bims-moremu Biomed News
on Molecular regulators of muscle mass
Issue of 2022‒02‒20
forty-six papers selected by
Anna Vainshtein
Craft Science Inc.

  1. Cells. 2022 Jan 24. pii: 393. [Epub ahead of print]11(3):
      Mechanical stimuli, such as stretch and resistance training, are essential in regulating the growth and functioning of skeletal muscles. However, the molecular mechanisms involved in sensing mechanical stress during muscle formation remain unclear. Here, we investigated the role of the mechanosensitive ion channel Piezo1 during myogenic progression of both fast and slow muscle satellite cells. We found that Piezo1 level increases during myogenic differentiation and direct manipulation of Piezo1 in muscle stem cells alters the myogenic progression. Indeed, Piezo1 knockdown suppresses myoblast fusion, leading to smaller myotubes. Such an event is accompanied by significant downregulation of the fusogenic protein Myomaker. In parallel, while Piezo1 knockdown also lowers Ca2+ influx in response to stretch, Piezo1 activation increases Ca2+ influx in response to stretch and enhances myoblasts fusion. These findings may help understand molecular defects present in some muscle diseases. Our study shows that Piezo1 is essential for terminal muscle differentiation acting on myoblast fusion, suggesting that Piezo1 deregulation may have implications in muscle aging and degenerative diseases, including muscular dystrophies and neuromuscular disorders.
    Keywords:  Ca2+ channel; Fam38A; Piezo1; growth; mechanosensation; myoblast fusion; myogenesis; satellite cells; skeletal muscle
  2. Skelet Muscle. 2022 Feb 12. 12(1): 5
      BACKGROUND: Lifelong regeneration of the skeletal muscle is dependent on a rare population of resident skeletal muscle stem cells, also named 'satellite cells' for their anatomical position on the outside of the myofibre and underneath the basal lamina. Muscle stem cells maintain prolonged quiescence, but activate the myogenic programme and the cell cycle in response to injury to expand a population of myogenic progenitors required to regenerate muscle. The skeletal muscle does not regenerate in the absence of muscle stem cells.MAIN BODY: The notion that lifelong regeneration of the muscle is dependent on a rare, non-redundant population of stem cells seems contradictory to accumulating evidence that muscle stem cells have activated multiple stress response pathways. For example, muscle stem cell quiescence is mediated in part by the eIF2α arm of the integrated stress response and by negative regulators of mTORC1, two translational control pathways that downregulate protein synthesis in response to stress. Muscle stem cells also activate pathways to protect against DNA damage, heat shock, and environmental stress. Here, we review accumulating evidence that muscle stem cells encounter stress during their prolonged quiescence and their activation. While stress response pathways are classically described to be bimodal whereby a threshold dictates cell survival versus cell death responses to stress, we review evidence that muscle stem cells additionally respond to stress by spontaneous activation and fusion to myofibres.
    CONCLUSION: We propose a cellular stress test model whereby the prolonged state of quiescence and the microenvironment serve as selective pressures to maintain muscle stem cell fitness, to safeguard the lifelong regeneration of the muscle. Fit muscle stem cells that maintain robust stress responses are permitted to maintain the muscle stem cell pool. Unfit muscle stem cells are depleted from the pool first by spontaneous activation, or in the case of severe stress, by activating cell death or senescence pathways.
    Keywords:  MuSC; Muscle stem cell; Stress response pathways; Translational control of gene expression
  3. Int J Mol Sci. 2022 Jan 28. pii: 1517. [Epub ahead of print]23(3):
      In response to exercise, the oxidative capacity of mitochondria within skeletal muscle increases through the coordinated expression of mitochondrial proteins in a process termed mitochondrial biogenesis. Controlling the expression of mitochondrial proteins are transcription factors-a group of proteins that regulate messenger RNA transcription from DNA in the nucleus and mitochondria. To fulfil other functions or to limit gene expression, transcription factors are often localised away from DNA to different subcellular compartments and undergo rapid movement or accumulation only when required. Although many transcription factors involved in exercise-induced mitochondrial biogenesis have been identified, numerous conflicting findings and gaps exist within our knowledge of their subcellular movement. This review aims to summarise and provide a critical analysis of the published literature regarding the exercise-induced movement of transcription factors involved in mitochondria biogenesis in skeletal muscle.
    Keywords:  exercise; mitochondrial biogenesis; skeletal muscle; subcellular; transcription factors
  4. J Cachexia Sarcopenia Muscle. 2022 Feb 15.
      BACKGROUND: Histone deacetylase 4 (HDAC4) is a stress-responsive factor that mediates multiple cellular responses. As a member of class IIa HDACs, HDAC4 shuttles between the nucleus and the cytoplasm; however, HDAC4 cytoplasmic functions have never been fully investigated. Duchenne muscular dystrophy (DMD) is a genetic, progressive, incurable disorder, characterized by muscle wasting, which can be treated with the unspecific inhibition of HDACs, despite this approach being only partially effective. More efficient strategies may be proposed for DMD only after the different HDAC members will be characterized.METHODS: To fully understand HDAC4 functions, we generated dystrophic mice carrying a skeletal muscle-specific deletion of HDAC4 (mdx;KO mice). The progression of muscular dystrophy was characterized in mdx and age-matched mdx;KO mice by means of histological, molecular, and functional analyses. Satellite cells (SCs) from these mice were differentiated in vitro, to identify HDAC4 intrinsic functions influencing the myogenic potential of dystrophic SCs. Gain-of-function experiments revealed the cytoplasmic functions of HDAC4 in mdx;KO muscles.
    RESULTS: Histone deacetylase 4 increased in the skeletal muscles of mdx mice (~3-fold; P < 0.05) and of DMD patients (n = 3, males, mean age 13.3 ± 1.5 years), suggesting that HDAC4 has a role in DMD. Its deletion in skeletal muscles importantly worsens the pathological features of DMD, leading to greater muscle fragility and degeneration over time. Additionally, it impairs SC survival, myogenic potential, and muscle regeneration, ultimately compromising muscle function (P < 0.05-0.001). The impaired membrane repair mechanism in muscles and SCs accounts for the mdx;KO phenotype. Indeed, the ectopic expression of Trim72, a major player in the membrane repair mechanism, prevents SC death (~20%; P < 0.01) and increases myogenic fusion (~40%; P < 0.01) in vitro; in vivo it significantly reduces myofibre damage (~10%; P < 0.005) and improves mdx;KO muscle function (P < 0.05). The mdx;KO phenotype is also fully rescued by restoring cytoplasmic levels of HDAC4, both in vitro and in vivo. The protective role of HDAC4 in the cytoplasm of mdx;KO muscles is, in part, independent of its deacetylase activity. HDAC4 expression correlates with Trim72 mRNA levels; furthermore, Trim72 mRNA decays more rapidly (P < 0.01) in mdx;KO muscle cells, compared with mdx ones.
    CONCLUSIONS: Histone deacetylase 4 performs crucial functions in the cytoplasm of dystrophic muscles, by mediating the muscle repair response to damage, an important role in ensuring muscle homeostasis, probably by stabilizing Trim72 mRNA. Consequently, the cytoplasmic functions of HDAC4 should be stimulated rather than inhibited in muscular dystrophy treatments, a fact to be considered in future therapeutic approaches.
    Keywords:  Duchenne muscular dystrophy; HDAC4; HDACi; Membrane repair mechanism; Muscle necroptosis; Satellite cells
  5. Pol J Vet Sci. 2021 Dec;24(4): 563-572
      Diabetes is characterized by high blood glucose level termed hyperglycemia affecting skeletal muscle structure and function by an unclear molecular mechanism. This study aimed to investigate the effect and underlying mechanism(s) of hyperglycemia on skeletal muscle both in vitro and in vivo. Treatment with hyperglycemic condition (25 mM) for 48 h significantly inhibited C2C12 myoblast proliferation detected by MTT assay whilst flow cytometry revealed an interruption of the cell cycle at subG1 and G2/M phases. An exposure to hyperglycemic condition significantly decreased the myosin heavy chain (MHC) protein expression in the differentiated myotube and tibialis anterior (TA) muscle of Wistar rats. In addition, the muscle cross-section area (MCA) of TA muscle in diabetic rats were significantly decreased compared to the non-diabetic control. Western blotting analysis of C2C12 myoblasts and differentiated myotubes revealed the increased expressions of cleaved-caspase-9 and cleaved-caspase-3, but not cleaved-caspase-8. Of note, these caspases in the TA muscles were not changed under hyperglycemic condition. Quantitative real-time polymerase chain reaction (qRT-PCR) of the hyperglycemic myoblasts and TA muscles revealed modulation of the gene expression of sirtuins (SIRTs). In C2C12 myoblasts, the expressions of SIRT1, SIRT2 and SIRT4 were upregulated whilst SIRT7 was downregulated. Meanwhile, the expressions of SIRT1, SIRT2 in TA muscles were upregulated whilst SIRT4 was downregulated. Taken together, this study showed that hyperglycemia induced cell cycle arrest and apoptosis in myoblasts, and protein degradation and atrophy in skeletal muscle most likely via modulation of SIRTs gene expression.
