bims-nenemi Biomed News
on Neuroinflammation, neurodegeneration and mitochondria
Issue of 2022‒10‒16
fourteen papers selected by
Marco Tigano
Thomas Jefferson University

  1. FEBS Open Bio. 2022 Oct 10.
      Transmembrane protein 160 (TMEM160) was recently reported to be localized to the mitochondrial inner membrane, but mitochondrial function was noted to be unaffected by loss of TMEM160. In contrast to these previously published findings, we report here that the absence of TMEM160 influences intracellular responses. After confirming that TMEM160 is localized in the inner mitochondrial membrane, we knocked down TMEM160 in human cultured cells and analyzed the changes in cellular responses. TMEM160 depletion led to an upregulation of the mitochondrial chaperone HSPD1, suggesting that depletion induced the mitochondrial unfolded protein response (UPRmt ). Indeed, the expression of key transcription factors that induce the UPRmt (ATF4, ATF5, and DDIT3) was increased following TMEM160 depletion. Expression of the mitochondrial protein import-receptors TOMM22 and TOMM20 was also enhanced. In addition, we observed a significant increase in reactive oxygen species (ROS) generation following TMEM160 depletion. Glutathione S-transferases, which detoxify the products of oxidative stress, were also upregulated in TMEM160-depleted cells. Immunoblot analysis was performed to detect proteins modified by 4-hydroxynonenal (which is released after the peroxidation of lipids by ROS): the expression patterns of 4-hydroxynonenal-modified proteins were altered after TMEM160 depletion, suggesting that depletion enhanced degadation of these proteins. HSPD1, TOMM22, ATF4, ATF5, and DDIT3 remained upregulated after ROS was scavenged by N-acetylcysteine, suggesting that once the UPRmt is induced by TMEM160 depletion, it is not suppresed by the subsequent detoxification of ROS. These findings suggest that TMEM160 may suppress ROS generation and stabilize mitochondrial protein(s).
    Keywords:  TMEM160; mitochondria; mitochondrial unfolded protein response; oxidative stress; reactive oxygen species
  2. Nucleic Acids Res. 2022 Oct 10. pii: gkac857. [Epub ahead of print]
      Genetic processes require the activity of multiple topoisomerases, essential enzymes that remove topological tension and intermolecular linkages in DNA. We have investigated the subcellular localisation and activity of the six human topoisomerases with a view to understanding the topological maintenance of human mitochondrial DNA. Our results indicate that mitochondria contain two topoisomerases, TOP1MT and TOP3A. Using molecular, genomic and biochemical methods we find that both proteins contribute to mtDNA replication, in addition to the decatenation role of TOP3A, and that TOP1MT is stimulated by mtSSB. Loss of TOP3A or TOP1MT also dysregulates mitochondrial gene expression, and both proteins promote transcription elongation in vitro. We find no evidence for TOP2 localisation to mitochondria, and TOP2B knockout does not affect mtDNA maintenance or expression. Our results suggest a division of labour between TOP3A and TOP1MT in mtDNA topology control that is required for the proper maintenance and expression of human mtDNA.
  3. Cells. 2022 Oct 10. pii: 3174. [Epub ahead of print]11(19):
      The multifunctional protein, voltage-dependent anion channel 1 (VDAC1), is located on the mitochondrial outer membrane. It is a pivotal protein that maintains mitochondrial function to power cellular bioactivities via energy generation. VDAC1 is involved in regulating energy production, mitochondrial oxidase stress, Ca2+ transportation, substance metabolism, apoptosis, mitochondrial autophagy (mitophagy), and many other functions. VDAC1 malfunction is associated with mitochondrial disorders that affect inflammatory responses, resulting in an up-regulation of the body's defensive response to stress stimulation. Overresponses to inflammation may cause chronic diseases. Mitochondrial DNA (mtDNA) acts as a danger signal that can further trigger native immune system activities after its secretion. VDAC1 mediates the release of mtDNA into the cytoplasm to enhance cytokine levels by activating immune responses. VDAC1 regulates mitochondrial Ca2+ transportation, lipid metabolism and mitophagy, which are involved in inflammation-related disease pathogenesis. Many scientists have suggested approaches to deal with inflammation overresponse issues via specific targeting therapies. Due to the broad functionality of VDAC1, it may become a useful target for therapy in inflammation-related diseases. The mechanisms of VDAC1 and its role in inflammation require further exploration. We comprehensively and systematically summarized the role of VDAC1 in the inflammatory response, and hope that our research will lead to novel therapeutic strategies that target VDAC1 in order to treat inflammation-related disorders.
