bims-novged Biomed News
on Non-viral vectors for gene delivery
Issue of 2022‒11‒06
ten papers selected by
the Merkel lab
Ludwig-Maximilians University


  1. Anal Chem. 2022 Oct 30.
      As a strategy that induces gene silencing by the delivery of small interfering RNA (siRNA) targeting a specific gene locus into cells or tissues, RNA interference (RNAi) technology holds the potential to be a powerful tool in a range of intractable disorder therapeutics. However, reliable noninvasive probes for visualizing the siRNA delivery and silencing efficiency have become a major obstacle in siRNA-based treatment. Here, we describe the development of an RNA-binding protein Pumilio/FBF (PUF)-based reporter probe for the monitoring of siRNA delivery efficiency and functional screening of effective siRNA target sites in vivo. This reporter consisted of a Firefly luciferase (Fluc) gene whose expression is regulated by the unique interaction architecture of the PUF protein with its Nanos response element (NRE) target RNA. We showed that a robust and rapid increase in the luminescence signal was detected by the successful delivery of siRNA against the enhanced green fluorescent protein (EGFP) or p53 genes into mammalian cells or the livers of mice. The delivery efficiencies of various commercial transfection vehicles were quantitatively evaluated with this reporter. In addition, we also employed in vivo bioluminescence imaging to screen and identify the most potent siRNA targeting p53. Our study indicates that the positive-readout reporter represents a promising indicator for siRNA optimization and visualization, advancing the development of siRNA therapeutic products.
    DOI:  https://doi.org/10.1021/acs.analchem.2c04054
  2. Gene Ther. 2022 Nov 01.
      Lipid nanoparticles (LNPs) are currently the most advanced non-viral clinically approved messenger ribonucleic acid (mRNA) delivery systems. The ability of a mRNA vaccine to have a therapeutic effect is related to the capacity of LNPs to deliver the nucleic acid intact into cells. The role of LNPs is to protect mRNA, especially from degradation by ribonucleases (RNases) and to allow it to access the cytoplasm of cells where it can be translated into the protein of interest. LNPs enter cells by endocytosis and their size is a critical parameter impacting their cellular internalization. In this work, we studied different formulation process parameters impacting LNPs size. Taylor dispersion analysis (TDA) was used to determine the LNPs size and size distribution and the results were compared with those obtained by Dynamic Light Scattering (DLS). TDA was also used to study both the degradation of mRNA in the presence of RNases and the percentage of mRNA encapsulation within LNPs.
    DOI:  https://doi.org/10.1038/s41434-022-00370-1
  3. Nat Protoc. 2022 Oct 31.
      A new methodology termed selective organ targeting (SORT) was recently developed that enables controllable delivery of nucleic acids to target tissues. SORT lipid nanoparticles (LNPs) involve the inclusion of SORT molecules that accurately tune delivery to the liver, lungs and spleen of mice after intravenous administration. Nanoparticles can be engineered to target specific cells and organs in the body by passive, active and endogenous targeting mechanisms that require distinct design criteria. SORT LNPs are modular and can be prepared using scalable, synthetic chemistry and established engineering formulation methods. This protocol provides detailed procedures, including the synthesis of a representative ionizable cationic lipid, preparation of multiple classes of SORT LNPs by pipette, vortex and microfluidic mixing methods, physical characterization, and in vitro/in vivo mRNA delivery evaluation. Depending on the scale of the experiments, the synthesis of the ionizable lipid requires 4-6 d; LNPs can be formulated within several hours; LNP characterization can be completed in 2-4 h; and in vitro/in vivo evaluation studies require 1-14 d, depending on the design and application. Our strategy offers a versatile and practical method for rationally designing nanoparticles that accurately target specific organs. The SORT LNPs generated as described in this protocol can therefore be applied to multiple classes of LNP systems for therapeutic nucleic acid delivery and facilitate the development of protein replacement and genetic medicines in target tissues. This protocol does not require specific expertise, is modular to various lipids within defined physicochemical classes, and should be accomplishable by researchers from various backgrounds.