    Keywords:  diabetic mellitus; hyperglycemia; muscle atrophy; sirtuins; skeletal muscle
  6. Int J Mol Sci. 2022 Jan 31. pii: 1658. [Epub ahead of print]23(3):
      Magnesium (Mg) is essential for skeletal muscle health, but little is known about the modulation of Mg and its transporters in myogenic differentiation. Here, we show in C2C12 murine myoblasts that Mg concentration fluctuates during their differentiation to myotubes, declining early in the process and reverting to basal levels once the cells are differentiated. The level of the Mg transporter MagT1 decreases at early time points and is restored at the end of the process, suggesting a possible role in the regulation of intracellular Mg concentration. In contrast, TRPM7 is rapidly downregulated and remains undetectable in myotubes. The reduced amounts of TRPM7 and MagT1 are due to autophagy, one of the proteolytic systems activated during myogenesis and essential for the membrane fusion process. Moreover, we investigated the levels of SLC41A1, which increase once cells are differentiated, mainly through transcriptional regulation. In conclusion, myogenesis is associated with alterations of Mg homeostasis finely tuned through the modulation of MagT1, TRPM7 and SLC41A1.
    Keywords:  C2C12 cells; MagT1; SLC41A1; TRPM7; autophagy; magnesium; myogenesis
  7. Biochem Pharmacol. 2022 Feb 12. pii: S0006-2952(22)00048-X. [Epub ahead of print]198 114954
      Pathophysiological changes of skeletal muscle occur in a variety of chronic diseases, leading to muscle atrophy and dysfunction, which greatly affect the quality of life. Despite decades of research, the pathogenesis of muscle atrophy remains poorly understood. Extracellular vesicles (EVs) have recently been demonstrated to be associated with the pathophysiological process of skeletal muscle. EVs are membrane-encapsulated nanovesicles secreted by multiple organisms. They can deliver bioactive molecules (proteins, lipids, DNA and RNA, etc.) to the target cells, affecting the biological function of the target cells. The delivery of bioactive molecules by EVs has become an important mode of intercellular communication. In this review, we discuss the biogenesis, classification, extraction and identification of EVs, clarify the role of bioactive molecules in EVs in skeletal muscle growth, regeneration and atrophy and explore the potential of EVs as a novel biomarker and therapeutic carrier for skeletal muscle diseases. The current review aims to highlight the emerging evidence linking EVs to the pathophysiological mechanism of skeletal muscle atrophy and to discuss the perspectives of EVs as a treatment for skeletal muscle atrophy.
    Keywords:  Extracellular vesicles; Skeletal muscle atrophy
  8. NPJ Regen Med. 2022 Feb 17. 7(1): 16
      Skeletal muscle requires a highly orchestrated coordination between multiple cell types and their microenvironment to exert its function and to maintain its homeostasis and regenerative capacity. Over the past decades, significant advances, including lineage tracing and single-cell RNA sequencing, have contributed to identifying multiple muscle resident cell populations participating in muscle maintenance and repair. Among these populations, muscle stem cells (MuSC), also known as satellite cells, in response to stress or injury, are able to proliferate, fuse, and form new myofibers to repair the damaged tissue. These cells reside adjacent to the myofiber and are surrounded by a specific and complex microenvironment, the stem cell niche. Major components of the niche are extracellular matrix (ECM) proteins, able to instruct MuSC behavior. However, during aging and muscle-associated diseases, muscle progressively loses its regenerative ability, in part due to a dysregulation of ECM components. This review provides an overview of the composition and importance of the MuSC microenvironment. We discuss relevant ECM proteins and how their mutations or dysregulation impact young and aged muscle tissue or contribute to diseases. Recent discoveries have improved our knowledge about the ECM composition of skeletal muscle, which has helped to mimic the architecture of the stem cell niche and improved the regenerative capacity of MuSC. Further understanding about extrinsic signals from the microenvironment controlling MuSC function and innovative technologies are still required to develop new therapies to improve muscle repair.
  9. Biochem Biophys Res Commun. 2022 Feb 08. pii: S0006-291X(22)00204-2. [Epub ahead of print]599 17-23
      Actin cytoskeletal dynamics play a critical role in the regulation of myogenesis through mechanotransduction, Hippo signaling modulation, cell proliferation, and morphological changes. Although Twinfilin-1 (TWF1), a highly conserved actin-depolymerizing factor, is known to regulate actin filament assembly by sequestering actin monomer and capping barbed ends, the biological significance of TWF1 during the differentiation of myogenic progenitor cells has not been investigated. In this study, we unveiled the roles played by TWF1 in the proliferation and differentiation of C2C12 myoblasts. TWF1 was the predominant isoform in myoblasts, and its expression was induced during the early stage of differentiation. Knockdown of TWF1 by siRNA (siTWF1) induced the accumulation of actin filaments (F-actin) and promoted the nuclear translocation of Yes-associated protein (YAP) in the Hippo signaling pathway. TWF1 depletion activated transcription of YAP target genes and induced cell cycle and proliferation in myoblasts. Furthermore, TWF1 knockdown markedly reduced the expressions of myogenic regulatory factors, such as MyoD and MyoG, and drastically hindered myoblast differentiation, fusion, and myotube formation. Collectively, this study highlights the essential role of TWF1 in the myogenic differentiation of progenitor cells via modulation of F-actin and YAP, and suggests TWF1 as a potential therapeutic target for muscle wasting and myopathies.
    Keywords:  Actin filament; Differentiation; Myogenesis; Proliferation; Twinfilin-1
  10. Semin Cell Dev Biol. 2022 Feb 12. pii: S1084-9521(22)00050-7. [Epub ahead of print]
      The continuous dynamic reshaping of mitochondria by fusion and fission events is critical to keep mitochondrial quality and function under control in response to changes in energy and stress. Maintaining a functional, highly interconnected mitochondrial reticulum ensures rapid energy production and distribution. Moreover, mitochondrial networks act as dynamic signaling hub to adapt to the metabolic demands imposed by contraction, energy expenditure, and general metabolism. However, excessive mitochondrial fusion or fission results in the disruption of the skeletal muscle mitochondrial network integrity and activates a retrograde response from mitochondria to the nucleus, leading to muscle atrophy, weakness and influencing whole-body homeostasis. These actions are mediated via the secretion of mitochondrial-stress myokines such as FGF21 and GDF15. Here we will summarize recent discoveries in the role of mitochondrial fusion and fission in the control of muscle mass and in regulating physiological homeostasis and disease progression.
    Keywords:  Atrophy; DRP1; FGF21; Fission; Fusion; GDF15; Mitochondria; Myokines; OPA1; Skeletal muscle
  11. J Cachexia Sarcopenia Muscle. 2022 Feb 15.
      BACKGROUND: Patients with breast cancer exhibit muscle weakness, which is associated with increased mortality risk and reduced quality of life. Muscle weakness is experienced even in the absence of loss of muscle mass in breast cancer patients, indicating intrinsic muscle dysfunction. Physical activity is correlated with reduced cancer mortality and disease recurrence. However, the molecular processes underlying breast cancer-induced muscle weakness and the beneficial effect of exercise are largely unknown.METHODS: Eight-week-old breast cancer (MMTV-PyMT, PyMT) and control (WT) mice had access to active or inactive in-cage voluntary running wheels for 4 weeks. Mice were also subjected to a treadmill test. Muscle force was measured ex vivo. Tumour markers were determined with immunohistochemistry. Mitochondrial biogenesis and function were assessed with transcriptional analyses of PGC-1α, the electron transport chain (ETC) and antioxidants superoxide dismutase (Sod) and catalase (Cat), combined with activity measurements of SOD, citrate synthase (CS) and β-hydroxyacyl-CoA-dehydrogenase (βHAD). Serum and intramuscular stress levels were evaluated by enzymatic assays, immunoblotting, and transcriptional analyses of, for example, tumour necrosis factor-α (TNF-α) and p38 mitogen-activated protein kinase (MAPK) signalling.
    RESULTS: PyMT mice endured shorter time and distance during the treadmill test (~30%, P < 0.05) and ex vivo force measurements revealed ~25% weaker slow-twitch soleus muscle (P < 0.001). This was independent of cancer-induced alteration of muscle size or fibre type. Inflammatory stressors in serum and muscle, including TNF-α and p38 MAPK, were higher in PyMT than in WT mice (P < 0.05). Cancer-induced decreases in ETC (P < 0.05, P < 0.01) and antioxidant gene expression were observed (P < 0.05). The exercise intervention counteracted the cancer-induced muscle weakness and was accompanied by a less aggressive, differentiated tumour phenotype, determined by increased CK8 and reduced CK14 expression (P < 0.05). In PyMT mice, the exercise intervention led to higher CS activity (P = 0.23), enhanced β-HAD and SOD activities (P < 0.05), and reduced levels of intramuscular stressors together with a normalization of the expression signature of TNFα-targets and ETC genes (P < 0.05, P < 0.01). At the same time, the exercise-induced PGC-1α expression, and CS and β-HAD activity was blunted in muscle from the PyMT mice as compared with WT mice, indicative that breast cancer interfere with transcriptional programming of mitochondria and that the molecular adaptation to exercise differs between healthy mice and those afflicted by disease.
