bims-noxint Biomed News
on NADPH oxidases in tumorigenesis
Issue of 2020‒06‒21
seven papers selected by
Laia Caja Puigsubira
Uppsala University


  1. Cardiovasc Res. 2020 Jun 13. pii: cvaa168. [Epub ahead of print]
    Ouerd S, Idris-Khodja N, Trindade M, Ferreira NS, Berillo O, Coelho SC, Neves MF, Jandeleit-Dahm KA, Paradis P, Schiffrin EL.
      AIMS: NADPH oxidase (NOX) 1 but not NOX4-dependent oxidative stress plays a role in diabetic vascular disease, including atherosclerosis. Endothelin (ET)-1 has been implicated in diabetes-induced vascular complications. We showed that crossing mice overexpressing human ET-1 selectively in endothelium (eET-1) with apolipoprotein E knockout (Apoe-/-) mice enhanced high-fat diet-induced atherosclerosis in part by increasing oxidative stress. We tested the hypothesis that ET-1 overexpression in the endothelium would worsen atherosclerosis in type-1 diabetes through a mechanism involving NOX1 but not NOX4.METHODS AND RESULTS: Six-week-old male Apoe-/- and eET-1/Apoe-/- mice with or without Nox1 (Nox1-/y) or Nox4 knockout (Nox4-/-) were injected intraperitoneally with either vehicle or streptozotocin (55 mg/kg/day) for 5 days to induce type-1 diabetes and were studied 14 weeks later. ET-1 overexpression increased 2.5-fold and 5-fold the atherosclerotic lesion area in the aortic sinus and arch of diabetic Apoe-/- mice, respectively. Deletion of Nox1 reduced aortic arch plaque size by 60%; by contrast, Nox4 knockout increased lesion size by 1.5-fold. ET-1 overexpression decreased aortic sinus and arch plaque alpha smooth muscle cell content by ∼35% and ∼50%, respectively, which was blunted by Nox1 but not Nox4 knockout. Reactive oxygen species production was increased 2-fold in aortic arch perivascular fat of diabetic eET-1/Apoe-/- and eET-1/Apoe-/- / Nox4-/- mice but not eET-1/Apoe-/- / Nox1y/- mice. ET-1 overexpression enhanced monocyte/macrophage and CD3+ T cell infiltration ∼2.7-fold in the aortic arch perivascular fat of diabetic Apoe-/- mice. Both Nox1 and Nox4 knockout blunted CD3+ T cell infiltration whereas only Nox1 knockout prevented the monocyte/macrophage infiltration in diabetic eET-1/Apoe-/- mice.
    CONCLUSIONS: Endothelium ET-1 overexpression enhances the progression of atherosclerosis in type-1 diabetes, perivascular oxidative stress and inflammation through NOX1.
    TRANSLATIONAL PERSPECTIVE: We demonstrate that endothelial cell-restricted human ET-1 overexpression worsens atherosclerosis in diabetes and causes perivascular oxidative stress and inflammation, extending our previous findings to a model of type-1 diabetes mellitus. We also show that these effects are mediated through NOX1 and that atherosclerosis is worsened by loss of NOX4, providing evidence that NADPH oxidase isoforms play differential roles in plaque progression. These results offer new approaches to prevent the progression of atherosclerosis in diabetes, which is associated with significantly increased risk of cardiovascular events.
    DOI:  https://doi.org/10.1093/cvr/cvaa168
  2. Sci Rep. 2020 Jun 17. 10(1): 9827
    Al-Azzam N, Teegala LR, Pokhrel S, Ghebreigziabher S, Chachkovskyy T, Thodeti S, Gavilanes I, Covington K, Thodeti CK, Paruchuri S.
      Asthma is characterized by pathological airway remodeling resulting from persistent myofibroblast activation. Although transforming growth factor beta 1 (TGFβ1), mechanical signals, and reactive oxygen species (ROS) are implicated in fibroblast differentiation, their integration is still elusive. We identified that Transient Receptor Potential Vanilloid 4 (TRPV4), a mechanosensitive ion channel mediates lung fibroblast (LF) differentiation and D. farinae-induced airway remodeling via a novel TRPV4-NADPH Oxidase 4 (NOX4) interaction. NOX4-mediated ROS production is essential for TGFβ1-induced LF differentiation via myocardin-related transcription factor-A (MRTF-A) and plasminogen activator inhibitor 1 (PAI-1). Importantly, TRPV4 inhibition prevented TGFβ1-induced NOX4 expression and ROS production. Both TRPV4 and NOX4 are activated by phosphatidylinositol 3-kinase (PI3K) downstream of TGFβ1, and signals from both TRPV4 and Rac are necessary for NOX4 upregulation. Notably, NOX4 expression is higher in fibroblasts derived from asthmatic patients (disease human LF; DHLF) in comparison to non-asthmatics (normal human LF; NHLF). Further, NOX4 expression is up-regulated in the lungs of D.farinae-treated wild type mice (WT) relative to saline-treated WT, which was attenuated in TRPV4 knockout (KO) mice. Our findings suggest that TRPV4 integrates TGFβ1 and ROS signaling through NOX4 and, TRPV4-NOX4 interaction is amenable to target lung remodeling during asthma.