    DOI:  https://doi.org/10.1038/s41596-022-00755-x
  4. Adv Mater. 2022 Nov 03. e2207471
      Among the few available mRNA delivery vehicles, lipid nanoparticle (LNP) is the most clinically advanced one but requires cumbersome four components and suffers from inflammation-related side effects which should be minimized for safety. Yet, a certain level of proinflammatory responses and innate immune activation is required to evoke T-cell immunity for mRNA cancer vaccination. To address these issues and develop potent yet low-inflammatory mRNA cancer vaccine vectors, we synthesized a series of alternating copolymers "PHTA" featured with ortho-hydroxy tertiary amine (HTA) repeating units for mRNA delivery, which can play triple roles of condensing mRNA, enhancing the polymeric nanoparticle (PNP) stability, and prolonging circulation time. Unlike the LNPs exhibiting high levels of inflammation, the PHTA-based PNPs showed negligible inflammatory side effects in vivo. Importantly, the top candidate PHTA-C18 enabled successful mRNA cancer vaccine delivery in vivo and led to a robust CD8+ T cell-mediated antitumor cellular immunity. Such PHTA-based integrated PNP provides a potential approach for establishing mRNA cancer vaccines with good inflammatory safety profiles. This article is protected by copyright. All rights reserved.
    Keywords:  alternating copolymer; cancer immunotherapy; cellular immunity; mRNA cancer vaccine; polymer nanoparticles
    DOI:  https://doi.org/10.1002/adma.202207471
  5. Front Bioeng Biotechnol. 2022 ;10 1013541
      Co-delivery of siRNA or miRNA with chemotherapeutic drugs into tumor sites is an attractive synergetic strategy for treating colorectal cancer (CRC) due to their complementary mechanisms. In the current work, a liposome nanoparticle (Huang et al., Cancer Metastasis Rev., 2018, 37, 173-187) coated by cationic chitosan (CS) using a controlled layer-by-layer (LbL) process was designed to deliver simultaneous si-KRAS, miRNA-532-3p, and 5-Fluorouracil (5-FU) into CRC cells. The LbL NPs exhibited a spherical structure with an average size of 165.9 nm and effectively protected si-KRAS and miRNA-532-3p against degradation by serum and nucleases. Interestingly, the LbL NPs were successfully entered into cells and efficiently promoted cytotoxicity and suppressed cancer cell migration and invasion. In vivo, the LbL NPs reduced tumor growth in SW480-tumor-bearing mice models. In conclusion, these results suggested that the LbL NPs co-loaded with 5-FU and miR-532-3p/si-KRAS might provide a promising potential strategy for inhibiting the malignant phenotypes of CRC cells.
    Keywords:  5-fluorouracil; MiR-532-3p; colorectal cancer; liposome; si-KRAS
    DOI:  https://doi.org/10.3389/fbioe.2022.1013541
  6. Nat Biotechnol. 2022 Nov 03.
      The extraordinary success of mRNA vaccines against coronavirus disease 2019 (COVID-19) has renewed interest in mRNA as a means of delivering therapeutic proteins. Early clinical trials of mRNA therapeutics include studies of paracrine vascular endothelial growth factor (VEGF) mRNA for heart failure and of CRISPR-Cas9 mRNA for a congenital liver-specific storage disease. However, a series of challenges remains to be addressed before mRNA can be established as a general therapeutic modality with broad relevance to both rare and common diseases. An array of new technologies is being developed to surmount these challenges, including approaches to optimize mRNA cargos, lipid carriers with inherent tissue tropism and in vivo percutaneous delivery systems. The judicious integration of these advances may unlock the promise of biologically targeted mRNA therapeutics, beyond vaccines and other immunostimulatory agents, for the treatment of diverse clinical indications.
    DOI:  https://doi.org/10.1038/s41587-022-01491-z
  7. NPJ Vaccines. 2022 Nov 02. 7(1): 136
      mRNA vaccines were the first to be authorized for use against SARS-CoV-2 and have since demonstrated high efficacy against serious illness and death. However, limitations in these vaccines have been recognized due to their requirement for cold storage, short durability of protection, and lack of access in low-resource regions. We have developed an easily-manufactured, potent self-amplifying RNA (saRNA) vaccine against SARS-CoV-2 that is stable at room temperature. This saRNA vaccine is formulated with a nanostructured lipid carrier (NLC), providing stability, ease of manufacturing, and protection against degradation. In preclinical studies, this saRNA/NLC vaccine induced strong humoral immunity, as demonstrated by high pseudovirus neutralization titers to the Alpha, Beta, and Delta variants of concern and induction of bone marrow-resident antibody-secreting cells. Robust Th1-biased T-cell responses were also observed after prime or homologous prime-boost in mice. Notably, the saRNA/NLC platform demonstrated thermostability when stored lyophilized at room temperature for at least 6 months and at refrigerated temperatures for at least 10 months. Taken together, this saRNA delivered by NLC represents a potential improvement in RNA technology that could allow wider access to RNA vaccines for the current COVID-19 and future pandemics.