    CONCLUSIONS: Four-week voluntary wheel running counteracted muscle weakness in PyMT mice which was accompanied by reduced intrinsic stress and improved mitochondrial and antioxidant profiles and activities that aligned with muscles of healthy mice.
    Keywords:  Breast cancer; Mitochondria; Muscle weakness; Stress
  12. Am J Physiol Cell Physiol. 2022 Feb 16.
      Conditions characterized by muscle wasting such as cachexia and sarcopenia are devastating at the individual level, and they place a profound burden on public health. Evidence suggests that inflammation is likely a mechanistic contributor to the pathogenesis of these conditions. One specific molecule, lipopolysaccharide, has gained attention due to its role in initiating inflammation. Toll-like receptor-4 is the primary receptor for lipopolysaccharide and has been shown to be implicit in the downstream proinflammatory response associated with lipopolysaccharide. Importantly, Toll-like receptor-4 is expressed on various cell types throughout the human body such as leukocytes and skeletal muscle fibers and may have site-specific effects that contribute to muscle wasting conditions based on the location in which activation occurs. Accordingly, reducing proinflammatory signaling at these locations may be an effective strategy at mitigating muscle wasting. Regular exercise training is believed to elicit anti-inflammatory adaptations, but the mechanisms by which this occurs are yet to be fully understood. Understanding the mechanisms by which Toll-like receptor-4 activation contributes to muscle wasting and how exercise affects this, may allow for the development of a non-pharmacological therapeutic intervention. Therefore, in this review, we summarize the current understanding of the lipopolysaccharide/Toll-like receptor-4 axis in leukocytes and skeletal muscle fibers on the pathogenesis of muscle wasting conditions and we critically examine the current evidence regarding the effects of exercise on this axis.
    Keywords:  Cachexia; LPS; Muscle wasting; Sarcopenia; TLR4
  13. Cells. 2022 Jan 20. pii: 338. [Epub ahead of print]11(3):
      Skeletal muscle mass plays a critical role in a healthy lifespan by helping to regulate glucose homeostasis. As seen in sarcopenia, decreased skeletal muscle mass impairs glucose homeostasis, but it may also be caused by glucose dysregulation. Gut microbiota modulates lipopolysaccharide (LPS) production, short-chain fatty acids (SCFA), and various metabolites that affect the host metabolism, including skeletal muscle tissues, and may have a role in the sarcopenia etiology. Here, we aimed to review the relationship between skeletal muscle mass, glucose homeostasis, and gut microbiota, and the effect of consuming probiotics and prebiotics on the development and pathological consequences of sarcopenia in the aging human population. This review includes discussions about the effects of glucose metabolism and gut microbiota on skeletal muscle mass and sarcopenia and the interaction of dietary intake, physical activity, and gut microbiome to influence sarcopenia through modulating the gut-muscle axis. Emerging evidence suggests that the microbiome can regulate both skeletal muscle mass and function, in part through modulating the metabolisms of short-chain fatty acids and branch-chain amino acids that might act directly on muscle in humans or indirectly through the brain and liver. Dietary factors such as fats, proteins, and indigestible carbohydrates and lifestyle interventions such as exercise, smoking, and alcohol intake can both help and hinder the putative gut-muscle axis. The evidence presented in this review suggests that loss of muscle mass and function are not an inevitable consequence of the aging process, and that dietary and lifestyle interventions may prevent or delay sarcopenia.
    Keywords:  glucose metabolism; gut microbiome; gut microbiota-muscle axis; inflammation; short-chain fatty acids; skeletal muscle mass
  14. Skelet Muscle. 2022 Feb 12. 12(1): 6
      BACKGROUND: Obstructive sleep apnea (OSA) imposes vascular and metabolic risks through chronic intermittent hypoxia (CIH) and impairs skeletal muscle performance. As studies addressing limb muscles are rare, the reasons for the lower exercise capacity are unknown. We hypothesize that CIH-related morphological alterations in neuromuscular junctions (NMJ) and mitochondrial integrity might be the cause of functional disorders in skeletal muscles.METHODS: Mice were kept under 6 weeks of CIH (alternating 7% and 21% O2 fractions every 30 s, 8 h/day, 5 days/week) compared to normoxia (NOX). Analyses included neuromuscular junctions (NMJ) postsynaptic morphology and integrity, fiber cross-sectional area (CSA) and composition (ATPase), mitochondrial ultrastructure (transmission-electron-microscopy), and relevant transcripts (RT-qPCR). Besides wildtype (WT), we included inducible nitric oxide synthase knockout mice (iNOS-/-) to evaluate whether iNOS is protective or risk-mediating.
    RESULTS: In WT soleus muscle, CIH vs. NOX reduced NMJ size (- 37.0%, p < 0.001) and length (- 25.0%, p < 0.05) together with fiber CSA of type IIa fibers (- 14%, p < 0.05) and increased centronucleated fiber fraction (p < 0.001). Moreover, CIH vs. NOX increased the fraction of damaged mitochondria (1.8-fold, p < 0.001). Compared to WT, iNOS-/- similarly decreased NMJ area and length with NOX (- 55%, p < 0.001 and - 33%, p < 0.05, respectively) or with CIH (- 37%, p < 0.05 and - 29%, p < 0.05), however, prompted no fiber atrophy. Moreover, increased fractions of damaged (2.1-fold, p < 0.001) or swollen (> 6-fold, p < 0.001) mitochondria were observed with iNOS-/- vs. WT under NOX and similarly under CIH. Both, CIH- and iNOS-/- massively upregulated suppressor-of-cytokine-signaling-3 (SOCS3) > 10-fold without changes in IL6 mRNA expression. Furthermore, inflammatory markers like CD68 (macrophages) and IL1β were significantly lower in CIH vs. NOX. None of these morphological alterations with CIH- or iNOS-/- were detected in the gastrocnemius muscle. Notably, iNOS expression was undetectable in WT muscle, unlike the liver, where it was massively decreased with CIH.
    CONCLUSION: CIH leads to NMJ and mitochondrial damage associated with fiber atrophy/centronucleation selectively in slow-twitch muscle of WT. This effect is largely mimicked by iNOS-/- at NOX (except for atrophy). Both conditions involve massive SOCS3 upregulation likely through denervation without Il6 upregulation but accompanied by a decrease of macrophage density especially next to denervated endplates. In the absence of muscular iNOS expression in WT, this damage may arise from extramuscular, e.g., motoneuronal iNOS deficiency (through CIH or knockout) awaiting functional evaluation.
    Keywords:  Denervation; Fiber type; Mitochondria; Muscle atrophy; Neuromuscular junction; Oxidative stress; iNOS
  15. Int J Mol Sci. 2022 Jan 24. pii: 1319. [Epub ahead of print]23(3):
      Obscurin is a giant sarcomeric protein expressed in striated muscles known to establish several interactions with other proteins of the sarcomere, but also with proteins of the sarcoplasmic reticulum and costameres. Here, we report experiments aiming to better understand the contribution of obscurin to skeletal muscle fibers, starting with a detailed characterization of the diaphragm muscle function, which we previously reported to be the most affected muscle in obscurin (Obscn) KO mice. Twitch and tetanus tension were not significantly different in the diaphragm of WT and Obscn KO mice, while the time to peak (TTP) and half relaxation time (HRT) were prolonged. Differences in force-frequency and force-velocity relationships and an enhanced fatigability are observed in an Obscn KO diaphragm with respect to WT controls. Voltage clamp experiments show that a sarcoplasmic reticulum's Ca2+ release and SERCA reuptake rates were decreased in muscle fibers from Obscn KO mice, suggesting that an impairment in intracellular Ca2+ dynamics could explain the observed differences in the TTP and HRT in the diaphragm. In partial contrast with previous observations, Obscn KO mice show a normal exercise tolerance, but fiber damage, the altered sarcomere ultrastructure and M-band disarray are still observed after intense exercise.
    Keywords:  calcium dynamics; exercise; kinetics of contraction; muscle fiber damage; obscurin; sarcoplasmic reticulum; skeletal muscle
  16. Mol Metab. 2022 Feb 09. pii: S2212-8778(22)00025-4. [Epub ahead of print] 101456
      OBJECTIVE: Skeletal muscle is a heterogeneous and dynamic tissue that adapts to functional demands and substrate availability by modulating muscle fiber size and type. The concept of muscle fiber type relates to its contractile (slow or fast) and metabolic (glycolytic or oxidative) properties. Here, we tested whether disruptions in muscle oxidative catabolism are sufficient to prompt parallel adaptations in energetics and contractile protein composition.METHODS: Mice with defective mitochondrial long-chain fatty acid oxidation (mLCFAO) in the skeletal muscle due to loss of carnitine palmitoyltransferase 2 (Cpt2Sk-/-) were used to model a shift in muscle macronutrient catabolism. Glycolytic and oxidative muscles of Cpt2Sk-/- mice and control littermates were compared for expression of energy metabolism-related proteins, mitochondrial respiratory capacity, and myosin heavy chain isoform composition.
