bims-myxlip Biomed News
on Myxoid liposarcoma
Issue of 2021‒07‒25
three papers selected by
Laura Mannarino
Humanitas Research


  1. Oncol Lett. 2021 Aug;22(2): 623
      Sarcoma is a rare cancer with several subtypes; therefore, our understanding of the pathogenesis of sarcoma is limited, and designing effective treatments is difficult. Circulating microRNAs (miRNAs), including exosomal miRNAs, have attracted attention as biomarkers in cancer. However, the roles of miRNAs and exosomes in sarcoma remain unclear. The present analysis of tissue and serum miRNA expression in osteosarcoma, Ewing's sarcoma and dedifferentiated liposarcoma (DDLPS) identified miR-1246, -4532, -4454, -619-5p and -6126 as biomarkers for DDLPS. These miRNAs were highly expressed in human DDLPS cell lines and exosomes, suggesting that they are secreted from DDLPS tissues. The present results suggested that specific miRNAs may be used as biomarkers for early diagnosis or treatment targets in DDLPS.
    Keywords:  cancer; exosome; liquid biopsy; microRNA; sarcoma
    DOI:  https://doi.org/10.3892/ol.2021.12884
  2. Ann Transl Med. 2021 Jun;9(12): 1039
      Immunotherapies have an established role in the management of several advanced malignancies. Their responses are largely dependent on the presence of PD-L1, microsatellite instability (MSI), and high tumor mutation burden. Sarcomas are heterogenous tumors which comprise over 100 subtypes. They are broadly considered immunologically inert or "cold". Immunotherapy as monotherapy has shown interesting responses in a certain handful of subtypes, such as undifferentiated pleomorphic sarcoma, dedifferentiated and pleomorphic liposarcoma, and alveolar soft part sarcoma. However, the mechanisms of action of immunotherapy agents in several sarcoma subtypes remains unknown. Several sarcoma types such as leiomyosarcoma have been shown to have an immunosuppressive microenvironment. Early clinical studies suggest the emergence of B cell infiltration in sarcoma tumor tissues as well as the role of PD-1 and PD-L1 as biomarkers of response. Immunotherapy combinations with conventional chemotherapies, radiation therapies, tyrosine kinase inhibitors and oncolytic viruses are showing promise in turning these "cold" tumors "hot". Several novel agents as well as repurposing therapies with the potential to enhance immunotherapy responses are undergoing pre-clinical and clinical studies in other tumor types. Herein we review current clinical studies which have explored the use of immunotherapeutic agents in the management of sarcomas and discuss the challenges and future directions.
    Keywords:  Immunotherapy; T cells; bone; sarcoma; soft tissue
    DOI:  https://doi.org/10.21037/atm-20-6041
  3. Br J Cancer. 2021 Jul 22.
      DNA-damaging agents exploit increased genomic instability, a hallmark of cancer. Recently, inhibitors targeting the DNA damage response (DDR) pathways, such as PARP inhibitors, have also shown promising therapeutic potential. However, not all tumors respond well to these treatments, suggesting additional determinants of response are required. Schlafen 11 (SLFN11), a putative DNA/RNA helicase that induces irreversible replication block, is emerging as an important regulator of cellular response to DNA damage. Preclinical and emerging clinical trial data suggest that SLFN11 is a predictive biomarker of response to a wide range of therapeutics that cause DNA damage including platinum salts and topoisomerase I/II inhibitors, as well as PARP inhibitors, which has raised exciting possibilities for its clinical application. In this article, we review the function, prevalence, and clinical testing of SLFN11 in tumor biopsy samples and circulating tumor cells. We discuss mounting evidence of SLFN11 as a key predictive biomarker for a wide range of cancer therapeutics and as a prognostic marker across several cancer types. Furthermore, we discuss emerging areas of investigation such as epigenetic reactivation of SLFN11 and its role in activating immune response. We then provide perspectives on open questions and future directions in studying this important biomarker.
    DOI:  https://doi.org/10.1038/s41416-021-01476-w