bims-nenemi Biomed News
on Neuroinflammation, neurodegeneration and mitochondria
Issue of 2022‒01‒16
nineteen papers selected by
Marco Tigano
Thomas Jefferson University


  1. Cell Rep. 2022 Jan 11. pii: S2211-1247(21)01710-1. [Epub ahead of print]38(2): 110206
      Mitochondria are known as the powerhouse of the cell. Dysfunction of mitochondria homeostasis induces the mitochondrial unfolded protein response (UPRmt), altering cellular metabolism. How cells sense the UPRmt to rewire metabolism is largely unknown. Here, we show that inactivation of either the citric/tricarboxylic acid (TCA) cycle enzymes aco-2 or idha-1, which encode aconitase and isocitrate dehydrogenase respectively, leads to citrate accumulation. In Caenorhabditis elegans, both in vitro and in vivo, citrate accumulation consequently triggers the UPRmt and also promotes lipid accumulation. The transcription factor DVE-1 binds to the promoter of the nuclear hormone receptor nhr-80 to transactivate its expression. NHR-80 then upregulates lipogenesis and lipid accumulation, shifting excess citrate for use in lipogenesis and for storage as triacylglycerol in lipid droplets. Inactivation of DVE-1 or NHR-80 fully abolishes the citrate-induced lipid accumulation. Therefore, our work uncovers a DVE-1-NHR-80-lipogenesis axis linking the transmission of the mitochondrial stress signal to lipid metabolism.
    Keywords:  citrate; citric/tricarboxylic acid (TCA) cycle; lipid accumulation; mitochondrial unfolded protein response (UPR(mt)); nuclear hormone receptor NHR-80
    DOI:  https://doi.org/10.1016/j.celrep.2021.110206
  2. Nucleic Acids Res. 2022 Jan 08. pii: gkab1251. [Epub ahead of print]
      Human mitochondria lack ribonucleotide excision repair pathways, causing misincorporated ribonucleotides (rNMPs) to remain embedded in the mitochondrial genome. Previous studies have demonstrated that human mitochondrial DNA polymerase γ can bypass a single rNMP, but that longer stretches of rNMPs present an obstacle to mitochondrial DNA replication. Whether embedded rNMPs also affect mitochondrial transcription has not been addressed. Here we demonstrate that mitochondrial RNA polymerase elongation activity is affected by a single, embedded rNMP in the template strand. The effect is aggravated at stretches with two or more consecutive rNMPs in a row and cannot be overcome by addition of the mitochondrial transcription elongation factor TEFM. Our findings lead us to suggest that impaired transcription may be of functional relevance in genetic disorders associated with imbalanced nucleotide pools and higher levels of embedded rNMPs.
    DOI:  https://doi.org/10.1093/nar/gkab1251
  3. Int J Mol Sci. 2021 Dec 30. pii: 389. [Epub ahead of print]23(1):
      Mitochondrial respiratory supercomplex formation requires HIG2A protein, which also has been associated with cell proliferation and cell survival under hypoxia. HIG2A protein localizes in mitochondria and nucleus. DNA methylation and mRNA expression of the HIGD2A gene show significant alterations in several cancers, suggesting a role for HIG2A in cancer biology. The present work aims to understand the dynamics of the HIG2A subcellular localization under cellular stress. We found that HIG2A protein levels increase under oxidative stress. H2O2 shifts HIG2A localization to the mitochondria, while rotenone shifts it to the nucleus. HIG2A protein colocalized at a higher level in the nucleus concerning the mitochondrial network under normoxia and hypoxia (2% O2). Hypoxia (2% O2) significantly increases HIG2A nuclear colocalization in C2C12 cells. In HEK293 cells, chemical hypoxia with CoCl2 (>1% O2) and FCCP mitochondrial uncoupling, the HIG2A protein decreased its nuclear localization and shifted to the mitochondria. This suggests that the HIG2A distribution pattern between the mitochondria and the nucleus depends on stress and cell type. HIG2A protein expression levels increase under cellular stresses such as hypoxia and oxidative stress. Its dynamic distribution between mitochondria and the nucleus in response to stress factors suggests a new communication system between the mitochondria and the nucleus.