    RESULTS: Differences in bioenergetics and macronutrient utilization in response to energy demands between control muscles were intrinsic to the mitochondria allowing for a clear distinction of muscle types. Loss of CPT2 ablated mLCFAO and resulted in mitochondrial biogenesis occurring most predominantly in oxidative muscle fibers. The metabolism-related proteomic signature of Cpt2Sk-/- oxidative muscle more closely resembled that of glycolytic muscle than of control oxidative muscle. Respectively, intrinsic substrate-supported mitochondrial respiration of CPT2 deficient oxidative muscles shifted to closely match that of glycolytic muscles. Despite this shift in mitochondrial metabolism, CPT2 deletion did not result in contractile-based fiber type switching according to myosin heavy chain composition analysis.
    CONCLUSION: The loss of mitochondrial long-chain fatty acid oxidation elicits an adaptive response involving conversion of oxidative muscle towards a metabolic profile that resembles a glycolytic muscle but that is not accompanied by changes in myosin heavy chain isoforms. These data suggest that shifts in muscle catabolism are not sufficient to drive shifts in the contractile apparatus but are sufficient to drive adaptive changes in metabolic properties.
    Keywords:  Bioenergetics; Carnitine palmitoyltransferase 2; Fatty acid oxidation; Fiber-typing; Mitochondrial biogenesis; Skeletal muscle
  17. Front Physiol. 2022 ;13 796190
      Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle, elongation, and fusion to form multinucleated myotubes. Id3, a member of the Id family, plays a crucial role in cell cycle exit and differentiation. However, in muscle cells after differentiation induction, the detailed mechanisms that diminish Id3 function and cause the cells to withdraw from the cell cycle are unknown. Induction of myoblast differentiation resulted in decreased expression of Id3 and increased expression of XBP1u, and XBP1u accelerated proteasomal degradation of Id3 in C2C12 cells. The expression levels of the cyclin-dependent kinase inhibitors p21, p27, and p57 were not increased after differentiation induction of XBP1-knockdown C2C12 cells. Moreover, knockdown of Id3 rescued myogenic differentiation of XBP1-knockdown C2C12 cells. Taken together, these findings provide evidence that XBP1u regulates cell cycle exit after myogenic differentiation induction through interactions with Id3. To the best of our knowledge, this is the first report of the involvement of XBP1u in myoblast differentiation. These results indicate that XBP1u may act as a "regulator" of myoblast differentiation under various physiological conditions.
    Keywords:  Id3; cell cycle exit; cyclin-dependent kinase inhibitor; skeletal muscle differentiation; unfolded protein response
  18. J Cachexia Sarcopenia Muscle. 2022 Feb 17.
      BACKGROUND: Muscle regeneration includes proliferation and differentiation of muscle satellite cells, which involves the mammalian target of rapamycin (mTOR). We identified the C-terminal unique attached sequence motif (UNE) domain of leucyl-tRNA synthetase (LRS-UNE-L) as an mTORC1 (mTOR complex1)-activating domain that acts through Vps34 and phospholipase D1 (PLD1) when introduced in the form of a muscle-enhancing peptide.METHODS: In vitro Vps34 lipid kinase assay, phosphatidylinositol 3-phosphate (PI(3)P) measurement, in vivo PLD1 assay, and western blot assay were performed in HEK293 cells to test the effect of the LRS-UNE-L on the Vps34-PLD1-mTOR pathway. Adeno-associated virus (AAV)-LRS-UNE-L was transduced in C2C12 cells in vitro, in BaCl2 -injured tibialis anterior (TA) muscles, and in 18-month-old TA muscles to analyse its effect on myogenesis, muscle regeneration, and aged muscle, respectively. The muscle-specific cell-permeable peptide M12 was fused with LRS-UNE-L and tested for cell integration in C2C12 and HEK293 cells using FACS analysis and immunocytochemistry. Finally, M12-LRS-UNE-L was introduced into BaCl2 -injured TA muscles of 15-week-old Pld1+/+ or Pld1-/- mice, and its effect was analysed by measurement of cross-sectional area of regenerating muscle fibres.
    RESULTS: The LRS-UNE-L expression restored amino acid-induced S6K1 phosphorylation in LRS knockdown cells in a RagD GTPases-independent manner (421%, P = 0.007 vs. LRS knockdown control cells). The LRS-UNE-L domain was directly bound to Vps34; this interaction was accompanied by increases in Vps34 activity (166%, P = 0.0352), PI(3)P levels (146%, P = 0.0039), and PLD1 activity (228%, P = 0.0294) compared with amino acid-treated control cells, but it did not affect autophagic flux. AAV-delivered LRS-UNE-L domain augmented S6K1 phosphorylation (174%, P = 0.0013), mRNA levels of myosin heavy chain (MHC) (122%, P = 0.0282) and insulin-like growth factor 2 (IGF2) (146%, P = 0.008), and myogenic fusion (133%, P = 0.0479) in C2C12 myotubes. AAV-LRS-UNE-L increased the size of regenerating muscle fibres in BaCl2 -injured TA muscles (124%, P = 0.0279) (n = 9-10), but it did not change the muscle fibre size of TA muscles in old mice. M12-LRS-UNE-L was preferentially delivered into C2C12 cells compared with HEK293 cells and augmented regeneration of BaCl2 -injured TA muscles in a PLD1-dependent manner (116%, P = 0.0022) (n = 6).
    CONCLUSIONS: Our results provide compelling evidence that M12-LRS-UNE-L could be a muscle-enhancing protein targeting mTOR.
    Keywords:  M12-LRS-UNE-L; Muscle differentiation; Muscle regeneration; Muscle-enhancing protein; Self-transducible peptide; mTOR
  19. Nat Commun. 2022 Feb 16. 13(1): 894
      Mitochondrial proteolysis is an evolutionarily conserved quality-control mechanism to maintain proper mitochondrial integrity and function. However, the physiological relevance of stress-induced impaired mitochondrial protein quality remains unclear. Here, we demonstrate that LONP1, a major mitochondrial protease resides in the matrix, plays a role in controlling mitochondrial function as well as skeletal muscle mass and strength in response to muscle disuse. In humans and mice, disuse-related muscle loss is associated with decreased mitochondrial LONP1 protein. Skeletal muscle-specific ablation of LONP1 in mice resulted in impaired mitochondrial protein turnover, leading to mitochondrial dysfunction. This caused reduced muscle fiber size and strength. Mechanistically, aberrant accumulation of mitochondrial-retained protein in muscle upon loss of LONP1 induces the activation of autophagy-lysosome degradation program of muscle loss. Overexpressing a mitochondrial-retained mutant ornithine transcarbamylase (ΔOTC), a known protein degraded by LONP1, in skeletal muscle induces mitochondrial dysfunction, autophagy activation, and cause muscle loss and weakness. Thus, these findings reveal a role of LONP1-dependent mitochondrial protein quality-control in safeguarding mitochondrial function and preserving skeletal muscle mass and strength, and unravel a link between mitochondrial protein quality and muscle mass maintenance during muscle disuse.
  20. Am J Physiol Cell Physiol. 2022 Feb 16.
      Skeletal muscle atrophy is a well-known consequence of spaceflight. Because of the potential significant impact of muscle atrophy and muscle dysfunction on astronauts and to their mission, a thorough understanding of the mechanisms of this atrophy and the development of effective countermeasures is critical. Spaceflight-induced muscle atrophy is similar to atrophy seen in many terrestrial conditions, and therefore our understanding of this form of atrophy may also contribute to the treatment of atrophy in humans on Earth. The unique environmental features humans encounter in space include the weightlessness of microgravity, space radiation, and the distinctive aspects of living in a spacecraft. The disuse and unloading of muscles in microgravity are likely the most significant factors that mediate spaceflight-induced muscle atrophy, and have been extensively studied and reviewed. However, there are numerous other direct and indirect effects on skeletal muscle that may be contributing factors to the muscle atrophy and dysfunction seen as a result of spaceflight. This review offers a novel perspective on the issue of muscle atrophy in space by providing a comprehensive overview of the unique aspects of the spaceflight environment and the various ways in which they can lead to muscle atrophy. We systematically review the potential contributions of these different mechanisms of spaceflight-induced atrophy and include findings from both actual spaceflight and ground-based models of spaceflight in humans, animals, and in vitro studies.
    Keywords:  microgravity; muscle atrophy; remodeling; spaceflight; unloading
  21. FASEB J. 2022 Mar;36(3): e22192
      Modulating the number of muscle stems cells, called satellite cells, during early postnatal development produces long-term effects on muscle growth. We tested the hypothesis that high expression levels of the anti-aging protein Klotho in early postnatal myogenesis increase satellite cell numbers by influencing the epigenetic regulation of genes that regulate myogenesis. Our findings show that elevated klotho expression caused a transient increase in satellite cell numbers and slowed muscle fiber growth, followed by a period of accelerated muscle growth that leads to larger fibers. Klotho also transcriptionally downregulated the H3K27 demethylase Jmjd3, leading to increased H3K27 methylation and decreased expression of genes in the canonical Wnt pathway, which was associated with a delay in muscle differentiation. In addition, Klotho stimulation and Jmjd3 downregulation produced similar but not additive reductions in the expression of Wnt4, Wnt9a, and Wnt10a in myogenic cells, indicating that inhibition occurred through a common pathway. Together, our results identify a novel pathway through which Klotho influences myogenesis by reducing the expression of Jmjd3, leading to reductions in the expression of Wnt genes and inhibition of canonical Wnt signaling.
