bims-noxint Biomed News
on NADPH oxidases in tumorigenesis
Issue of 2021‒06‒27
six papers selected by
Laia Caja Puigsubira
Uppsala University


  1. Ann Transl Med. 2021 May;9(10): 886
      Background: Colorectal cancer (CRC), one of the most common malignancies worldwide, is associated with poor survival and has a high mortality rate. Taxol is a chemotherapeutic agent that has been clinically applied as a first-line drug against diverse cancers. Yet, development of drug resistance has become the major challenge for anti-cancer treatments. F-box and WD40 domain protein 7 (Fbxw7) is a known tumor suppressor which is frequently downregulated in cancers. However, the biological roles and mechanisms of Fbxw7 in Taxol resistance are still under investigation.Methods: We report that Fbxw7 is significantly inactivated in CRC tumors and cell lines compared with normal tissues and colon cells. Expressions of Fbxw7 and Nox1 were detected from human colon tumors and cells by qRT-PCR and Western blot. Glycolysis rate was assessed by glucose uptake and lactate product assay. Interactions between Fbxw7 and Nox1 were determined by co-immunoprecipitation (Co-IP). Chemosensitivity and resistance of colon cancer cells were determined by MTT assay and Annexin V-FITC assay.
    Results: Overexpression of Fbxw7 sensitized colon cancer cells to Taxol. Moreover, we observed a negative correlation between Fbxw7 and glucose metabolism. From the established Taxol-resistant (TR) cell line from HCT-116, Fbxw7 was found to be markedly downregulated in HCT-116 TR cells. We detected that NADPH oxidase 1 (Nox1), a superoxide-generating NADPH oxidase, is negatively regulated by Fbxw7. The Co-IP assay showed that Fbxw7 interacted with Nox1, which was observed to be significantly upregulated in CRC tissues. Nox1 therefore promotes the Taxol resistance and glucose metabolism of colon cancer cells. Finally, rescue experiments demonstrated that the Fbxw7-promoted Taxol sensitivity was partially through the Nox1-glycolysis axis. Restoration of Nox1 in Fbxw7-overexpressed TR colon cancer cells significantly recovered the Taxol resistance, which could be further overridden by glycolysis inhibition.
    Conclusions: Collectively, this study uncovered that targeting the Fbxw7-Nox1-glucose metabolism axis could be an effective strategy against chemoresistant colon cancer.
    Keywords:  Colorectal cancer (CRC); F-box and WD40 domain protein 7 (Fbxw7); NADPH oxidase 1 (Nox1); Taxol sensitivity
    DOI:  https://doi.org/10.21037/atm-21-2076
  2. Front Immunol. 2021 ;12 636954
      Neutrophil extracellular traps (NETs) consist of decondensed nuclear chromatin that is associated with proteins and are released by neutrophils during an inflammatory response. Released NETs are able to capture pathogens, prevent their dissemination and potentially kill them via antimicrobial peptides and proteins that are associated with the decondensed chromatin. In addition to their antimicrobial functions, NETs have also been shown to exert immunomodulatory effects by activation and differentiation of macrophages, dendritic cells and T cells. However, the effect of NETs on neutrophil functions is poorly understood. Here we report the first comprehensive study regarding the effects of NETs on human primary neutrophils in vitro. NETs were isolated from cultures of PMA-exposed neutrophils. Exposure of neutrophils to isolated NETs resulted in the activation of several neutrophil functions in a concentration-dependent manner. NETs induced exocytosis of granules, the production of reactive oxygen species (ROS) by the NADPH oxidase NOX2, NOX2-dependent NET formation, increased the phagocytosis and killing of microbial pathogens. Furthermore, NETs induced the secretion of the proinflammatory chemokine IL-8 and the B-cell-activating cytokine BAFF. We could show that the NET-induced activation of neutrophils occurs by pathways that involve the phosphorylation of Akt, ERK1/2 and p38. Taken together our results provide further insights into the proinflammatory role of NETs by activating neutrophil effector function and further supports the view that NETs can amplify inflammatory events. On the one hand the amplified functions enhance the antimicrobial defense. On the other hand, NET-amplified neutrophil functions can be involved in the pathophysiology of NET-associated diseases. In addition, NETs can connect the innate and adaptive immune system by inducing the secretion of the B-cell-activating cytokine BAFF.
