bims-nenemi Biomed News
on Neuroinflammation, neurodegeneration and mitochondria
Issue of 2023‒04‒02
nine papers selected by
Marco Tigano
Thomas Jefferson University


  1. Cell Rep. 2023 Mar 31. pii: S2211-1247(23)00343-1. [Epub ahead of print]42(4): 112332
      The metabolic plasticity of mitochondria ensures cell development, differentiation, and survival. The peptidase OMA1 regulates mitochondrial morphology via OPA1 and stress signaling via DELE1 and orchestrates tumorigenesis and cell survival in a cell- and tissue-specific manner. Here, we use unbiased systems-based approaches to show that OMA1-dependent cell survival depends on metabolic cues. A metabolism-focused CRISPR screen combined with an integrated analysis of human gene expression data found that OMA1 protects against DNA damage. Nucleotide deficiencies induced by chemotherapeutic agents promote p53-dependent apoptosis of cells lacking OMA1. The protective effect of OMA1 does not depend on OMA1 activation or OMA1-mediated OPA1 and DELE1 processing. OMA1-deficient cells show reduced glycolysis and accumulate oxidative phosphorylation (OXPHOS) proteins upon DNA damage. OXPHOS inhibition restores glycolysis and confers resistance against DNA damage. Thus, OMA1 dictates the balance between cell death and survival through the control of glucose metabolism, shedding light on its role in cancerogenesis.
    Keywords:  CP: Metabolism; DNA damage; OMA1; OXPHOS; glucose metabolism; mitochondria; nucleotides; p53
    DOI:  https://doi.org/10.1016/j.celrep.2023.112332
  2. Int J Mol Sci. 2023 Mar 20. pii: 5891. [Epub ahead of print]24(6):
      Mitochondria-nucleus communication during stress dictates cellular fate with consequences on the etiopathology of multiple age-related diseases. Impaired mitochondrial quality control through loss of function of the mitochondrial protease HtrA2 associates with accumulation of damaged mitochondria and triggers the integrated stress response, implicating the transcription factor CHOP. Here we have employed a combined model of impaired mitochondria quality control, namely HtrA2 loss of function, and/or integrated stress response, namely CHOP loss of function, and genotoxicity to address the distinctive roles of these cellular components in modulating intracellular and intercellular responses. The genotoxic agents employed were cancer therapeutic agents such as irradiation with X-ray and protons or treatment with the radiomimetic bleomycin. The irradiation had an enhanced effect in inducing DNA damage in cells with CHOP loss of function, while the bleomycin treatment induced more DNA damage in all the transgenic cells as compared to the control. The genetic modifications impaired the transmission of DNA damage signalling intercellularly. Furthermore, we have dissected the signalling pathways modulated by irradiation in selected genotypes with RNA sequencing analysis. We identified that loss of HtrA2 and CHOP function, respectively, lowers the threshold where irradiation may induce the activation of innate immune responses via cGAS-STING; this may have a significant impact on decisions for combined therapeutic approaches for various diseases.
    Keywords:  DNA damage; integrated stress response; mitochondria function; radioinduced signalling pathways
    DOI:  https://doi.org/10.3390/ijms24065891
  3. Annu Rev Biochem. 2023 Mar 31.
      According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, and senescence and aging. Expected final online publication date for the Annual Review of Biochemistry, Volume 92 is June 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    DOI:  https://doi.org/10.1146/annurev-biochem-032620-104401
  4. bioRxiv. 2023 Mar 23. pii: 2023.03.21.533091. [Epub ahead of print]
      The mitochondrial genome encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutation in the cancer genome, with truncating mutations in respiratory complex I genes being most over-represented 1 . While mitochondrial DNA (mtDNA) mutations have been associated with both improved and worsened prognoses in several tumour lineages 1-,3 , whether these mutations are drivers or exert any functional effect on tumour biology remains controversial. Here we discovered that complex I-encoding mtDNA mutations are sufficient to remodel the tumour immune landscape and therapeutic resistance to immune checkpoint blockade. Using mtDNA base editing technology 4 we engineered recurrent truncating mutations in the mtDNA-encoded complex I gene, Mt-Nd5 , into murine models of melanoma. Mechanistically, these mutations promoted utilisation of pyruvate as a terminal electron acceptor and increased glycolytic flux without major effects on oxygen consumption, driven by an over-reduced NAD pool and NADH shuttling between GAPDH and MDH1, mediating a Warburg-like metabolic shift. In turn, without modifying tumour growth, this altered cancer cell-intrinsic metabolism reshaped the tumour microenvironment in both mice and humans, promoting an anti- tumour immune response characterised by loss of resident neutrophils. This subsequently sensitised tumours bearing high mtDNA mutant heteroplasmy to immune checkpoint blockade, with phenocopy of key metabolic changes being sufficient to mediate this effect. Strikingly, patient lesions bearing >50% mtDNA mutation heteroplasmy also demonstrated a >2.5-fold improved response rate to checkpoint inhibitor blockade. Taken together these data nominate mtDNA mutations as functional regulators of cancer metabolism and tumour biology, with potential for therapeutic exploitation and treatment stratification.
