bims-nucpor Biomed News
on Nuclear pore complex and nucleoporins in stress, aging and disease
Issue of 2023‒08‒06
four papers selected by
Sara Mingu, Johannes Gutenberg University



  1. PLoS Biol. 2023 Aug 03. 21(8): e3002224
      Both the spindle microtubule-organizing centers and the nuclear pore complexes (NPCs) are convoluted structures where many signaling pathways converge to coordinate key events during cell division. Interestingly, despite their distinct molecular conformation and overall functions, these structures share common components and collaborate in the regulation of essential processes. We have established a new link between microtubule-organizing centers and nuclear pores in budding yeast by unveiling an interaction between the Bfa1/Bub2 complex, a mitotic exit inhibitor that localizes on the spindle pole bodies, and the Nup159 nucleoporin. Bfa1/Bub2 association with Nup159 is reduced in metaphase to not interfere with proper spindle positioning. However, their interaction is stimulated in anaphase and assists the Nup159-dependent autophagy pathway. The asymmetric localization of Bfa1/Bub2 during mitosis raises the possibility that its interaction with Nup159 could differentially promote Nup159-mediated autophagic processes, which might be relevant for the maintenance of the replicative lifespan.
    DOI:  https://doi.org/10.1371/journal.pbio.3002224
  2. QRB Discov. 2022 ;3 e2
      The viral replication cycle is controlled by information transduced through both molecular and mechanical interactions. Viral infection mechanics remains largely unexplored, however, due to the complexity of cellular mechanical responses over the course of infection as well as a limited ability to isolate and probe these responses. Here, we develop an experimental system consisting of herpes simplex virus type 1 (HSV-1) capsids bound to isolated and reconstituted cell nuclei, which allows direct probing of capsid-nucleus mechanics with atomic force microscopy (AFM). Major mechanical transformations occur in the host nucleus when pressurised viral DNA ejects from HSV-1 capsids docked at the nuclear pore complexes (NPCs) on the nuclear membrane. This leads to structural rearrangement of the host chromosome, affecting its compaction. This in turn regulates viral genome replication and transcription dynamics as well as the decision between a lytic or latent course of infection. AFM probing of our reconstituted capsid-nucleus system provides high-resolution topographical imaging of viral capsid docking at the NPCs as well as force volume mapping of the infected nucleus surface, reflecting mechanical transformations associated with chromatin compaction and stiffness of nuclear lamina (to which chromatin is tethered). This experimental system provides a novel platform for investigation of virus-host interaction mechanics during viral genome penetration into the nucleus.
    Keywords:  AFM; Herpes Simplex Virus type 1; capsid; chromatin; mechanics; nucleus
    DOI:  https://doi.org/10.1017/qrd.2021.14
  3. Biophys J. 2023 Aug 03. pii: S0006-3495(23)00475-7. [Epub ahead of print]
      Using all-atom replica-exchange molecular dynamics simulations, we mapped the mechanisms of binding of the nuclear localization signal (NLS) sequence from Venezuelan equine encephalitis virus (VEEV) capsid protein to importin-α (impα) transport protein. Our objective was to identify the VEEV NLS sequence fragment that confers native, experimentally resolved binding to impα as well as to study associated binding energetics and conformational ensembles. The two selected VEEV NLS peptide fragments, KKPK and KKPKKE, show strikingly different binding mechanisms. The minNLS peptide KKPK binds non-natively and non-specifically by adopting five diverse conformational clusters with low similarity to the X-ray structure 3VE6 of NLS-impα complex. Despite prevalence of non-native interactions, the minNLS peptide still largely binds to the impα major NLS binding site. In contrast, the coreNLS peptide KKPKKE binds specifically and natively adopting a largely homogeneous binding ensemble with a dominant, highly native-like conformational cluster. The coreNLS peptide retains most of native binding interactions, including π-cation contacts and a tryptophan cage. While KKPK binding is governed by a complex multistate free energy landscape featuring transitions between multiple binding poses, the coreNLS peptide free energy map is simple, exhibiting a single dominant native-like bound basin. We argue that the origin of the coreNLS peptide binding specificity is several electrostatic interactions formed by the two C-terminal amino acids, Lys10 and Glu11, with impα. The coreNLS sequence is then sufficient for native binding, but none of the amino acids flanking minNLS, including Lys10 and Glu11, are strictly necessary for the native pose. Our analysis indicate that the VEEV coreNLS sequence is virtually unique among human and viral proteins interacting with impα making it a potential target for VEEV-specific inhibitors.
    DOI:  https://doi.org/10.1016/j.bpj.2023.07.024
  4. Cell Rep. 2023 Jul 28. pii: S2211-1247(23)00895-1. [Epub ahead of print]42(8): 112884
      NUP98 and NUP214 form chimeric fusion proteins that assemble into phase-separated nuclear bodies containing CRM1, a nuclear export receptor. However, these nuclear bodies' function in controlling gene expression remains elusive. Here, we demonstrate that the nuclear bodies of NUP98::HOXA9 and SET::NUP214 promote the condensation of mixed lineage leukemia 1 (MLL1), a histone methyltransferase essential for the maintenance of HOX gene expression. These nuclear bodies are robustly associated with MLL1/CRM1 and co-localized on chromatin. Furthermore, whole-genome chromatin-conformation capture analysis reveals that NUP98::HOXA9 induces a drastic alteration in high-order genome structure at target regions concomitant with the generation of chromatin loops and/or rearrangement of topologically associating domains in a phase-separation-dependent manner. Collectively, these results show that the phase-separated nuclear bodies of nucleoporin fusion proteins can enhance the activation of target genes by promoting the condensation of MLL1/CRM1 and rearrangement of the 3D genome structure.
    Keywords:  3D genome; CP: Molecular biology; CRM1; HOX cluster genes; MLL1; NUP214; NUP98; fusion gene; leukemia; molecular condensation; phase separation
    DOI:  https://doi.org/10.1016/j.celrep.2023.112884