    Keywords:  development; myogenesis; skeletal muscle
  22. Arch Biochem Biophys. 2022 Feb 11. pii: S0003-9861(22)00035-2. [Epub ahead of print]718 109150
      Support afferentation in recent years was shown to be a key physiological stimulus controlling postural muscle function, structure and phenotype. Lack of support afferentation under various types of muscle disuse leads to a decline of size and percentage of slow-type fatigue-resistant muscle fibers, which can negatively affect muscle performance and life quality. In this study we simulated support afferentation during rat hindlimb unloading and investigated its effect on postural soleus muscle functional properties and signaling. Plantar mechanical stimulation prevented the unloading-induced muscle fatigue increase, maintained the level of mitochondrial DNA copy number and the percent of slow-type muscle fibers and partially prevented the increase of CpG methylation in pgc 1α promoter region and decline in myonuclear content of several transcriptional activators of slow myosin and PGC1 α expression. So, support afferentation under hindlimb suspension leads to maintaining of a slow-twitch oxidative and fatigue-resistant soleus muscle fibers phenotype.
    Keywords:  Fatigue; Hindlimb unloading; PGC1α; Plantar mechanical stimulation; Skeletal muscle
  23. Sci Rep. 2022 Feb 18. 12(1): 2841
      Skeletal muscle satellite cells cultured on soft surfaces (12 kPa) show improved differentiation than cells cultured on stiff surfaces (approximately 100 kPa). To better understand the reasons for this, we performed an RNA-Seq analysis for a single satellite cell clone (C1F) derived from the H2kb-tsA58 immortomouse, which differentiates into myotubes under tightly regulated conditions (withdrawal of ɣ-interferon, 37 °C). The largest change in overall gene expression occurred at day 1, as cells switched from proliferation to differentiation. Surprisingly, further analysis showed that proliferating C1F cells express Pax3 and not Pax7, confirmed by immunostaining, yet their subsequent differentiation into myotubes is normal, and enhanced on softer surfaces, as evidenced by significantly higher expression levels of myogenic regulatory factors, sarcomeric genes, enhanced fusion and improved myofibrillogenesis. Levels of mRNA encoding extracellular matrix structural constituents and related genes were consistently upregulated on hard surfaces, suggesting that a consequence of differentiating satellite cells on hard surfaces is that they attempt to manipulate their niche prior to differentiating. This comprehensive RNA-Seq dataset will be a useful resource for understanding Pax3 expressing cells.
  24. Int J Mol Sci. 2022 Feb 07. pii: 1877. [Epub ahead of print]23(3):
      Endurance exercise induces various adaptations that yield health benefits; however, the underlying molecular mechanism has not been fully elucidated. Given that it has recently been accepted that inflammatory responses are required for a specific muscle adaptation after exercise, this study investigated whether toll-like receptor (TLR) 4, a pattern recognition receptor that induces proinflammatory cytokines, is responsible for exercise-induced adaptations in mouse skeletal muscle. The TLR4 mutant (TLR4m) and intact TLR4 control mice were each divided into 2 groups (sedentary and voluntary wheel running) and were housed for six weeks. Next, we removed the plantaris muscle and evaluated the expression of cytokines and muscle regulators. Exercise increased cytokine expression in the controls, whereas a smaller increase was observed in the TLR4m mice. Mitochondrial markers and mitochondrial biogenesis inducers, including peroxisome proliferator-activated receptor beta and heat shock protein 72, were increased in the exercised controls, whereas this upregulation was attenuated in the TLR4m mice. In contrast, exercise increased the expression of molecules such as peroxisome proliferator-activated receptor-gamma coactivator 1-alpha and glucose transporter 4 in both the controls and TLR4m mice. Our findings indicate that exercise adaptations such as mitochondrial biogenesis are mediated via TLR4, and that TLR4-mediated inflammatory responses could be involved in the mechanism of adaptation.
    Keywords:  HSP72; PPARβ; endurance exercise; inflammation; mitochondrial biogenesis
  25. Int J Mol Sci. 2022 Feb 03. pii: 1747. [Epub ahead of print]23(3):
      Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that shows progressive muscle weakness. A few treatments exist including symptomatic therapies, which can prolong survival or reduce a symptom; however, no fundamental therapies have been found. As a therapeutic strategy, enhancing muscle force is important for patients' quality of life. In this study, we focused on skeletal muscle-specific myosin regulatory light chain kinase (skMLCK), which potentially enhances muscle contraction, as overexpression of skMLCK was thought to improve muscle function. The adeno-associated virus serotype 6 encoding skMLCK (AAV6/skMLCK) and eGFP (control) was produced and injected intramuscularly into the lower limbs of SOD1G37R mice, which are a familial ALS model. AAV6/skMLCK showed the successful expression of skMLCK in the muscle tissues. Although the control did not affect the muscle force in both of the WT and SOD1G37R mice, AAV6/skMLCK enhanced the twitch force of SOD1G37R mice and the tetanic force of WT and SOD1G37R mice. These results indicate that overexpression of skMLCK can enhance the tetanic force of healthy muscle as well as rescue weakened muscle function. In conclusion, the gene transfer of skMLCK has the potential to be a new therapy for ALS as well as for other neuromuscular diseases.
    Keywords:  adeno-associated virus 6; amyotrophic lateral sclerosis; gene therapy; muscle function; myosin light chain kinase
  26. Life Sci Alliance. 2022 05;pii: e202101192. [Epub ahead of print]5(5):
      Muscle stem cells (MuSCs) have the ability to carry out the specialized function of cell polarization, which is required for the production of one repopulating cell and one myogenic progenitor cell with muscle regeneration capabilities. The mechanisms which regulate proteins involved in establishing MuSC polarity such as Dmd and Itga7 are currently not well understood. Herein, we define the RNA-binding protein Quaking (QKI) as a major regulator alternative splicing of key MuSC polarity factors including Dmd, Itga7, Mark2, and Numb. We generate a conditional QKI knockout mouse, and for the first time it is shown in vivo that deficiency of QKI in MuSCs results in reduced asymmetric cell divisions, leading to a loss of the myogenic progenitor cell population and striking muscle regeneration defects. Transcriptomic analysis of QKI-deficient MuSCs identifies QKI as a regulator of the splicing events which give rise to the mutually exclusive Itga7-X1 and -X2 isoforms. We observe increased X1 expression in QKI-deficient MuSCs and recapitulate this splicing event using antisense oligonucleotide directed against a quaking binding site within the Itga7 mRNA. Interestingly, recreating this single splicing event is detrimental to the polarization of Itga7 and Dmd proteins, and leads to a drastic reduction of the myogenic progenitor population, highlighting the significance of QKI-mediated alternative splicing of Itga7 in maintaining MuSC polarity. Altogether, these findings define a novel role for QKI as a post-transcriptional regulator of MuSC polarity.
  27. Acta Physiol (Oxf). 2022 Feb 13. e13799
      The endoplasmic reticulum (ER) is an organelle responsible for the post-translational folding and modification of proteins. Under stress conditions, such as physical exercise, there is accumulation of misfolded proteins. The increased load of proteins in the ER results in ER stress, which activates the unfolded protein response (UPR). UPR is comprised of three parallel pathways, responsible for ensuring the quality of secreted proteins. Scientific studies show that resistance or endurance acute physical exercise can induce ER stress and activate the UPR pathways. On the other hand, regular moderate-intensity exercise can attenuate the responses of genes and proteins related to ER stress. However, these positive adaptations do not occur when exercise intensity and volume increase without adequate rest periods, which is observed in overtraining. The current review discusses the frontier-of-knowledge findings on the effects of different acute and chronic physical exercise protocols on skeletal muscle ER stress and its metabolic consequences.
    Keywords:  endoplasmic reticulum stress; exercise; inflammation; skeletal muscle
  28. Int J Mol Sci. 2022 Feb 03. pii: 1748. [Epub ahead of print]23(3):
      Skeletal muscle harbors a pool of stem cells called muscle satellite cells (MuSCs) that are mainly responsible for its robust regenerative capacities. Adult satellite cells are mitotically quiescent in uninjured muscles under homeostasis, but they exit quiescence upon injury to re-enter the cell cycle to proliferate. While most of the expanded satellites cells differentiate and fuse to form new myofibers, some undergo self-renewal to replenish the stem cell pool. Specifically, quiescence exit describes the initial transition of MuSCs from quiescence to the first cell cycle, which takes much longer than the time required for subsequent cell cycles and involves drastic changes in cell size, epigenetic and transcriptomic profiles, and metabolic status. It is, therefore, an essential period indispensable for the success of muscle regeneration. Diverse mechanisms exist in MuSCs to regulate quiescence exit. In this review, we summarize key events that occur during quiescence exit in MuSCs and discuss the molecular regulation of this process with an emphasis on multiple levels of intrinsic regulatory mechanisms. A comprehensive understanding of how quiescence exit is regulated will facilitate satellite cell-based muscle regenerative therapies and advance their applications in various disease and aging conditions.