    Keywords:  HIGD2A; cancer; hypoxia; metabolic reprograming; mitochondria; oxidative stress
    DOI:  https://doi.org/10.3390/ijms23010389
  4. JCI Insight. 2022 Jan 11. pii: e150041. [Epub ahead of print]
      Mitophagy and mitochondrial integrated stress response (ISR) are two primary protective mechanisms to maintain functional mitochondria. Whether these two processes are coordinately regulated remains unclear. Here we show that mitochondrial fission 1 protein (Fis1), which is required for completion of mitophagy, serves as a signaling hub linking mitophagy and ISR. In mouse hepatocytes, high fat diet (HFD) feeding induces unresolved oxidative stress, defective mitophagy and enhanced type I interferon (IFN-I) response implicated in promoting metabolic inflammation. Adenoviral-mediated acute hepatic Fis1 over-expression is sufficient to reduce oxidative damage and improve glucose homeostasis in HFD fed mice. RNA-seq analysis reveals that Fis1 triggers a retrograde mitochondria-to-nucleus communication upregulating ISR genes encoding anti-oxidant defense, redox homeostasis and proteostasis pathways. Fis1-mediated ISR also suppresses expression of IFN-I stimulated genes through Atf5, which inhibits the transactivation activity of Irf3 known to control IFN-I production. Metabolite analysis demonstrates that Fis1 activation leads to accumulation of fumarate, a TCA cycle intermediate capable of increasing Atf5 activity. Consequently, hepatic Atf5 over-expression or monomethyl fumarate (MMF) treatment improves glucose homeostasis in HFD fed mice. Collectively, these results support the potential use of small molecules targeting the Fis1-Atf5 axis, such as MMF, to treat metabolic diseases.
    Keywords:  Glucose metabolism; Metabolism; Mitochondria; Obesity
    DOI:  https://doi.org/10.1172/jci.insight.150041
  5. J Inherit Metab Dis. 2022 Jan 13.
      SUPV3L1 encodes a helicase that is mainly localised in the mitochondria. It has been shown in vitro to possess both double-stranded RNA and DNA unwinding activity that is ATP-dependent. Here we report the first two patients for this gene who presented with a homozygous preliminary stop codon in the C-terminus of SUPV3L1. They presented with a characteristic phenotype of neurodegenerative nature with progressive spastic paraparesis, growth restriction, hypopigmentation, and predisposition to autoimmune disease. Ophthalmological examination showed severe photophobia with corneal erosions, optic atrophy, and pigmentary retinopathy, while neuroimaging showed atrophy of the optic chiasm and the pons with calcification of putamina, with intermittent and mild elevation of lactate. We show that the amino acids that are eliminated by the preliminary stop codon are highly conserved and are predicted to form an amphipathic helix. To investigate if the mutation causes mitochondrial dysfunction, we examined fibroblasts of the proband. We observed very low expression of the truncated protein, a reduction in the mature ND6 mRNA species as well as the accumulation of double stranded RNA. Lentiviral complementation with the full-length SUPV3L1 cDNA partly restored the observed RNA phenotypes, supporting that the SUPV3L1 mutation in these patients is pathogenic and the cause of the disease. This article is protected by copyright. All rights reserved.