    DOI:  https://doi.org/10.1101/2023.03.21.533091
  5. Curr Issues Mol Biol. 2023 Feb 22. 45(3): 1794-1809
      Mitochondria are involved in many vital functions in living cells, including the synthesis of ATP by oxidative phosphorylation (OXPHOS) and regulation of nuclear gene expression through retrograde signaling. Leigh syndrome is a heterogeneous neurological disorder resulting from an isolated complex I deficiency that causes damage to mitochondrial energy production. The pathogenic mitochondrial DNA (mtDNA) variant m.13513G>A has been associated with Leigh syndrome. The present study investigated the effects of this mtDNA variant on the OXPHOS system and cell retrograde signaling. Transmitochondrial cytoplasmic hybrid (cybrid) cell lines harboring 50% and 70% of the m.13513G>A variant were generated and tested along with wild-type (WT) cells. The functionality of the OXPHOS system was evaluated by spectrophotometric assessment of enzyme activity and high-resolution respirometry. Nuclear gene expression was investigated by RNA sequencing and droplet digital PCR. Increasing levels of heteroplasmy were associated with reduced OXPHOS system complex I, IV, and I + III activities, and high-resolution respirometry also showed a complex I defect. Profound changes in transcription levels of nuclear genes were observed in the cell lines harboring the pathogenic mtDNA variant, indicating the physiological processes associated with defective mitochondria.
    Keywords:  Leigh syndrome; OXPHOS system; RNA sequencing; mitochondrial diseases; retrograde signaling
    DOI:  https://doi.org/10.3390/cimb45030115
  6. Circ Res. 2023 Mar 28.
      BACKGROUND: Mitochondrial DNA (mtDNA)-induced myocardial inflammation is intimately involved in cardiac remodeling. ZBP1 (Z-DNA binding protein 1) is a pattern recognition receptor positively regulating inflammation in response to mtDNA in inflammatory cells, fibroblasts, and endothelial cells. However, the role of ZBP1 in myocardial inflammation and cardiac remodeling remains unclear. The aim of this study was to elucidate the role of ZBP1 in mtDNA-induced inflammation in cardiomyocytes and failing hearts.METHODS: mtDNA was administrated into isolated cardiomyocytes. Myocardial infarctionwas conducted in wild type and ZBP1 knockout mice.
    RESULTS: We here found that, unlike in macrophages, ZBP1 knockdown unexpectedly exacerbated mtDNA-induced inflammation such as increases in IL (interleukin)-1β and IL-6, accompanied by increases in RIPK3 (receptor interacting protein kinase 3), phosphorylated NF-κB (nuclear factor-κB), and NLRP3 (nucleotide-binding domain and leucine-rich-repeat family pyrin domain containing 3) in cardiomyocytes. RIPK3 knockdown canceled further increases in phosphorylated NF-κB, NLRP3, IL-1β, and IL-6 by ZBP1 knockdown in cardiomyocytes in response to mtDNA. Furthermore, NF-κB knockdown suppressed such increases in NLRP3, IL-1β, and IL-6 by ZBP1 knockdown in response to mtDNA. CpG-oligodeoxynucleotide, a Toll-like receptor 9 stimulator, increased RIPK3, IL-1β, and IL-6 and ZBP1 knockdown exacerbated them. Dloop, a component of mtDNA, but not Tert and B2m, components of nuclear DNA, was increased in cytosolic fraction from noninfarcted region of mouse hearts after myocardial infarction compared with control hearts. Consistent with this change, ZBP1, RIPK3, phosphorylated NF-κB, NLRP3, IL-1β, and IL-6 were increased in failing hearts. ZBP1 knockout mice exacerbated left ventricular dilatation and dysfunction after myocardial infarction, accompanied by further increases in RIPK3, phosphorylated NF-κB, NLRP3, IL-1β, and IL-6. In histological analysis, ZBP1 knockout increased interstitial fibrosis and myocardial apoptosis in failing hearts.