    Keywords:  Ca2+; VDAC1; inflammation; metabolism; mitochondria; mitophagy
  4. Nat Biotechnol. 2022 Oct 13.
      Bacterial toxin DddA-derived cytosine base editors (DdCBEs)-composed of split DddAtox (a cytosine deaminase specific to double-stranded DNA), custom-designed TALE (transcription activator-like effector) DNA-binding proteins, and a uracil glycosylase inhibitor-enable mitochondrial DNA (mtDNA) editing in human cells, which may pave the way for therapeutic correction of pathogenic mtDNA mutations in patients. The utility of DdCBEs has been limited by off-target activity, which is probably caused by spontaneous assembly of the split DddAtox deaminase enzyme, independent of DNA-binding interactions. We engineered high-fidelity DddA-derived cytosine base editors (HiFi-DdCBEs) with minimal off-target activity by substituting alanine for amino acid residues at the interface between the split DddAtox halves. The resulting domains cannot form a functional deaminase without binding of their linked TALE proteins at adjacent sites on DNA. Whole mitochondrial genome sequencing shows that, unlike conventional DdCBEs, which induce hundreds of unwanted off-target C-to-T conversions in human mtDNA, HiFi-DdCBEs are highly efficient and precise, avoiding collateral off-target mutations, and as such, they will probably be desirable for therapeutic applications.
  5. Front Cell Dev Biol. 2022 ;10 1011639
      Myocardial tissue homeostasis is critically important for heart development, growth and function throughout the life course. The loss of cardiomyocytes under pathological conditions ultimately leads to cardiovascular disease due to the limited regenerative capacity of the postnatal mammalian heart. Inhibition of electron transport along the mitochondrial respiratory chain causes cellular stress characterized by ATP depletion as well as excessive generation of reactive oxygen species. Adult cardiomyocytes are highly susceptible to mitochondrial dysfunction whereas embryonic cardiomyocytes in the mouse heart have been shown to be resistant towards mitochondrial complex III inhibition. To functionally characterize the molecular mechanisms mediating this stress tolerance, we used H9c2 cells as an in vitro model for immature cardiomyoblasts and treated them with various inhibitors of mitochondrial respiration. The complex I inhibitor rotenone rapidly induced cell cycle arrest and apoptosis whereas the complex III inhibitor antimycin A (AMA) had no effect on proliferation and only mildly increased cell death. HL-1 cells, a differentiated and contractile cardiomyocyte cell line from mouse atrium, were highly susceptible to AMA treatment evident by cell cycle arrest and death. AMA induced various stress response mechanisms in H9c2 cells, such as the mitochondrial unfolded protein response (UPRmt), integrated stress response (ISR), heat shock response (HSR) and antioxidative defense. Inhibition of the UPR, ISR and HSR by siRNA mediated knock down of key components does not impair growth of H9c2 cells upon AMA treatment. In contrast, knock down of NRF2, an important transcriptional regulator of genes involved in detoxification of reactive oxygen species, reduces growth of H9c2 cells upon AMA treatment. Various approaches to activate cell protective mechanisms and alleviate oxidative stress in HL-1 cells failed to rescue them from AMA induced growth arrest and death. In summary, these data show that the site of electron transport interruption along the mitochondrial respiratory chain determines cell fate in immature cardiomyoblasts. The study furthermore points to fundamental differences in stress tolerance and cell survival between immature and differentiated cardiomyocytes which may underlie the growth plasticity of embryonic cardiomyocytes during heart development but also highlight the obstacles of cardioprotective therapies in the adult heart.
    Keywords:  cardiomyocyte differentiation; cardiomyocyte proliferation; cardiomyocyte survival; cellular stress response; mitochondrial dysfunction; oxidative stress
  6. Adv Sci (Weinh). 2022 Oct 10. e2203831
      RIG-I-MAVS signaling pathway is essential for efficient innate immune response against virus infection. Though many components have been identified in RIG-I pathway and it can be partially reconstituted in vitro, detailed mechanisms involved in cells are still unclear. Here, a genome-wide CRISPR-Cas9 screen is performed using an engineered cell line IFNB-P2A-GSDMD-N, and ATP13A1, a putative dislocase located on the endoplasmic reticulum, is identified as an important regulator of RIG-I pathway. ATP13A1 deficiency abolishes RIG-I-mediated antiviral innate immune response due to compromised MAVS stability and crippled signaling potency of residual MAVS. Moreover, it is discovered that MAVS is subject to protease-mediated degradation in the absence of ATP13A1. As homozygous Atp13a1 knockout mice result in developmental retardation and embryonic lethality, Atp13a1 conditional knockout mice are generated. Myeloid-specific Atp13a1-deficient mice are viable and susceptible to RNA virus infection. Collectively, the findings reveal that ATP13A1 is indispensable for the stability and activation of MAVS and a proper antiviral innate immune response.