    Keywords:  SUPV3L1; degradosome; mitochondrial RNA processing; mitochondrial disease; mtDNA; neurodegenerative syndrome
    DOI:  https://doi.org/10.1002/jimd.12476
  6. Nat Commun. 2022 Jan 14. 13(1): 316
      Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that acts as a regulator of oxygen (O2) homeostasis in metazoan species by binding to hypoxia response elements (HREs) and activating the transcription of hundreds of genes in response to reduced O2 availability. RNA polymerase II (Pol II) initiates transcription of many HIF target genes under non-hypoxic conditions but pauses after approximately 30-60 nucleotides and requires HIF-1 binding for release. Here we report that in hypoxic breast cancer cells, HIF-1 recruits TRIM28 and DNA-dependent protein kinase (DNA-PK) to HREs to release paused Pol II. We show that HIF-1α and TRIM28 assemble the catalytically-active DNA-PK heterotrimer, which phosphorylates TRIM28 at serine-824, enabling recruitment of CDK9, which phosphorylates serine-2 of the Pol II large subunit C-terminal domain as well as the negative elongation factor to release paused Pol II, thereby stimulating productive transcriptional elongation. Our studies reveal a molecular mechanism by which HIF-1 stimulates gene transcription and reveal that the anticancer effects of drugs targeting DNA-PK in breast cancer may be due in part to their inhibition of HIF-dependent transcription.
    DOI:  https://doi.org/10.1038/s41467-021-27944-8
  7. Nat Commun. 2022 Jan 11. 13(1): 209
      Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m3C32 in the human mitochondrial (mt-)tRNAThr and mt-tRNASer(UCN). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U34G35 and t6A37/(ms2)i6A37, present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C32. Several lines of evidence demonstrate the influence of U34, G35, and the m3C32 and t6A37/(ms2)i6A37 modifications in mt-tRNAThr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNAThr/Ser(UCN) lacking METTL8-mediated m3C32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m3C32 within mt-tRNAs.
    DOI:  https://doi.org/10.1038/s41467-021-27905-1
  8. Cell Metab. 2022 Jan 07. pii: S1550-4131(21)00636-7. [Epub ahead of print]
      Mitophagy is a quality control mechanism that eliminates damaged mitochondria, yet its significance in mammalian pathophysiology and aging has remained unclear. Here, we report that mitophagy contributes to mitochondrial dysfunction in skeletal muscle of aged mice and human patients. The early disease stage is characterized by muscle fibers with central nuclei, with enhanced mitophagy around these nuclei. However, progressive mitochondrial dysfunction halts mitophagy and disrupts lysosomal homeostasis. Interestingly, activated or halted mitophagy occur in a mosaic manner even in adjacent muscle fibers, indicating cell-autonomous regulation. Rapamycin restores mitochondrial turnover, indicating mTOR-dependence of mitochondrial recycling in advanced disease stage. Our evidence suggests that (1) mitophagy is a hallmark of age-related mitochondrial pathology in mammalian muscle, (2) mosaic halting of mitophagy is a mechanism explaining mosaic respiratory chain deficiency and accumulation of pathogenic mtDNA variants in adult-onset mitochondrial diseases and normal aging, and (3) augmenting mitophagy is a promising therapeutic approach for muscle mitochondrial dysfunction.
    Keywords:  SBFSEM; centrally nucleated fibers; lysosome; mito-QC; mitochondrial disease; mitochondrial myopathy; mitophagy; patient; ragged-red fibers
    DOI:  https://doi.org/10.1016/j.cmet.2021.12.017
  9. Autophagy. 2022 Jan 09. 1-3
      The removal of mitochondria in a programmed or stress-induced manner is essential for maintaining cellular homeostasis. To date, much research has focused upon stress-induced mitophagy that is largely regulated by the E3 ligase PRKN, with limited insight into the mechanisms regulating basal "housekeeping" mitophagy levels in different model organisms. Using iron chelation as an inducer of PRKN-independent mitophagy, we recently screened an siRNA library of lipid-binding proteins and determined that two kinases, GAK and PRKCD, act as positive regulators of PRKN-independent mitophagy. We demonstrate that PRKCD is localized to mitochondria and regulates recruitment of ULK1-ATG13 upon induction of mitophagy. GAK activity, by contrast, modifies the mitochondrial network and lysosomal morphology that compromise efficient transport of mitochondria for degradation. Impairment of either kinase in vivo blocks basal mitophagy, demonstrating the biological relevance of our findings.Abbreviations: CCCP: carbonyl cyanide-m-chlorophenyl hydrazone; DFP: deferiprone; GAK: cyclin G associated kinase; HIF1A: hypoxia inducible factor 1 subunit alpha; PRKC/PKC: protein kinase C; PRKCD: protein kinase C delta; PRKN: parkin RBR E3 ubiquitin protein ligase.