    DOI:  https://doi.org/10.1038/s41541-022-00549-y
  8. Small. 2022 Nov 04. e2203260
      Developing a universal nanoplatform for efficient delivery of various drugs to target sites is urgent for overcoming various biological barriers and realizing combinational cancer treatment. Nanogels, with the advantages of both hydrogels and nanoparticles, may hold potential for addressing the above issue. Here, a dual-responsive nanogel platform (HPC nanogel) is constructed using β-cyclodextrin-conjugated hyaluronic acid (HA-βCD), polyethyleneimine (PEI), and cisplatin. HA-βCD and PEI compose the skeleton of the nanogel, and cisplatin molecules provide the junctions inside the skeleton, thus affording a multiple interactions-based nanogel. Besides, HA endows the nanogel with hyaluronidase (HAase)-responsiveness, and cisplatin guarantees the glutathione (GSH)-responsive ability, which make the nanogel a dual-responsive platform that can degrade and release the loaded drugs when encountering HAase or GSH. Additionally, the HPC nanogel possesses excellent small-molecule drug and protein loading and intracellular delivery capabilities. Especially, for proteins, their intracellular delivery via nanogels is not hindered by serum proteins, and the enzymes delivered into cells still maintain their catalytic activities. Furthermore, the nanogel can codeliver different cargoes to achieve "cocktail" chemotherapeutic efficacy and realize combination cancer therapy. Overall, the HPC nanogel can serve as a multifunctional platform capable of delivering desired drugs to treat cancer or other diseases.
    Keywords:  glutathione; hyaluronidase; nanogels; protein delivery; stimuli-responsive
    DOI:  https://doi.org/10.1002/smll.202203260
  9. J Chem Inf Model. 2022 Oct 31.
      Accurately predicting new polymers' properties with machine learning models apriori to synthesis has potential to significantly accelerate new polymers' discovery and development. However, accurately and efficiently capturing polymers' complex, periodic structures in machine learning models remains a grand challenge for the polymer cheminformatics community. Specifically, there has yet to be an ideal solution for the problems of how to capture the periodicity of polymers, as well as how to optimally develop polymer descriptors without requiring human-based feature design. In this work, we tackle these problems by utilizing a periodic polymer graph representation that accounts for polymers' periodicity and coupling it with a message-passing neural network that leverages the power of graph deep learning to automatically learn chemically relevant polymer descriptors. Remarkably, this approach achieves state-of-the-art performance on 8 out of 10 distinct polymer property prediction tasks. These results highlight the advancement in predictive capability that is possible through learning descriptors that are specifically optimized for capturing the unique chemical structure of polymers.
    DOI:  https://doi.org/10.1021/acs.jcim.2c00875
  10. Biomacromolecules. 2022 Nov 01.
      Hybrid membranes assembled from biological lipids and synthetic polymers are a promising scaffold for the reconstitution and utilization of membrane proteins. Recent observations indicate that inclusion of small fractions of polymer in lipid membranes can improve protein folding and function, but the exact structural and physical changes a given polymer sequence imparts on a membrane often remain unclear. Here, we use all-atom molecular dynamics simulations to study the structure of hybrid membranes assembled from DOPC phospholipids and PEO-b-PBD diblock copolymers. We verified our computational model using new and existing experimental data and obtained a detailed picture of the polymer conformations in the lipid membrane that we can relate to changes in membrane elastic properties. We find that inclusion of low polymer fractions induces transient packing defects into the membrane. These packing defects act as insertion sites for two model peptides, and in this way, small amounts of polymer content in lipid membranes can lead to large increases in peptide insertion rates. Additionally, we report the peptide conformational space in both pure lipid and hybrid membranes. Both membranes support similar alpha helical peptide structures, exemplifying the biocompatibility of hybrid membranes.
    DOI:  https://doi.org/10.1021/acs.biomac.2c00936