork processivity, resulting in biogenesis of single-stranded DNA (ssDNA) through a MRE11-dependent mechanism. The cytosolic ssDNA subsequently induces inflammatory cytokines through a cyclic GMP-AMP synthetase (cGAS)-dependent cascade, triggering an anti-tumor immunity by natural killer (NK) cells to suppress distant metastasis. Expression of pY211-PCNA is inversely correlated with cytosolic ssDNA and associated with poor survival in patients with cancer. Our results pave the way to biomarkers and therapies exploiting immune responsiveness to target metastatic cancer.
    Keywords:  PCNA; cGAS; innate immune response; pY211 PCNA; ssDNA; type I interferon
    DOI:  https://doi.org/10.1016/j.celrep.2021.109537
  29. Genes (Basel). 2021 Aug 09. pii: 1224. [Epub ahead of print]12(8):
      During cell division, the duplication of the genome starts at multiple positions called replication origins. Origin firing requires the interaction of rate-limiting factors with potential origins during the S(ynthesis)-phase of the cell cycle. Origins fire as synchronous clusters which is proposed to be regulated by the intra-S checkpoint. By modelling the unchallenged, the checkpoint-inhibited and the checkpoint protein Chk1 over-expressed replication pattern of single DNA molecules from Xenopus sperm chromatin replicated in egg extracts, we demonstrate that the quantitative modelling of data requires: (1) a segmentation of the genome into regions of low and high probability of origin firing; (2) that regions with high probability of origin firing escape intra-S checkpoint regulation and (3) the variability of the rate of DNA synthesis close to replication forks is a necessary ingredient that should be taken in to account in order to describe the dynamic of replication origin firing. This model implies that the observed origin clustering emerges from the apparent synchrony of origin firing in regions with high probability of origin firing and challenge the assumption that the intra-S checkpoint is the main regulator of origin clustering.
    Keywords:  DNA replication; checkpoint; mathematical modelling; minimal model; origin firing
    DOI:  https://doi.org/10.3390/genes12081224
  30. Life Sci Alliance. 2021 10;pii: e202101159. [Epub ahead of print]4(10):
      We investigated potential mechanisms by which elevated glucose may promote genomic instability. Gene expression studies, protein measurements, mass spectroscopic analyses, and functional assays revealed that elevated glucose inhibited the nucleotide excision repair (NER) pathway, promoted DNA strand breaks, and increased levels of the DNA glycation adduct N 2 -(1-carboxyethyl)-2'-deoxyguanosine (CEdG). Glycation stress in NER-competent cells yielded single-strand breaks accompanied by ATR activation, γH2AX induction, and enhanced non-homologous end-joining and homology-directed repair. In NER-deficient cells, glycation stress activated ATM/ATR/H2AX, consistent with double-strand break formation. Elevated glucose inhibited DNA repair by attenuating hypoxia-inducible factor-1α-mediated transcription of NER genes via enhanced 2-ketoglutarate-dependent prolyl hydroxylase (PHD) activity. PHD inhibition enhanced transcription of NER genes and facilitated CEdG repair. These results are consistent with a role for hyperglycemia in promoting genomic instability as a potential mechanism for increasing cancer risk in metabolic disease. Because of the pleiotropic functions of many NER genes beyond DNA repair, these results may have broader implications for cellular pathophysiology.
    DOI:  https://doi.org/10.26508/lsa.202101159
  31. Med Oncol. 2021 Aug 25. 38(10): 118
      Cancer progression requires certain tumorigenic mutations in genes encoding for different cellular and nuclear proteins. Altered expressions of these mutated genes are mediated by post-translational modifications and chromatin remodeling. Chromatin remodeling is mainly regulated by the chromatin remodeling enzyme complexes and histone modifications. Upon DNA damage, Poly-(ADP-ribose) Polymerase1 (PARP1) plays a very important role in the induction of chromatin modifications and activation of DNA repair pathways to repair the DNA lesion. It has been targeted to develop different anti-cancer therapeutic interventions and PARP inhibitors have been approved by the U.S. Food and Drug Administration (FDA) for clinical use. But it has been found that the cancer cells often develop resistance to these PARP inhibitors and chromatin remodeling helps in enhancing this process. Hence, it may be beneficial to target PARP1-mediated chromatin remodeling, which may allow to reverse the drug resistance. In the current review, we have discussed the role of chromatin remodeling in DNA repair, how PARP1 regulates modifications of chromatin dynamics, and the role of chromatin modifications in cancer. It has also been discussed how the PARP1-mediated chromatin remodeling can be targeted by PARP inhibitors alone or in combination with other chemotherapeutic agents to establish novel anti-cancer therapeutics. We have also considered the use of PARG inhibitors that may enhance the action of PARP inhibitors to target different types of cancers.
    Keywords:  Cancer; Chromatin remodeling; DNA repair; PARP inhibitors; PARP1
    DOI:  https://doi.org/10.1007/s12032-021-01570-2
  32. Cell Stem Cell. 2021 Aug 21. pii: S1934-5909(21)00296-4. [Epub ahead of print]
      The electron transport chain promotes aspartate synthesis, which is required for cancer cell proliferation. However, it is unclear whether aspartate is limiting in normal stem cells. We found that mouse hematopoietic stem cells (HSCs) depend entirely on cell-autonomous aspartate synthesis, which increases upon HSC activation. Overexpression of the glutamate/aspartate transporter, Glast, or deletion of glutamic-oxaloacetic transaminase 1 (Got1) each increased aspartate levels in HSCs/progenitor cells and increased the function of HSCs but not colony-forming progenitors. Conversely, deletion of Got2 reduced aspartate levels and the function of HSCs but not colony-forming progenitors. Deletion of Got1 and Got2 eliminated HSCs. Isotope tracing showed aspartate was used to synthesize asparagine and purines. Both contributed to increased HSC function as deletion of asparagine synthetase or treatment with 6-mercaptopurine attenuated the increased function of GLAST-overexpressing HSCs. HSC function is thus limited by aspartate, purine, and asparagine availability during hematopoietic regeneration.
    Keywords:  asparagine; aspartate; electron transport chain; hematopoietic stem cell; metabolism; mitochondria; purine; regeneration
    DOI:  https://doi.org/10.1016/j.stem.2021.07.011