    Keywords:  ATP13A1; MAVS; innate immunity; protein degradation; signaling transduction
  7. FASEB Bioadv. 2022 Oct;4(10): 675-689
      Activation of the Simulator of Interferon Genes (STING) system by mitochondrial (mt) DNA can upregulate type 1 interferon genes and enhance immune responses to combat bacterial and viral infections. In cancers, the tumor-derived DNA activates STING leading to upregulation of IFN-beta and induction of antitumor T cells. The entire mtDNA from the cell lines was sequenced using next-generation sequencing (NGS) technology with independent sequencing of both strands in both directions, allowing identification of low-frequency heteroplasmy SNPs. There were 15 heteroplasmy SNPs showing a range from 3.4% to 40.5% occurrence in the K cybrid cell lines. Three H haplogroup cybrids possessed SNP heteroplasmy that ranged from 4.39% to 30.7%. The present study used qRT-PCR to determine if cybrids of H and K haplogroups differentially regulate expression levels of five cancer genes (BRAC1, ALK, PD1, EGFR, and HER2) and seven STING subunits genes (CGAS, TBK1, IRF3, IκBa, NFκB, TRAF2, and TNFRSF19). Some cybrids underwent siRNA knockdown of STING followed by qRT-PCR in order to determine the impact of STING on gene expression. Rho0 (lacking mtDNA) ARPE-19 cells were used to determine if mtDNA is required for the expression of the cancer genes studied. Our results showed that (a) K cybrids have lower expression levels for BRAC1, ALK, PD1, EGFR, IRF3, and TNFRSF19 genes but increased transcription for IκBa and NFκB compared to H cybrids; (b) STING KD decreases expression of EGFR in both H and K cybrids, and (c) PD1 expression is negligible in Rho0 cells. Our findings suggest that the STING DNA sensing pathway may be a previously unrecognized pathway to target modulation of cancer-related genes and the PD1 expression requires the presence of mtDNA.
    Keywords:  cancer genes; mitochondrial DNA haplogroups; simulator of interferon genes (STING)
  8. Life Sci Alliance. 2023 Jan;pii: e202101305. [Epub ahead of print]6(1):
      In vertebrates, mitochondrial outer membrane fusion is mediated by two mitofusin paralogs, Mfn1 and Mfn2, conserved dynamin superfamily proteins. Here, we characterize a variant of mitofusin reported in patients with CMT2A where a serine is replaced with a proline (Mfn2-S350P and the equivalent in Mfn1, S329P). This serine is in a hinge domain (Hinge 2) that connects the globular GTPase domain to the adjacent extended helical bundle. We find that expression of this variant results in prolific and stable mitochondrial tethering that also blocks mitochondrial fusion by endogenous wild-type mitofusin. The formation of mitochondrial perinuclear clusters by this CMT2A variant requires normal GTPase domain function and formation of a mitofusin complex across two membranes. We propose that conformational dynamics mediated by Hinge 2 and regulated by GTP hydrolysis are disrupted by the substitution of proline at S329/S350 and this prevents progression from tethering to membrane fusion. Thus, our data are consistent with a model for mitofusin-mediated membrane fusion where Hinge 2 supports a power stroke to progress from the tethering complex to membrane fusion.