    Keywords:  BAFF; NET formation; ROS production; effector functions; inflammation; neutrophil extracellular traps; neutrophils
    DOI:  https://doi.org/10.3389/fimmu.2021.636954
  3. FEBS J. 2021 Jun 26.
      Cell metabolism heavily relies on the redox reactions that inevitably generate reactive oxygen species (ROS). It is now well established that ROS fluctuations near basal levels coordinate numerous physiological processes in living organisms, thus exhibiting regulatory functions. Hydrogen peroxide, the most long-lived ROS, is a key contributor to ROS-dependent signal transduction in the cell. H2 O2 is known to impact various targets in the cell, therefore the question of how H2 O2 modulates physiological processes in a highly specific manner is central in redox biology. To resolve this question, novel genetic tools have recently been created for detecting H2 O2 and emulating its generation in living organisms with unmatched spatiotemporal resolution. Here, we review H2 O2 -sensitive genetically encoded fluorescent sensors and opto- and chemogenetic tools for controlled H2 O2 generation.
    Keywords:  D-amino acid oxidase; HyPer; Reactive oxygen species; genetically encoded fluorescent sensors; hydrogen peroxide; roGFP2-based sensors
    DOI:  https://doi.org/10.1111/febs.16088
  4. Mol Med Rep. 2021 Aug;pii: 591. [Epub ahead of print]24(2):
      Benign paroxysmal positional vertigo (BPPV) is the most common peripheral vertigo‑associated disease. Vitamin D (VD) helps maintain normal otolith function and may be associated with BPPV. VD exerts its biological functions primarily via the VD receptor (VDR). The present study demonstrated that serum VD levels were significantly decreased in patients with BPPV compared with in controls. VDR, otolith‑associated protein otoconin‑90 (OC90) and NADPH oxidase 3 (NOX3) expression levels were also significantly decreased in patients with BPPV compared with in controls. Furthermore, a positive correlation was observed between VD levels and VDR expression. Receiver operating characteristic curve analysis identified VDR expression levels as a potential diagnostic marker for BPPV. OC90 and NOX3 expression levels were notably lower in the inner ear tissue of VDR knockout mice compared with in those of wild‑type mice. In mice overexpressing VDR, OC90 and NOX3 were also overexpressed. Following intravenous injection of VD in VDR knockout mice, expression levels of OC90 and NOX3 were not significantly different from those in VDR knockout mice injected with saline. This indicated that VDR may be underexpressed in patients with BPPV and was associated with the expression levels of otolith‑associated proteins. Moreover, VDR mediated VD activation, leading to otolith protein formation. The present study provided a novel theoretical basis for BPPV onset that may facilitate the development of more effective diagnostic and treatment options.
    Keywords:  benign paroxysmal positional vertigo; inner ear; vitamin D; vitamin D receptor
    DOI:  https://doi.org/10.3892/mmr.2021.12230
  5. Proc Natl Acad Sci U S A. 2021 Jun 29. pii: e2017130118. [Epub ahead of print]118(26):
      Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN-) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1 -/- mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1β, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN- is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN- diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN- in an H2O2-dependent manner in vitro. OSCN- does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN-, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.
    Keywords:  DUOX1; Dual oxidase 1; hypothiocyanite; influenza; lactoperoxidase
    DOI:  https://doi.org/10.1073/pnas.2017130118
  6. Antioxid Redox Signal. 2021 Jun 19.
      SIGNIFICANCE: Neutrophil behavior and function is altered by hyperglycemia associated with diabetes. Aberrant activation by hyperglycemia causes neutrophils to respond with increased production of reactive oxidative species (ROS). Excess ROS, a signature of primed neutrophils, can intracellularly induce neutrophils to undergo NETosis, flooding surrounding tissues with ROS and damage-associated molecular patterns (DAMPs) such as S100 calcium binding proteins (S100A8/A9). The cargo associated with NETosis also attracts more immune cells to the site and signals for increased immune cell production. This inflammatory response to diabetes can accelerate other associated conditions such as atherosclerosis and thrombosis, increasing the risk of cardiovascular disease. Recent Advances: As the prevalence of diabetes continues to grow, more attention has been focused on developing effective treatment options. Currently, glucose-lowering medications and insulin injections are the most widely utilized treatments. As the disease progresses, medications are usually stacked to maintain glucose at desired target levels, but this approach often fails and does not effectively reduce cardiovascular risk, even with the latest drugs.CRITICAL ISSUES: Despite advances in treatment options, diabetes remains a progressive disease as glucose lowering alone has failed to abolish the associated cardiovascular complications.
    FUTURE DIRECTIONS: Significant interest is being generated in developing treatments that do not solely focus on glucose control but rather mitigate glucotoxicity. Several therapies have been proposed that target cellular dysfunction downstream of hyperglycemia, such as using antioxidants to scavenge ROS, inhibiting ROS production from NOX, and suppressing neutrophil release of S100A8/A9 proteins.
    DOI:  https://doi.org/10.1089/ars.2021.0116