    Keywords:  Cyclin-G-associated kinase; GAK; PKC; PRKCD; PRKN; mitophagy; protein kinase C
    DOI:  https://doi.org/10.1080/15548627.2021.2015154
  10. Aging Cell. 2022 Jan 13. e13549
      Hexanucleotide repeat expansions in C9orf72 are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The mechanisms by which the expansions cause disease are not properly understood but a favoured route involves its translation into dipeptide repeat (DPR) polypeptides, some of which are neurotoxic. However, the precise targets for mutant C9orf72 and DPR toxicity are not fully clear, and damage to several neuronal functions has been described. Many of these functions are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. ER-mitochondria signalling requires close physical contacts between the two organelles that are mediated by the VAPB-PTPIP51 'tethering' proteins. Here, we show that ER-mitochondria signalling and the VAPB-PTPIP51 tethers are disrupted in neurons derived from induced pluripotent stem (iPS) cells from patients carrying ALS/FTD pathogenic C9orf72 expansions and in affected neurons in mutant C9orf72 transgenic mice. In these mice, disruption of the VAPB-PTPIP51 tethers occurs prior to disease onset suggesting that it contributes to the pathogenic process. We also show that neurotoxic DPRs disrupt the VAPB-PTPIP51 interaction and ER-mitochondria contacts and that this may involve activation of glycogen synthase kinases-3β (GSK3β), a known negative regulator of VAPB-PTPIP51 binding. Finally, we show that these DPRs disrupt delivery of Ca2+ from ER stores to mitochondria, which is a primary function of the VAPB-PTPIP51 tethers. This delivery regulates a number of key neuronal functions that are damaged in ALS/FTD including bioenergetics, autophagy and synaptic function. Our findings reveal a new molecular target for mutant C9orf72-mediated toxicity.
    Keywords:   C9orf72 ; GSK3β; PTPIP51; VAPB; amyotrophic lateral sclerosis; endoplasmic reticulum; frontotemporal dementia; mitochondria
    DOI:  https://doi.org/10.1111/acel.13549
  11. BMC Biol. 2022 Jan 10. 20(1): 13
      BACKGROUND: Mitochondria require thousands of proteins to fulfill their essential function in energy production and other fundamental biological processes. These proteins are mostly encoded by the nuclear genome, translated in the cytoplasm before being imported into the organelle. RNA binding proteins (RBPs) are central players in the regulation of this process by affecting mRNA translation, stability, or localization. CLUH is an RBP recognizing specifically mRNAs coding for mitochondrial proteins, but its precise molecular function and interacting partners remain undiscovered in mammals.RESULTS: Here we reveal for the first time CLUH interactome in mammalian cells. Using both co-IP and BioID proximity-labeling approaches, we identify novel molecular partners interacting stably or transiently with CLUH in HCT116 cells and mouse embryonic stem cells. We reveal stable RNA-independent interactions of CLUH with itself and with SPAG5 in cytosolic granular structures. More importantly, we uncover an unexpected proximity of CLUH to mitochondrial proteins and their cognate mRNAs in the cytosol. We show that this interaction occurs during the process of active translation and is dependent on CLUH TPR domain.
    CONCLUSIONS: Overall, through the analysis of CLUH interactome, our study sheds a new light on CLUH molecular function by revealing new partners and by highlighting its link to the translation and subcellular localization of some mRNAs coding for mitochondrial proteins.