  9. Cells. 2022 Sep 23. pii: 2969. [Epub ahead of print]11(19):
      Circulating cell-free mitochondrial DNA (cf-mtDNA) has been found in the plasma of severely ill COVID-19 patients and is now known as a strong predictor of mortality. However, the underlying mechanism of mtDNA release is unexplored. Here, we show a novel mechanism of SARS-CoV-2-mediated pro-inflammatory/pro-apoptotic mtDNA release and a rational therapeutic stem cell-based approach to mitigate these effects. We systematically screened the effects of 29 SARS-CoV-2 proteins on mitochondrial damage and cell death and found that NSP4 and ORF9b caused extensive mitochondrial structural changes, outer membrane macropore formation, and the release of inner membrane vesicles loaded with mtDNA. The macropore-forming ability of NSP4 was mediated through its interaction with BCL2 antagonist/killer (BAK), whereas ORF9b was found to inhibit the anti-apoptotic member of the BCL2 family protein myeloid cell leukemia-1 (MCL1) and induce inner membrane vesicle formation containing mtDNA. Knockdown of BAK and/or overexpression of MCL1 significantly reversed SARS-CoV-2-mediated mitochondrial damage. Therapeutically, we engineered human mesenchymal stem cells (MSCs) with a simultaneous knockdown of BAK and overexpression of MCL1 (MSCshBAK+MCL1) and named these cells IMAT-MSCs (intercellular mitochondrial transfer-assisted therapeutic MSCs). Upon co-culture with SARS-CoV-2-infected or NSP4/ORF9b-transduced airway epithelial cells, IMAT-MSCs displayed functional intercellular mitochondrial transfer (IMT) via tunneling nanotubes (TNTs). The mitochondrial donation by IMAT-MSCs attenuated the pro-inflammatory and pro-apoptotic mtDNA release from co-cultured epithelial cells. Our findings thus provide a new mechanistic basis for SARS-CoV-2-induced cell death and a novel therapeutic approach to engineering MSCs for the treatment of COVID-19.
    Keywords:  BCL2 antagonist/killer; NSP4; ORF9b; SARS-CoV-2; intercellular mitochondrial transfer; mitochondrial DNA; myeloid cell leukemia-1; tunneling nanotubes
  10. Virology. 2022 Oct 06. pii: S0042-6822(22)00164-7. [Epub ahead of print]576 111-116
      The hepatocytes, as the main cells in the liver, exert liver functions by expressing innate immune receptors. The innate immune receptors include Toll-like receptors (TLRs), RIG-like receptors (retinoic acid inducible gene I-like receptors, RLRs) and NOD-like receptors (nucleotide binding oligomerization domain-like receptors, NLRs). The hepatocytes, recognize extracellular pathogen-associated molecular patterns (PAMPs) and intracellular damage-associated molecular patterns (DAMPs) through the above receptors. After the activation of the innate immune receptors, the hepatocytes produce cytokines, such as interferon (IFN), to protect the liver, through a series of signaling cascades.
    Keywords:  Hepatocytes; Innate immune receptors; NLRs; RIG; TLRs
  11. Cell Death Discov. 2022 Oct 08. 8(1): 414
      In ferroptosis, the roles of mitochondria have been controversial. To explore the role of mitochondrial events in ferroptosis, we employed mitochondrial DNA-depleted ρ0 cells that are resistant to cell death due to enhanced expression of antioxidant enzymes. Expression of mitochondrial-type GPx4 (mGPx4) but no other forms of GPx4 was increased in SK-Hep1 ρ0 cells. Likely due to high mGPx4 expression, SK-Hep1 ρ0 cells were resistant to ferroptosis by erastin inhibiting xCT channel. In contrast, SK-Hep1 ρ0 cells were susceptible to cell death by a high concentration of RSL3 imposing ferroptosis by GPx4 inhibition. Accumulation of cellular ROS and oxidized lipids was observed in erastin- or RSL3-treated SK-Hep1 ρ+ cells but not in erastin-treated SK-Hep1 ρ0 cells. Mitochondrial ROS and mitochondrial peroxidized lipids accumulated in SK-Hep1 ρ+ cells not only by RSL3 but also by erastin acting on xCT on the plasma membrane. Mitochondrial ROS quenching inhibited SK-Hep1 ρ+ cell death by erastin or a high dose of RSL3, suggesting a critical role of mitochondrial ROS in ferroptosis. Ferroptosis by erastin or RSL3 was inhibited by a more than 20-fold lower concentration of MitoQ, a mitochondrial ROS quencher, compared to DecylQ, a non-targeting counterpart. Ferroptosis of SK-Hep1 ρ+ cells by erastin or RSL3 was markedly inhibited by a VDAC inhibitor, accompanied by significantly reduced accumulation of mitochondria ROS, total peroxidized lipids, and mitochondrial peroxidized lipids, strongly supporting the role of mitochondrial events in ferroptotic death and that of VDAC in mitochondrial steps of ferroptosis induced by erastin or RSL3. SK-Hep1 ρ+ cell ferroptosis by sorafenib was also suppressed by mitochondrial ROS quenchers, accompanied by abrogation of sorafenib-induced mitochondrial ROS and mitochondrial peroxidized lipid accumulation. These results suggest that SK-Hep1 ρ0 cells are resistant to ferroptosis due to upregulation of mGPx4 expression and mitochondrial events could be the ultimate step in determining final cell fate.