    CONCLUSIONS: Our study reveals unexpected protective roles of ZBP1 against cardiac remodeling as an endogenous suppressor of mtDNA-induced myocardial inflammation.
    Keywords:  cytokines; fibrosis; inflammation; macrophages; nucleotide
    DOI:  https://doi.org/10.1161/CIRCRESAHA.122.322227
  7. Int J Environ Res Public Health. 2023 Mar 08. pii: 4766. [Epub ahead of print]20(6):
      Because of their exposure to air, eyes can come into contact with air pollutants such as particulate matter (PM), which may cause severe ocular pathologies. Prolonged ocular PM exposure may increase inflammation and endoplasmic reticulum stress in the retina. Herein, we investigated whether PM exposure induces ocular inflammation and endoplasmic reticulum (ER) stress-related cellular responses in human retinal epithelium-19 (ARPE-19) cells. To understand how PM promotes ocular inflammation, we monitored the activation of the mitogen-activated protein kinase (MAPK)/nuclear factor kappa beta (NFκB) axis and the expression of key inflammatory mRNAs. We also measured the upregulation of signature components for the ER-related unfolded protein response (UPR) pathways, as well as intracellular calcium ([Ca2+]i) levels, as readouts for ER stress induction following PM exposure. Ocular PM exposure significantly elevated the expression of multiple cytokine mRNAs and increased phosphorylation levels of NFκB-MAPK axis in a PM dose-dependent manner. Moreover, incubation with PM significantly increased [Ca2+]i levels and the expression of UPR-related proteins, which indicated ER stress resulting from cell hypoxia, and upregulation of hypoxic adaptation mechanisms such as the ER-associated UPR pathways. Our study demonstrated that ocular PM exposure increased inflammation in ARPE-19 cells, by activating the MAPK/NFκB axis and cytokine mRNA expression, while also inducing ER stress and stress adaptation responses. These findings may provide helpful insight into clinical and non-clinical research examining the role of PM exposure in ocular pathophysiology and delineating its underlying molecular mechanisms.
    Keywords:  endoplasmic reticulum stress; inflammation; ocular exposure; particulate matter; unfolded protein response
    DOI:  https://doi.org/10.3390/ijerph20064766
  8. Nucleic Acids Res. 2023 Mar 31. pii: gkad208. [Epub ahead of print]
      The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies.
    DOI:  https://doi.org/10.1093/nar/gkad208
  9. Nat Commun. 2023 Mar 27. 14(1): 1703
      Ca2+ overload-induced mitochondrial dysfunction is considered as a major contributing factor in the pathogenesis of alcohol-associated liver disease (ALD). However, the initiating factors that drive mitochondrial Ca2+ accumulation in ALD remain elusive. Here, we demonstrate that an aberrant increase in hepatic GRP75-mediated mitochondria-associated ER membrane (MAM) Ca2+-channeling (MCC) complex formation promotes mitochondrial dysfunction in vitro and in male mouse model of ALD. Unbiased transcriptomic analysis reveals PDK4 as a prominently inducible MAM kinase in ALD. Analysis of human ALD cohorts further corroborate these findings. Additional mass spectrometry analysis unveils GRP75 as a downstream phosphorylation target of PDK4. Conversely, non-phosphorylatable GRP75 mutation or genetic ablation of PDK4 prevents alcohol-induced MCC complex formation and subsequent mitochondrial Ca2+ accumulation and dysfunction. Finally, ectopic induction of MAM formation reverses the protective effect of PDK4 deficiency in alcohol-induced liver injury. Together, our study defines a mediatory role of PDK4 in promoting mitochondrial dysfunction in ALD.
    DOI:  https://doi.org/10.1038/s41467-023-37214-4