    Keywords:  BioID; CLUH; Localized translation; Nuclear encoded mitochondrial proteins; Proximity labeling; RNA binding proteins; SPAG5; Translation; TurboID
    DOI:  https://doi.org/10.1186/s12915-021-01213-y
  12. EMBO J. 2022 Jan 13. e108587
      The apoptotic executioner protein BAX and the dynamin-like protein DRP1 co-localize at mitochondria during apoptosis to mediate mitochondrial permeabilization and fragmentation. However, the molecular basis and functional consequences of this interplay remain unknown. Here, we show that BAX and DRP1 physically interact, and that this interaction is enhanced during apoptosis. Complex formation between BAX and DRP1 occurs exclusively in the membrane environment and requires the BAX N-terminal region, but also involves several other BAX surfaces. Furthermore, the association between BAX and DRP1 enhances the membrane activity of both proteins. Forced dimerization of BAX and DRP1 triggers their activation and translocation to mitochondria, where they induce mitochondrial remodeling and permeabilization to cause apoptosis even in the absence of apoptotic triggers. Based on this, we propose that DRP1 can promote apoptosis by acting as noncanonical direct activator of BAX through physical contacts with its N-terminal region.
    Keywords:  BCL-2 proteins; fluorescence correlation spectroscopy; membrane protein complex; mitochondrial division; super-resolution microscopy
    DOI:  https://doi.org/10.15252/embj.2021108587
  13. Front Neurol. 2021 ;12 779003
      Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system, where ongoing demyelination and remyelination failure are the major factors for progressive neurological disability. In this report, we employed a comprehensive proteomic approach and immunohistochemical validation to gain insight into the pathobiological mechanisms that may be associated with the progressive phase of MS. Isolated proteins from myelinated regions, demyelinated white-matter lesions (WMLs), and gray-matter lesions (GMLs) from well-characterized progressive MS brain tissues were subjected to label-free quantitative mass spectrometry. Using a system-biology approach, we detected increased expression of proteins belonging to mitochondrial electron transport complexes and oxidative phosphorylation pathway in WMLs. Intriguingly, many of these proteins and pathways had opposite expression patterns and were downregulated in GMLs of progressive MS brains. A comparison to the human MitoCarta database mapped the mitochondrial proteins to mitochondrial subunits in both WMLs and GMLs. Taken together, we provide evidence of opposite expression of mitochondrial proteins in response to demyelination of white- and gray-matter regions in progressive MS brain.
    Keywords:  brain tissue; mass spectrometry; mitochondria; multiple sclerosis; white matter lesion
    DOI:  https://doi.org/10.3389/fneur.2021.779003
  14. EMBO Mol Med. 2022 Jan 11. e14764
      Despite the clinical benefit of androgen-deprivation therapy (ADT), the majority of patients with advanced prostate cancer (PCa) ultimately develop lethal castration-resistant prostate cancer (CRPC). In this study, we identified thioesterase superfamily member 6 (THEM6) as a marker of ADT resistance in PCa. THEM6 deletion reduces in vivo tumour growth and restores castration sensitivity in orthograft models of CRPC. Mechanistically, we show that the ER membrane-associated protein THEM6 regulates intracellular levels of ether lipids and is essential to trigger the induction of the ER stress response (UPR). Consequently, THEM6 loss in CRPC cells significantly alters ER function, reducing de novo sterol biosynthesis and preventing lipid-mediated activation of ATF4. Finally, we demonstrate that high THEM6 expression is associated with poor survival and correlates with high levels of UPR activation in PCa patients. Altogether, our results highlight THEM6 as a novel driver of therapy resistance in PCa as well as a promising target for the treatment of CRPC.