    Keywords:  cell cycle re-entry; cell growth; checkpoints; mTORC1; quiescence exit; satellite cells
  29. Nat Commun. 2022 Feb 17. 13(1): 947
      Skeletal muscle stem cells, also called Satellite Cells (SCs), are actively maintained in quiescence but can activate quickly upon extrinsic stimuli. However, the mechanisms of how quiescent SCs (QSCs) activate swiftly remain elusive. Here, using a whole mouse perfusion fixation approach to obtain bona fide QSCs, we identify massive proteomic changes during the quiescence-to-activation transition in pathways such as chromatin maintenance, metabolism, transcription, and translation. Discordant correlation of transcriptomic and proteomic changes reveals potential translational regulation upon SC activation. Importantly, we show Cytoplasmic Polyadenylation Element Binding protein 1 (CPEB1), post-transcriptionally affects protein translation during SC activation by binding to the 3' UTRs of different transcripts. We demonstrate phosphorylation-dependent CPEB1 promoted Myod1 protein synthesis by binding to the cytoplasmic polyadenylation elements (CPEs) within its 3' UTRs to regulate SC activation and muscle regeneration. Our study characterizes CPEB1 as a key regulator to reprogram the translational landscape directing SC activation and subsequent proliferation.
  30. J Gerontol A Biol Sci Med Sci. 2022 Feb 17. pii: glac043. [Epub ahead of print]
      This study aimed to characterize the effects of laparotomy on post-operative physical function and skeletal muscle gene expression in male C57BL/6N mice at 3, 20 and 24 months of age to investigate late-life vulnerability and resiliency to acute surgical stress. Pre- and post-operative physical functioning was assessed by forelimb grip strength on post-operative day (POD) 1 and 3 and motor coordination on POD 2 and 4. Laparotomy induced an age-associated post-operative decline in forelimb grip strength that was greatest in the oldest mice. While motor coordination declined with increasing age at baseline, it was unaffected by laparotomy. Baseline physical function as stratified by motor coordination performance (low vs. high functioning) in 24-month-old mice did not differentially affect post-laparotomy reduction in grip strength. RNA sequencing of soleus muscles showed that laparotomy induced age-associated differential gene expression and canonical pathway activation with the greatest effects in the youngest mice. Examples of such age-associated, metabolically important pathways that were only activated in the youngest mice after laparotomy included oxidative phosphorylation and NRF2-mediated oxidative stress response. Analysis of lipid mediators in serum and gastrocnemius muscle showed alterations in profiles during aging and confirmed an association between such changes and functional status in gastrocnemius muscle. These findings demonstrate a mouse model of laparotomy which recapitulated some features of post-operative skeletal muscle decline in older adults, and identified age-associated, laparotomy-induced molecular signatures in skeletal muscles. Future research can build upon this model to study molecular mechanisms of late-life vulnerability and resiliency to acute surgical stress.
    Keywords:  laparotomy; oxidative phosphorylation; resiliency
  31. J Anim Sci Biotechnol. 2022 Feb 14. 13(1): 2
      BACKGROUND: Circular RNAs (circRNAs) are a novel class of endogenous ncRNA, which widely exist in the transcriptomes of different species and tissues. Recent studies indicate important roles for circRNAs in the regulation of gene expression by acting as competing endogenous RNAs (ceRNAs). However, the specific role of circRNAs in myogenesis is still poorly understood. In this study, we attempted to systematically identify the circRNAs involved in myogenesis and analyze the biological functions of circRNAs in chicken skeletal muscle development.RESULTS: In total, 532 circRNAs were identified as being differentially expressed between pectoralis major (PEM) and soleus (SOL) in 7-week-old Xinghua chicken. Among them, a novel circRNA (novel_circ_002621), generated by PTPN4 gene, was named circPTPN4 and identified. circPTPN4 is highly expressed in skeletal muscle, and its expression level is upregulated during myoblast differentiation. circPTPN4 facilitates the proliferation and differentiation of myoblast. Moreover, circPTPN4 suppresses mitochondria biogenesis and activates fast-twitch muscle phenotype. Mechanistically, circPTPN4 can function as a ceRNA to regulate NAMPT expression by sponging miR-499-3p, thus participating in AMPK signaling.
    CONCLUSIONS: circPTPN4 functions as a ceRNA to regulate NAMPT expression by sponging miR-499-3p, thus promoting the proliferation and differentiation of myoblast, as well as activating fast-twitch muscle phenotype.
    Keywords:  Chicken; CircPTPN4; Circular RNA; MiR-499-3p; Myogenesis; NAMPT; The transformation of myofiber
  32. Int J Mol Sci. 2022 Jan 28. pii: 1551. [Epub ahead of print]23(3):
      Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
    Keywords:  Duchenne muscular dystrophy; adeno-associated virus; extracellular vesicle; extracellular vesicle-capsulated adeno-associated virus vector; microRNAs; myofiber degeneration; nSMase2/Smpd3; satellite cell
  33. Sci Adv. 2022 Feb 18. 8(7): eabm1189
      Exogenous glucocorticoids interact with the circadian clock, but little attention is paid to the timing of intake. We recently found that intermittent once-weekly prednisone improved nutrient oxidation in dystrophic muscle. Here, we investigated whether dosage time affected prednisone effects on muscle bioenergetics. In mice treated with once-weekly prednisone, drug dosing in the light-phase promoted nicotinamide adenine dinucleotide (NAD+) levels and mitochondrial function in wild-type muscle, while this response was lost with dark-phase dosing. These effects depended on a normal circadian clock since they were disrupted in muscle from [Brain and muscle Arnt-like protein-1 (Bmal1)]-knockout mice. The light-phase prednisone pulse promoted BMAL1-dependent glucocorticoid receptor recruitment on noncanonical targets, including Nampt and Ppargc1a [peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α)]. In mice with muscle-restricted inducible PGC1α ablation, bioenergetic stimulation by light-phase prednisone required PGC1α. These results demonstrate that glucocorticoid "chronopharmacology" for muscle bioenergetics requires an intact clock and muscle PGC1α activity.
  34. J Physiol. 2022 Feb 14.
      KEY POINTS: Dysferlin, a transmembrane protein containing 7 C2 domains, C2A through C2G, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients and participates in sarcolemmal membrane repair. Each of dysferlin's C2 domains except C2B regulate Ca2+ signaling. Localization of dysferlin variants to the transverse tubules is not sufficient to support normal Ca2+ signaling or membrane repair. Each of dysferlin's C2 domains contributes to sarcolemmal membrane repair. The Ca2+ dependence of membrane repair is mediated by C2C through C2G. Dysferlin's C2 domains therefore have distinct functions in Ca2+ signaling and sarcolemmal membrane repair.ABSTRACT: Dysferlin is an integral membrane protein of the transverse tubules of skeletal muscle that is mutated or absent in Limb Girdle Muscular Dystrophy 2B and Miyoshi Myopathy. Here we examine the role of dysferlin's seven C2 domains, C2A through C2G, in membrane repair and Ca2+ release, as well as in targeting dysferlin to the transverse tubules of skeletal muscle. We report that deletion of either domains C2A or C2B inhibits membrane repair completely, whereas deletion of the C2C, C2D, C2E, C2F or C2G causes partial loss of membrane repair that is exacerbated in the absence of extracellular Ca2+ . Deletion of C2C, C2D, C2E, C2F or C2G also causes significant changes in Ca2+ release, measured as the amplitude of the Ca2+ transient before or after hypo-osmotic shock and the appearance of Ca2+ waves. Most deletants accumulate in endoplasmic reticulum. Only the C2A domain can be deleted without affecting dysferlin trafficking to transverse tubules, but Dysf-ΔC2A fails to support normal Ca2+ signaling after hypo-osmotic shock. Our data suggest that: (i) every C2 domain contributes to repair; (ii) all C2 domains except C2B regulate Ca2+ signaling; (iii) TT localization is insufficient for normal Ca2+ signaling; (iv) Ca2+ dependence of repair is mediated by C2C through C2G. Thus, dysferlin's C2 domains have distinct functions in Ca2+ signaling and sarcolemmal membrane repair and may play distinct roles in skeletal muscle. This article is protected by copyright. All rights reserved.
    Keywords:  CICR; Ca2+ transient; Ca2+ waves; EC coupling; injury; membrane repair; sarcolemma; transverse tubule
  35. Age Ageing. 2022 Feb 02. pii: afac003. [Epub ahead of print]51(2):
      Sarcopenia is a generalised skeletal muscle disorder characterised by reduced muscle strength and mass and associated with a range of negative health outcomes. Currently, resistance exercise (RE) is recommended as the first-line treatment for counteracting the deleterious consequences of sarcopenia in older adults. However, whilst there is considerable evidence demonstrating that RE is an effective intervention for improving muscle strength and function in healthy older adults, much less is known about its benefits in older people living with sarcopenia. Furthermore, evidence for its optimal prescription and delivery is very limited and any potential benefits of RE are unlikely to be realised in the absence of an appropriate exercise dose. We provide a summary of the underlying principles of effective RE prescription (specificity, overload and progression) and discuss the main variables (training frequency, exercise selection, exercise intensity, exercise volume and rest periods) that can be manipulated when designing RE programmes. Following this, we propose that an RE programme that consists of two exercise sessions per week and involves a combination of upper- and lower-body exercises performed with a relatively high degree of effort for 1-3 sets of 6-12 repetitions is appropriate as a treatment for sarcopenia. The principles of RE prescription outlined here and the proposed RE programme presented in this paper provide a useful resource for clinicians and exercise practitioners treating older adults with sarcopenia and will also be of value to researchers for standardising approaches to RE interventions in future sarcopenia studies.