  12. Oxid Med Cell Longev. 2022 ;2022 5424411
      Objective: Local radiotherapy may cause distant tumor regression via inducing immunogenic cell death (ICD). Here, we investigated the effect of curcumin on ionizing radiation-induced immunogenic cell death in normoxic or hypoxic glioma cells and its mechanism in vitro and vivo.Methods: Hypoxic or normoxic glioma cell apoptosis and the cell surface exposure of calreticulin (CRT) were detected by flow cytometry. Extracellular ATP and HSP70 were measured by chemiluminescence assay and ELISA, respectively. Endoplasmic reticulum (ER) stress protein levels were detected by western blot. Moreover, the induction of bona fide ICD was detected by vaccination assays in mice bearing glioma model. Spleen lymphocytes and tumor-infiltrating lymphocyte subsets were analyzed by flow cytometry and immunohistochemistry.
    Results: Curcumin incubation before X-ray irradiation significantly increased radiation-induced apoptosis rate in normoxic or hypoxic glioma cells. Curcumin enhanced radiation-induced CRT exposure, release of HSP70 and ATP, and ER stress signaling activity. After treatment with ER stress pathway inhibitors, cell apoptosis and CRT exposure induced by the combination treatment of curcumin and X-ray were reduced. In vaccination experiments, glioma cells irradiated by X-ray produced a strong immunogenic response rejecting tumor formation in 70% mice. In comparison, cells treated by curcumin and X-ray produced a stronger immune response rejecting tumor formation in 90% mice. The combination treatment increased the percentage of tumor-infiltrating CD4+, CD8+ T lymphocytes, and CD11c+ dendritic cells compared to X-ray irradiation alone.
    Conclusion: Ionizing radiation-induced normoxic or hypoxic glioma immunogenic cell death could be further enhanced by curcumin through activating the ER stress PERK-eIF2α and IRE1α-XBP1 signaling pathways.
  13. Nat Commun. 2022 Oct 10. 13(1): 5971
      The pathways involved in suppressing DNA replication stress and the associated DNA damage are critical to maintaining genome integrity. The Mre11 complex is unique among double strand break (DSB) repair proteins for its association with the DNA replication fork. Here we show that Mre11 complex inactivation causes DNA replication stress and changes in the abundance of proteins associated with nascent DNA. One of the most highly enriched proteins at the DNA replication fork upon Mre11 complex inactivation was the ubiquitin like protein ISG15. Mre11 complex deficiency and drug induced replication stress both led to the accumulation of cytoplasmic DNA and the subsequent activation of innate immune signaling via cGAS-STING-Tbk1. This led to ISG15 induction and protein ISGylation, including constituents of the replication fork. ISG15 plays a direct role in preventing replication stress. Deletion of ISG15 was associated with replication fork stalling, tonic ATR activation, genomic aberrations, and sensitivity to aphidicolin. These data reveal a previously unrecognized role for ISG15 in mitigating DNA replication stress and promoting genomic stability.
  14. Int J Mol Sci. 2022 Sep 25. pii: 11292. [Epub ahead of print]23(19):
      Type I interferons (IFN), including IFNβ, play a protective role in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Type I IFNs are induced by the stimulation of innate signaling, including via cytoplasmic RIG-I-like receptors. In the present study, we investigated the potential effect of a chimeric protein containing the key domain of RIG-I signaling in the production of CNS endogenous IFNβ and asked whether this would exert a therapeutic effect against EAE. We intrathecally administered an adeno-associated virus vector (AAV) encoding a fusion protein comprising RIG-I 2CARD domains (C) and the first 200 amino acids of mitochondrial antiviral-signaling protein (MAVS) (M) (AAV-CM). In vivo imaging in IFNβ/luciferase reporter mice revealed that a single intrathecal injection of AAV-CM resulted in dose-dependent and sustained IFNβ expression within the CNS. IFNβ expression was significantly increased for 7 days. Immunofluorescent staining in IFNβ-YFP reporter mice revealed extraparenchymal CD45+ cells, choroid plexus, and astrocytes as sources of IFNβ. Moreover, intrathecal administration of AAV-CM at the onset of EAE induced the suppression of EAE, which was IFN-I-dependent. These findings suggest that accessing the signaling pathway downstream of RIG-I represents a promising therapeutic strategy for inflammatory CNS diseases, such as MS.
    Keywords:  2CARD-MAVS200; MAVS; RIG-I; experimental autoimmune encephalomyelitis; type I interferon