    Keywords:  ATF4; ER stress; lipid metabolism; prostate cancer; therapy resistance
    DOI:  https://doi.org/10.15252/emmm.202114764
  15. J Neurotrauma. 2022 Jan 12.
      Cellular homeostasis requires critical communications between the endoplasmic reticulum (ER) and mitochondria to maintain the viability of cells. This communication is mediated and maintained by the mitochondria-associated membranes (MAMs) and may be disrupted during acute traumatic brain injury (TBI), leading to structural and functional damages of neurons and supporting cells. To test this hypothesis, we subjected male C57BL/6 mice to severe TBI (sTBI) using a controlled cortical impact (CCI) device. We analyzed the physical ER-mitochondrion contacts in the perilesional cortex using transmission electron microscopy, western blot, and immunofluorescence. We specifically measured changes in the production of reactive oxygen species (ROS) in mitochondria, the unfolded protein response (UPR), the neuroinflammatory response, and ER stress-mediated apoptosis in the traumatic injured cerebral tissue. A modified neurological severity score (mNSS) was used to evaluate neurological function in the sTBI mice. We found that sTBI induced significant reorganizations of MEMs in the cerebral cortex within the first 24 hr post-injury. This ER-mitochondrion coupling was enhanced, reaching its peak level at 6 hrs post-sTBI. This enhanced coupling correlated closely with increases in the expression of the Ca2+ regulatory proteins (IP3R1, VDAC1, GRP75, Sigma-1R), production of ROS, degree of ER stress, levels of UPR, and release of proinflammatory cytokines. Furthermore, the neurological function of sTBI mice was significantly improved by silencing the gene for the ER-mitochondrion tethering factor PACS2, restoring the IP3R1-GRP75-VDAC1 axis of Ca2+ regulation, alleviating mitochondria-derived oxidative stress, suppressing inflammatory response through the PERK/eIF2α/ATF4/CHOP pathway, and inhibiting ER stress and associated apoptosis. These results indicate that dysfunctional ER-mitochondrion coupling might be primarily involved in the neuronal apoptosis and neurological deficits, and modulating the ER-mitochondrion crosstalk might be a novel therapeutic strategy for sTBI.
    Keywords:  Apoptosis; MITOCHONDRIA; OXIDATIVE STRESS; TRAUMATIC BRAIN INJURY
    DOI:  https://doi.org/10.1089/neu.2021.0347
  16. Pharmacol Res. 2022 Jan 06. pii: S1043-6618(22)00008-1. [Epub ahead of print] 106063
      The proteases of the mitochondrial inner membrane are challenging yet highly desirable drug targets for complex, multifactorial diseases prevalent mainly in the elderly. Among them, OMA1 with its substrates OPA1 and DELE1 safeguards mitochondrial homeostasis at the intersection of energy metabolism and apoptosis, which may have relevance for neurodegeneration, malignancy and heart failure, among other diseases. Little is known about OMA1. Its structure has not been solved and we are just beginning to understand the enzyme's context-dependent regulation. OMA1 appears dormant under physiological conditions as judged by OPA1's processing pattern. The protease is rapidly activated, however, when cells experience stress or undergo apoptosis. Intriguingly, genetic OMA1 ablation can delay or even prevent apoptosis in animal models for diseases that can be broadly categorized as ischemia-reperfusion related disorders. Three groups have reported their efforts implementing OMA1 drug screens. This article reviews some of the technical challenges encountered in these assays and highlights what can be learned for future screening campaigns, and about the OMA1 protease more broadly. OMA1 does not exists in a vacuum and potent OMA1 inhibitors are needed to tease apart OMA1's intricate interactions with the other mitochondrial proteases and enzymes. Furthermore, OMA1 inhibitors hold the promise of becoming a new class of cytoprotective medicines for disorders influenced by dysfunctional mitochondria, such as heart failure or Alzheimer's Disease.