    Keywords:  exercise prescription; muscle strength; older people; physical performance; resistance exercise; sarcopenia
  36. Cells. 2022 Jan 19. pii: 321. [Epub ahead of print]11(3):
      Muscle fibers are multinucleated cells that arise during embryogenesis through the fusion of mononucleated myoblasts. Myoblast fusion is a lifelong process that is crucial for the growth and regeneration of muscles. Understanding the molecular mechanism of myoblast fusion may open the way for novel therapies in muscle wasting and weakness. Recent reports in Drosophila and mammals have provided new mechanistic insights into myoblast fusion. In Drosophila, muscle formation occurs twice: during embryogenesis and metamorphosis. A fundamental feature is the formation of a cell-cell communication structure that brings the apposing membranes into close proximity and recruits possible fusogenic proteins. However, genetic studies suggest that myoblast fusion in Drosophila is not a uniform process. The complexity of the players involved in myoblast fusion can be modulated depending on the type of muscle that is formed. In this review, we introduce the different types of multinucleated muscles that form during Drosophila development and provide an overview in advances that have been made to understand the mechanism of myoblast fusion. Finally, we will discuss conceptual frameworks in cell-cell fusion in Drosophila and mammals.
    Keywords:  F-actin; cell–cell communication; cell–cell fusion; flight muscles; membrane fusion; somatic muscles; testis muscles; visceral muscles
  37. Hum Mol Genet. 2022 Feb 14. pii: ddac042. [Epub ahead of print]
      Duchenne Muscular Dystrophy (DMD) is a fatal X-linked genetic disorder affecting approximately 1 in 5000 male births worldwide. DMD is caused by mutations in the dystrophin gene. Dystrophin is essential for maintaining muscle cell membrane integrity and stability by linking the cytoskeleton to the extracellular matrix which protects myofibers from contraction-induced damage. Loss of dystrophin leads to mechanically-induced skeletal and cardiac muscle damage. Although the disease is not evident in DMD patients at birth, muscular dystrophy rapidly progresses and results in respiratory and cardiac muscle failure as early as the teenage years. Premature death in DMD patients is due to cardiac arrhythmias and left ventricular dysfunction. Currently, there is no effective treatment for DMD-related cardiac failure. Recently, we have shown that a Food and Drug Administration (FDA)-approved small molecule, sunitinib, a multi-targeted tyrosine kinase inhibitor can mitigate skeletal muscle disease through an increase in myogenic capacity, cell membrane integrity, and improvement of skeletal muscle function via regulation of STAT3-related signaling pathway. Chronic activation of STAT3 has been shown to promote cardiac hypertrophy and failure. In this study, we examined the effects of long-term sunitinib treatment on cardiac pathology and function. Our results showed sunitinib treatment reduced STAT3 phosphorylation in the heart muscle of mdx mice, improved cardiac electrical function, increased cardiac output and stroke volume, decreased ventricular hypertrophy, reduced cardiomyocytes membrane damage, fibrotic tissue deposition, and slightly decreased cardiac inflammation. Together, our studies support the idea that sunitinib could serve as a novel treatment to slow cardiomyopathy progression in DMD.
  38. Cells. 2022 Jan 25. pii: 415. [Epub ahead of print]11(3):
      Amyotrophic Lateral Sclerosis is a neurodegenerative disease caused by progressive loss of motor neurons, which severely compromises skeletal muscle function. Evidence shows that muscle may act as a molecular powerhouse, whose final signals generate in patients a progressive loss of voluntary muscle function and weakness leading to paralysis. This pathology is the result of a complex cascade of events that involves a crosstalk among motor neurons, glia, and muscles, and evolves through the action of converging toxic mechanisms. In fact, mitochondrial dysfunction, which leads to oxidative stress, is one of the mechanisms causing cell death. It is a common denominator for the two existing forms of the disease: sporadic and familial. Other factors include excitotoxicity, inflammation, and protein aggregation. Currently, there are limited cures. The only approved drug for therapy is riluzole, that modestly prolongs survival, with edaravone now waiting for new clinical trial aimed to clarify its efficacy. Thus, there is a need of effective treatments to reverse the damage in this devastating pathology. Many drugs have been already tested in clinical trials and are currently under investigation. This review summarizes the already tested drugs aimed at restoring muscle-nerve cross-talk and on new treatment options targeting this tissue.
    Keywords:  amyotrophic lateral sclerosis; animal models; clinical trials; ion channels; skeletal muscle; therapy
  39. J Appl Physiol (1985). 2022 Feb 17.
      Extended bed rest or limb immobilization can significantly reduce skeletal muscle mass and function. Recovery may be incomplete, particularly in older adults. Our laboratory recently reported that vascular mural cell (pericyte) quantity is compromised after immobilization and appropriate replacement immediately prior to remobilization can effectively recover myofiber size in mice. Identification of a single cell surface marker for isolation of the most therapeutic pericyte would streamline efforts to optimize muscle recovery. The purpose of this study was to compare the capacity for neural/glial antigen 2 (Cspg4/NG2+) and melanoma cell adhesion molecule (Mcam/CD146+) positive pericytes to uniquely recover skeletal muscle post-disuse. A single hindlimb from adult C57BL/6J mice was immobilized in full dorsiflexion via a surgical staple inserted through the center of the foot and body of the gastrocnemius. Fourteen days after immobilization, the staple was removed and pericytes, either NG2+CD45-CD31-[Lin-], CD146+NG2-Lin-, or CD146+Lin- pericytes, were injected into the atrophied tibialis anterior muscle. TA muscles were excised 14 days after transplantation and remobilization. Pericyte transplantation did not significantly improve muscle mass or myofiber CSA after 14 days of remobilization. However, injection of CD146+ pericytes significantly increased Type IIa quantity, capillarization and collagen remodeling compared to NG2+ pericytes (p<0.05). Our results suggest that selection of pericytes based on CD146 rather than NG2 results in the isolation of therapeutic mural cells with high capacity to positively remodel skeletal muscle after a period of immobilization.
    Keywords:  disuse; immobilization; pericyte; recovery; skeletal muscle
  40. J Cachexia Sarcopenia Muscle. 2022 Feb 13.
      Low skeletal muscle mass is known to be associated with poor morbidity and mortality outcomes in cancer, but evidence of its impact on health-related quality of life (HRQOL) is less established. This systematic review and meta-analysis was performed to investigate the relationship between skeletal muscle mass and HRQOL in adults with cancer. Five databases (Ovid MEDLINE, Embase via Ovid, CINAHL plus, Scopus, and PsycInfo) were systematically searched from 1 January 2007 until 2 September 2020. Studies reporting on the association between measures of skeletal muscle (mass and/or radiodensity) derived from analysis of computed tomography imaging, and a validated measure of HRQOL in adults with cancer, were considered for inclusion. Studies classifying skeletal muscle mass as a categorical variable (low or normal) were combined in a meta-analysis to investigate cross-sectional association with HRQOL. Studies reporting skeletal muscle as a continuous variable were qualitatively synthesized. A total of 14 studies involving 2776 participants were eligible for inclusion. Skeletal muscle mass classified as low or normal was used to dichotomize participants in 10 studies (n = 1375). Five different cut points were used for classification across the 10 studies, with low muscle mass attributed to 58% of participants. Low muscle mass was associated with poorer global HRQOL scores [n = 985 from seven studies, standardized mean difference -0.27, 95% confidence interval (CI) -0.40 to -0.14, P < 0.0001], and poorer physical functioning domain HRQOL scores (n = 507 from five studies, standardized mean difference -0.40, 95% CI -0.74 to -0.05, P = 0.02), but not social, role, emotional, or cognitive functioning domain scores (all P > 0.05). Five studies examined the cross-sectional relationship between HRQOL and skeletal muscle mass as a continuous variable and found little evidence of an association unless non-linear analysis was used. Two studies investigated the relationship between longitudinal changes in both skeletal muscle and HRQOL, reporting that an association exists across several HRQOL domains. Low muscle mass may be associated with lower global and physical functioning HRQOL scores in adults with cancer. The interpretation of this relationship is limited by the varied classification of low muscle mass between studies. There is a need for prospective, longitudinal studies examining the interplay between skeletal muscle mass and HRQOL over time, and data should be made accessible to enable reanalysis according to different cut points. Further research is needed to elucidate the causal pathways between these outcomes.