    DOI:  https://doi.org/10.1038/s41598-020-66617-2
  3. JCI Insight. 2020 Jun 16. pii: 137127. [Epub ahead of print]
    Sanders YY, Lyu X, Zhou QJ, Xiang Z, Stanford D, Bodduluri S, Rowe SM, Thannickal VJ.
      Tissue regeneration capacity declines with aging in association with heightened oxidative stress. Expression of the oxidant-generating enzyme, NADPH oxidase 4 (Nox4) is elevated in aged mice with diminished capacity for fibrosis resolution. Bromodomain-containing protein 4 (Brd4) is a member of the bromodomain and extraterminal (BET) family of proteins that function as epigenetic "readers" of acetylated lysine groups on histones. In this study, we explored the role of Brd4 and its interaction with the p300 acetyltransferase in the regulation of Nox4, and the in-vivo efficacy of a BET inhibitor to reverse established age-associated lung fibrosis. BET inhibition interferes with the association of Brd4, p300, and acetylated histone H4K16 with the Nox4 promoter in lung fibroblasts stimulated with the pro-fibrotic cytokine, transforming growth factor-β1 (TGF-β1). This Brd4-Nox4 epigenetic axis is constitutively upregulated in fibroblasts from human subjects with idiopathic pulmonary fibrosis. A number of BET inhibitors, including I-BET-762, JQ1, and OTX015, downregulate Nox4 gene expression and activity. Aged mice with established and persistent lung fibrosis recovered capacity for fibrosis resolution with OTX015 treatment. This study implicates epigenetic regulation of Nox4 by Brd4 and p300, and supports BET/Brd4 inhibition as an effective strategy for the treatment of age-related fibrotic lung disease.
    Keywords:  Aging; Cell Biology; Epigenetics; Fibrosis
    DOI:  https://doi.org/10.1172/jci.insight.137127
  4. Hypertension. 2020 Jun 15. HYPERTENSIONAHA11914636
    Mukohda M, Mizuno R, Ozaki H.
      The lymphatic system is involved in the pathogenesis of edema, inflammation, and cancer metastasis. Because lymph vessels control fluid electrolytes and volume balance, changes in lymphatic activity can be expected to alter systemic blood pressure. This study examined possible changes in lymphatic contractile properties in spontaneously hypertensive rats (SHR). Thoracic ducts isolated from 10- to 12-week-old SHR exhibited either decreased acetylcholine-induced endothelium-dependent relaxation or sodium nitroprusside-induced endothelium-independent relaxation compared with age-matched Wister-Kyoto rats. The impairment in acetylcholine responsiveness was more pronounced than sodium nitroprusside responsiveness. N-Nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor blunted acetylcholine-induced relaxation in Wister-Kyoto rats, indicating an involvement of endothelial nitric oxide production. Endothelial dysfunction in lymph vessels of SHR was attenuated by tempol (a superoxide dismutase mimetic), apocynin, or VAS-2870 (NADPH oxidase inhibitors). Consistent with these observations, nitrotyrosine levels were significantly elevated in SHR, indicative of increased oxidative stress. In addition, protein expression of NADPH oxidase 2 and phosphorylation of p47phox (Ser345) were significantly increased in SHR. Further, SB203580 (a p38 MAPK inhibitor) restored the acetylcholine-induced relaxation in SHR. It is notable that 4-week-old SHR, which exhibited normal blood pressure, did not show any decreased activity of acetylcholine- or sodium nitroprusside-induced relaxation. Additionally, antihypertensive treatment of 4-week-old SHR with hydrochlorothiazide and reserpine or hydrochlorothiazide and hydralazine for 6 weeks completely restored lymphatic endothelial dysfunction. We conclude that contractile activity of lymphatic vessels is functionally impaired with the development of increasing blood pressure, which is mediated through increased oxidative stress via the p38 MAPK/NADPH oxidase 2 pathway.
    Keywords:  acetylcholine; endothelium; lymph; nitric oxide; oxidative stress
    DOI:  https://doi.org/10.1161/HYPERTENSIONAHA.119.14636
  5. Cancer Manag Res. 2020 ;12 3915-3925
    Wang J, Tan Q, Wang W, Yu J.
      Purpose: To investigate the potential role of the circMTO1/miR-9-5p/NOX4 axis in liver cancer.Materials and Methods: Human genome-wide circrna microarray V2 was used for analyzing the expression profile of circRNAs in human tissue samples. The TargetScan database was used to predict target genes. Gene overexpression and silencing in hepatoma cell lines were achieved by transfecting the cells with suitable constructs. Quantitative real time PCR and Western blotting were used to analyze gene and protein expression levels. CCK-8 analysis was performed to detect cell proliferation and the transwell assay for analyzing cell migration. Annexin V-FITC/PI staining and immunohistochemistry were respectively used to detect apoptosis and protein expression.