    Keywords:  AZD1080 (PubChem CID: 135564570); CCCP (PubChem CID: 2603); Ceritinib (PubChem CID: 57379345); MG132 (PubChem CID: 462382); SB216763 (PubChem CID: 176158); Sorafenib (PubChem CID: 216239); Tamoxifen (PubChem CID: 2733526); Valinomycin (PubChem CID: 3000706); cancer; drug discovery; membrane proteases; mitochondria; neurodegeneration; protease inhibitors
    DOI:  https://doi.org/10.1016/j.phrs.2022.106063
  17. Int J Mol Sci. 2021 Dec 27. pii: 261. [Epub ahead of print]23(1):
      The concept of hormesis describes a phenomenon of adaptive response to low-dose ionizing radiation (LDIR). Similarly, the concept of mitohormesis states that the adaptive program in mitochondria is activated in response to minor stress effects. The mechanisms of hormesis effects are not clear, but it is assumed that they can be mediated by reactive oxygen species. Here, we studied effects of LDIR on mitochondria in mesenchymal stem cells. We have found that X-ray radiation at a dose of 10 cGy as well as oxidized fragments of cell-free DNA (cfDNA) at a concentration of 50 ng/mL resulted in an increased expression of a large number of genes regulating the function of the mitochondrial respiratory chain complexes in human mesenchymal stem cells (MSC). Several genes remained upregulated within hours after the exposure. Both X-ray radiation and oxidized cfDNA resulted in upregulation of FIS1 and MFN1 genes, which regulated fusion and fission of mitochondria, within 3-24 h after the exposure. Three hours after the exposure, the number of copies of mitochondrial DNA in cells had increased. These findings support the hypothesis that assumes oxidized cell-free DNA as a mediator of MSC response to low doses of radiation.
    Keywords:  cell-free DNA; human mesenchymal stem cells; low-dose ionizing radiation; mitochondria; mitohormesis
    DOI:  https://doi.org/10.3390/ijms23010261
  18. Cell Signal. 2022 Jan 05. pii: S0898-6568(22)00001-8. [Epub ahead of print] 110241
      The hyperglycemic microenvironment induced by diabetes mellitus aggravates the inflammatory response, in which the IRE1α signal transduction pathway of the unfolded protein response (UPR) participates. However, the mechanism by which hyperglycemia regulates the IRE1α signaling pathway and affects endoplasmic reticulum (ER) homeostasis in human gingival epithelium in periodontitis with diabetes mellitus remains unknown. Our current data provide evidence that diabetes mellitus causes a hyperinflammatory response in the gingival epithelium, which accelerates periodontal inflammation. Next, we assessed UPR-IRE1α signaling in periodontitis with diabetes mellitus by examining human clinical gingival epithelium samples from healthy subjects, subjects with periodontitis and subjects with periodontitis with diabetes mellitus and by in vitro challenge of human epithelial cells with a hyperglycemic microenvironment. The results showed that a hyperglycemic microenvironment inhibited the IRE1α/XBP1 axis, decreased the expression of a UPR target gene (GRP78), and ultimately impaired the UPR, causing ER stress to be prolonged or more severe in human gingival epithelium. Subsequently, RNA sequencing (RNA-seq) data was analyzed to investigate the expression of ER-related genes in human gingival epithelium. Experiments verified that the mechanism by which periodontitis is aggravated in individuals with diabetes mellitus may involve decreased SERPINH1 expression. Furthermore, experiments in SERPINH1-knockdown and SERPINH1-overexpression models established in vitro indicated that SERPINH1 might act as an activator of IRE1α, maintaining human gingival epithelium homeostasis and reducing proinflammatory cytokine expression by preventing prolonged ER stress induced by high-glucose conditions. In conclusion, regulation of the UPR transducer IRE1α by SERPINH1 alleviates periodontitis with diabetes mellitus by mitigating prolonged ER stress. This finding provides evidence for the further study of periodontitis with diabetes mellitus.
    Keywords:  ER stress; Gingival epithelial barrier immunity; Periodontitis with diabetes mellitus; SERPINH1; UPR-IRE1α
    DOI:  https://doi.org/10.1016/j.cellsig.2022.110241