    Keywords:  Body composition; Computed tomography; EORTC QLQ-C30; FACT; Oncology; Sarcopenia
  41. J Clin Med. 2022 Jan 26. pii: 632. [Epub ahead of print]11(3):
      Mitochondrial disorders are the most common inherited conditions, characterized by defects in oxidative phosphorylation and caused by mutations in nuclear or mitochondrial genes. Due to its high energy request, skeletal muscle is typically involved. According to the International Workshop of Experts in Mitochondrial Diseases held in Rome in 2016, the term Primary Mitochondrial Myopathy (PMM) should refer to those mitochondrial disorders affecting principally, but not exclusively, the skeletal muscle. The clinical presentation may include general isolated myopathy with muscle weakness, exercise intolerance, chronic ophthalmoplegia/ophthalmoparesis (cPEO) and eyelids ptosis, or multisystem conditions where there is a coexistence with extramuscular signs and symptoms. In recent years, new therapeutic targets have been identified leading to the launch of some promising clinical trials that have mainly focused on treating muscle symptoms and that require populations with defined genotype. Advantages in next-generation sequencing techniques have substantially improved diagnosis. So far, an increasing number of mutations have been identified as responsible for mitochondrial disorders. In this review, we focused on the principal molecular genetic alterations in PMM. Accordingly, we carried out a comprehensive review of the literature and briefly discussed the possible approaches which could guide the clinician to a genetic diagnosis.
    Keywords:  exercise intolerance; mitochondrial myopathy; mtDNA; nDNA; ophtalmoplegia; oxidative phosphorylation
  42. J Cachexia Sarcopenia Muscle. 2022 Feb 15.
      BACKGROUND: Interferon-induced protein with tetratricopeptide repeat 2 (IFIT2) is a reported metastasis suppressor in oral squamous cell carcinoma (OSCC). Metastases and cachexia may coexist. The effect of cancer metastasis on cancer cachexia is largely unknown. We aimed to address this gap in knowledge by characterizing the cachectic phenotype of an IFIT2-depleted metastatic OSCC mouse model.METHODS: Genetically engineered and xenograft tumour models were used to explore the effect of IFIT2-depleted metastatic OSCC on cancer cachexia. Muscle and organ weight changes, tumour burden, inflammatory cytokine profiles, body composition, food intake, serum albumin and C-reactive protein (CRP) levels, and survival were assessed. The activation of the IL6/p38 pathway in atrophied muscle was measured.
    RESULTS: IFIT2-depleted metastatic tumours caused marked body weight loss (-18.2% vs. initial body weight, P < 0.001) and a poor survival rate (P < 0.01). Skeletal muscles were markedly smaller in IFIT2-depleted metastatic tumour-bearing mice (quadriceps: -28.7%, gastrocnemius: -29.4%, and tibialis: -24.3%, all P < 0.001). Tumour-derived circulating granulocyte-macrophage colony-stimulating factor (+772.2-fold, P < 0.05), GROα (+1283.7-fold, P < 0.05), IL6 (+245.8-fold, P < 0.001), IL8 (+616.9-fold, P < 0.001), IL18 (+24-fold, P < 0.05), IP10 (+18.8-fold, P < 0.001), CCL2 (+439.2-fold, P < 0.001), CCL22 (+9.1-fold, P < 0.01) and tumour necrosis factor α (+196.8-fold, P < 0.05) were elevated in IFIT2-depleted metastatic tumour-bearing mice. Murine granulocyte colony-stimulating factor (+61.4-fold, P < 0.001) and IL6 (+110.9-fold, P < 0.01) levels were significantly increased in IFIT2-depleted metastatic tumour-bearing mice. Serum CRP level (+82.1%, P < 0.05) was significantly increased in cachectic shIFIT2 mice. Serum albumin level (-26.7%, P < 0.01) was significantly decreased in cachectic shIFIT2 mice. An assessment of body composition revealed decreased fat (-81%, P < 0.001) and lean tissue (-21.7%, P < 0.01), which was consistent with the reduced food intake (-19.3%, P < 0.05). Muscle loss was accompanied by a smaller muscle cross-sectional area (-23.3%, P < 0.05). Muscle atrophy of cachectic IFIT2-depleted metastatic tumour-bearing mice (i.v.-shIFIT2 group) was associated with elevated IL6 (+2.7-fold, P < 0.05), phospho-p38 (+2.8-fold, P < 0.05), and atrogin-1 levels (+2.3-fold, P < 0.05) in the skeletal muscle. Neutralization of IL6 rescued shIFIT2 conditioned medium-induced myotube atrophy (+24.6%, P < 0.01).
    CONCLUSIONS: Our results suggest that the development of shIFIT2 metastatic OSCC lesions promotes IL6 production and is accompanied by the loss of fat and lean tissue, anorexia, and muscle atrophy. This model is appropriate for the study of OSCC cachexia, especially in linking metastasis with cachexia.
    Keywords:  Cachexia; IFIT2; IL6; Metastasis; Muscle atrophy; Oral squamous cell carcinoma
  43. Am J Physiol Endocrinol Metab. 2022 Feb 14.
      Fsp27 was previously identified as a lipid droplet-associated protein in adipocytes. Various studies have shown that it plays a role in the regulation of lipid homeostasis in adipose tissue and liver. However, its function in muscle, which also accumulate and metabolize fat, remains completely unknown. Our present study identifies a novel role of Fsp27 in muscle performance. Here we demonstrate that Fsp27-/- and Fsp27+/- mice, both males and females, had severely impaired muscle endurance and exercise capacity compared to wild-type controls. Liver and muscle glycogen stores were similar amongst all groups fed or fasted, and before or after exercise. Reduced muscle performance in Fsp27-/- and Fsp27+/- mice was associated with severely decreased fat content in the muscle. Furthermore, results in heterozygous Fsp27+/- mice indicate that Fsp27 haploinsufficiency undermines muscle performance in both males and females. In sum, our physiological findings reveal that Fsp27 plays a critical role in muscular fat storage, muscle endurance, and muscle strength.
    Keywords:  Cidea; Cidec; Lipids; diabetes; lipid droplets
  44. J Cachexia Sarcopenia Muscle. 2022 Feb 17.
      BACKGROUND: The diversity between the muscle cellular interactome of dependent and independent elderly people is based on the interrelationships established between different cellular mechanisms, and alteration of this balance modulates cellular activity in muscle tissue with important functional implications.METHODS: Thirty patients (85 ± 8 years old, 23% female) scheduled to undergo hip fracture surgery participated in this study. During the surgical procedures, skeletal muscle tissue was obtained from the Vastus lateralis. Two groups of participants were studied based on their Barthel index: 15 functional-independent individuals (100-90) and 15 severely functional-dependent individuals (40-0). The expression of proteins from the most important cellular mechanisms was studied by western blot.
    RESULTS: Compared with independent elderly patients, dependent elderly showed an abrupt decrease in the capacity of protein synthesis; this decrease was only partially compensated for at the response to unfolded or misfolded proteins (UPR) level due to the increase in IRE1 (P < 0.001) and ATF6 (P < 0.05), which block autophagy, an essential mechanism for cell survival, by decreasing the expression of Beclin-1, LC3, and p62 (P < 0.001) and the antioxidant response. This lead to increased oxidative damage to lipids (P < 0.001) and that damage was directly associated with the mitochondrial impairment induced by the significant decreases in the I, III, IV, and V mitochondrial complexes (P < 0.01), which drastically reduced the energy capacity of the cell. The essential cellular mechanisms were generally impaired and the triggering of apoptosis was induced, as shown by the significantly elevated levels of most proapoptotic proteins (P < 0.05) and caspase-3/7 (P < 0.001) in dependents. The death of highly damaged cells is not detrimental to organs as long as the regenerative capacity remains unaltered, but in the dependent patients, this ability was also significantly altered, which was revealed by the reduction in the myogenic regulatory factors and satellite cell marker (P < 0.001), and the increase in myostatin (P < 0.01). Due to the severely disturbed cell interactome, the muscle contractile capacity showed significant damage.
    CONCLUSIONS: Functionally dependent patients exhibited severe alterations in their cellular interactome at the muscle level. Cell apoptosis was caused by a decrease in successful protein synthesis, to which the cellular control systems did not respond adequately; autophagy was simultaneously blocked, the mitochondrion malfunctioned, and as the essential recovery mechanisms failed, these cells could not be replaced, resulting in the muscle being condemned to a loss of mass and functionality.
    Keywords:  Elderly; Mitochondria; Myogenic regulatory factors; Oxidative stress; Sarcopenia; Unfolded protein response
  45. Int J Mol Sci. 2022 Jan 21. pii: 1167. [Epub ahead of print]23(3):
      Transforming growth factor-beta (TGF-β) is part of a family of molecules that is present in many body tissues and performs many different functions. Evidence has been obtained from mice and human cancer patients with bony metastases and non-metastatic disease, as well as pediatric burn patients, that inflammation leads to bone resorption and release of TGF-β from the bone matrix with paracrine effects on muscle protein balance, possibly mediated by the generation of reactive oxygen species. Whether immobilization, which confounds the etiology of bone resorption in burn injury, also leads to the release of TGF-β from bone contributing to muscle wasting in other conditions is unclear. The use of anti-resorptive therapy in both metastatic cancer patients and pediatric burn patients has been successful in the prevention of muscle wasting, thereby creating an additional therapeutic niche for this class of drugs. The liberation of TGF-β may be one way in which bone helps to control muscle mass, but further investigation will be necessary to assess whether the rate of bone resorption is the determining factor for the release of TGF-β. Moreover, whether different resorptive conditions, such as immobilization and hyperparathyroidism, also involve TGF-β release in the pathogenesis of muscle wasting needs to be investigated.
    Keywords:  metastatic cancer; pediatric burns; reactive oxygen species; skeletal muscle wasting; transforming growth factor-beta