    Results: CircMTO1 were down-regulated in the liver cancer tissues and cell lines compared to their respective normal controls. TargetScan database screening and dual luciferase assay revealed that circMTO1 was a molecular sponge of miR-9-5p, and NOX4 was the target gene of miR-9-5p. Overexpression of circMTO1 and NOX4 inhibited proliferation and migration of hepatoma cells, while the overexpression of miR-9-5p had the opposite effects. In contrast, overexpression of circMTO1 and NOX4 promoted apoptosis, while that of miR-9-5p decreased the cell apoptosis rates.
    Conclusion: Overexpression of CircMTO1 acts as tumor suppressor in liver cancer by sponging miR-9-5p, which upregulates NOX4.
    Keywords:  apoptosis; circMTO1; hepatocellular carcinoma; miR-9-5p/NOX4 axis; proliferation
    DOI:  https://doi.org/10.2147/CMAR.S240719
  6. BMC Ophthalmol. 2020 Jun 17. 20(1): 233
    Li ZN, Ge MX, Yuan ZF.
      BACKGROUND: MicroRNAs (miRNAs) are abnormally expressed in various ocular diseases, including age-related cataract. However, the role of miR-182-5p in the progression of age-related cataract remains unclear.METHODS: The expression of miR-182-5p in HLE-B3 cells was detected by qRT-PCR. HLE-B3 cells were transfected with miR-182-5p mimics. CCK-8, EdU, flow cytometry, 2',7'-dichlorodihydrofluorescein diacetate, JC-1 kit, and western blot were used to assess the cell viability, proliferation, apoptosis, reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), and protein expression, respectively, in vitro. The relationship between miR-182-5p and NOX4 was confirmed using the dual-luciferase reporter gene analysis.
    RESULTS: We found that miR-182-5p expression was significantly decreased by the H2O2 exposure. Overexpression of miR-182-5p promoted cell proliferation and inhibited ROS production and apoptosis in H2O2-induced HLE-B3 cells. Moreover, p-p-38, p-ERK, and p-JNK were up-regulated in H2O2-treated HLE-B3 cells, and overexpression of miR-182-5p reversed the effects of H2O2 on HLE-B3 cells. In addition, dual-luciferase reporter assay substantiated that NOX4 was a direct target and downregulated by miR-182-5p.
    CONCLUSIONS: We concluded that miR-182-5p inhibited lens epithelial cells apoptosis through regulating NOX4 and p38 MAPK signaling, providing a novel biomarker for treatment of age-related cataract.
    Keywords:  Cataract; NOX4; Oxidative stress; miR-182-5p
    DOI:  https://doi.org/10.1186/s12886-020-01489-8
  7. PLoS Genet. 2020 Jun 16. 16(6): e1008838
    Kramer-Drauberg M, Liu JL, Desjardins D, Wang Y, Branicky R, Hekimi S.
      Reactive oxygen species (ROS) are signalling molecules whose study in intact organisms has been hampered by their potential toxicity. This has prevented a full understanding of their role in organismal processes such as development, aging and disease. In Caenorhabditis elegans, the development of the vulva is regulated by a signalling cascade that includes LET-60ras (homologue of mammalian Ras), MPK-1 (ERK1/2) and LIN-1 (an ETS transcription factor). We show that both mitochondrial and cytoplasmic ROS act on a gain-of-function (gf) mutant of the LET-60ras protein through a redox-sensitive cysteine (C118) previously identified in mammals. We show that the prooxidant paraquat as well as isp-1, nuo-6 and sod-2 mutants, which increase mitochondrial ROS, inhibit the activity of LET-60rasgf on vulval development. In contrast, the antioxidant NAC and loss of sod-1, both of which decrease cytoplasmic H202, enhance the activity of LET-60rasgf. CRISPR replacement of C118 with a non-oxidizable serine (C118S) stimulates LET-60rasgf activity, whereas replacement of C118 with aspartate (C118D), which mimics a strongly oxidised cysteine, inhibits LET-60rasgf. These data strongly suggest that C118 is oxidized by cytoplasmic H202 generated from dismutation of mitochondrial and/or cytoplasmic superoxide, and that this oxidation inhibits LET-60ras. This contrasts with results in cultured mammalian cells where it is mostly nitric oxide, which is not found in worms, that oxidizes C118 and activates Ras. Interestingly, PQ, NAC and the C118S mutation do not act on the phosphorylation of MPK-1, suggesting that oxidation of LET-60ras acts on an as yet uncharacterized MPK-1-independent pathway. We also show that elevated cytoplasmic superoxide promotes vulva formation independently of C118 of LET-60ras and downstream of LIN-1. Finally, we uncover a role for the NADPH oxidases (BLI-3 and DUOX-2) and their redox-sensitive activator CED-10rac in stimulating vulva development. Thus, there are at least three genetically separable pathways by which ROS regulates vulval development.
    DOI:  https://doi.org/10.1371/journal.pgen.1008838