bims-moremu Biomed News
on Molecular regulators of muscle mass
Issue of 2022‒02‒06
forty-eight papers selected by
Anna Vainshtein
Craft Science Inc.

  1. J Cell Sci. 2022 Jan 31. pii: jcs.256008. [Epub ahead of print]
      Muscle stem (satellite) cells express Pax7, a key transcription factor essential for satellite cell maintenance and adult muscle regeneration. We identify the corepressor Transducin-Like Enhancer of Split-4 (TLE4) as a Pax7 interaction partner expressed in quiescent satellite cells under homeostasis. A subset of satellite cells transiently downregulate TLE4 during early time points following injury. We identify these to be activated satellite cells where TLE4 downregulation is required for Myf5 activation and myogenic commitment. Our results indicate that TLE4 represses Pax7-mediated Myf5 transcriptional activation by occupying the -111 kb Myf5 enhancer to maintain quiescence. Loss of TLE4 function causes Myf5 upregulation, increase in satellite cell numbers, and altered differentiation dynamics during regeneration. Thus, we have uncovered a novel mechanism to maintain satellite cell quiescence and regulating muscle differentiation mediated by the corepressor TLE4.
    Keywords:  Mouse; Myf5; Pax7; Quiescence; Regeneration; Satellite cells; Skeletal muscle; TLE4
  2. Bio Protoc. 2022 Jan 05. 12(1): e4280
      Muscle stem cells (satellite cells), located on the surface of myofibers, are rapidly activated from a quiescent state following skeletal muscle injury. Although satellite cell activation is an initial step in muscle regeneration, the stimulation of satellite cell activation by muscle injury remains to be elucidated. We recently established an in vitro mechanical damage model of myofibers, to analyze quiescent and activated satellite cells associated with myofibers isolated from the extensor digitorum longus muscle in mice. Here, we described a protocol for the mechanical damage of myofibers and co-culture of intact healthy myofibers with damaged myofibers in a floating condition. This in vitro myofiber damage model allowed us to investigate the mechanism of satellite cell activation without contamination by interstitial cells, such as blood vessel cells and fibroblasts, as well as understand how damaged myofiber-derived factors (DMDFs) activate satellite cells.
    Keywords:  Damaged myofiber-derived factors; Muscle injury; Muscle regeneration; Muscle stem cells; Myokine; Satellite cells; Skeletal muscle
  3. STAR Protoc. 2022 Mar 18. 3(1): 101111
      The skeletal muscle system is the major organ associated with movement of the body. Myogenesis and regeneration induced post-injury contribute to muscle formation and maintenance. Here, we provide detailed protocol for the accelerated repair of injured skeletal muscles and generation of hypertrophic muscle fibers. This protocol includes cardiotoxin induced muscle injury and also describes isolation of satellite cells from skeletal muscle tissues of mice. This protocol can be used to study the mechanisms associated with accelerated muscle repair and hypertrophy. For complete details on the use and execution of this protocol, please refer to Ray et al. (2021).
    Keywords:  Cell Biology; Cell isolation; Microscopy; Model Organisms; Stem Cells
  4. Am J Physiol Cell Physiol. 2022 Feb 02.
      As the principal energy-producing organelles of the cell, mitochondria support numerous biological processes related to metabolism, growth and regeneration in skeletal muscle. Deterioration in skeletal muscle functional capacity with age is thought to be driven in part by a reduction in skeletal muscle oxidative capacity and reduced fatigue resistance. Underlying this maladaptive response is the development of mitochondrial dysfunction caused by alterations in mitochondrial quality control (MQC), a term encompassing processes of mitochondrial synthesis (biogenesis), remodelling (dynamics) and degradation (mitophagy). Knowledge regarding the role and regulation of MQC in skeletal muscle and the influence of ageing in this process have rapidly advanced in the last decade. Given the emerging link between ageing and MQC, therapeutic approaches to manipulate MQC to prevent mitochondrial dysfuntion during ageing hold tremendous therapeutic potential.
    Keywords:  biogenesis; metabolism; mitochondria; mitophagy; skeletal muscle
  5. Am J Physiol Regul Integr Comp Physiol. 2022 Feb 02.
      Spasticity is the most common neurological disorder associated with increased muscle contraction causing impaired movement and gait. The aim of this study was to characterize the physical performance, skeletal muscle function and phenotype of mice with a hereditary spastic mutation (B6.Cg-Glrbspa/J). Motor function, gait and physical activity of juvenile and adult spastic mice and the morphological, histological and mechanical characteristics of their soleus and gastrocnemius medialis muscles were compared with their wild-type (WT) littermates. Spastic mice showed attenuated growth, impaired motor function and low physical activity. Gait of spastic mice was characterized by a typical hopping pattern. Spastic mice showed lower muscle forces, which were related to the smaller physiological cross-sectional area of spastic muscles. The muscle-tendon complex length-force relationship of adult gastrocnemius medialis was shifted towards shorter lengths, which was explained by attenuated longitudinal tibia growth. Spastic gastrocnemius medialis was more fatigue resistant than WT gastrocnemius medialis. This was largely explained by a higher mitochondrial content in muscle fibers and relatively higher percentage of slow-type muscle fibers. Muscles of juvenile spastic mice showed similar differences compared with WT juvenile mice, but these were less pronounced than between adult mice. This study shows that in spastic mice, disturbed motor function and gait is likely to be the result of hyperactivity of skeletal muscle and impaired skeletal muscle growth, which progress with age.
    Keywords:  gait; hereditary spastic paraplegia; motor function; skeletal muscle; spastic paresis
  6. J Cachexia Sarcopenia Muscle. 2022 Jan 30.
      BACKGROUND: Cachexia is a complicated metabolic disorder that is characterize by progressive atrophy of skeletal muscle. Cathepsin K (CTSK) is a widely expressed cysteine protease that has garnered attention because of its enzymatic and non-enzymatic functions in signalling in various pathological conditions. Here, we examined whether CTSK participates in cancer-induced skeletal muscle loss and dysfunction, focusing on protein metabolic imbalance.METHODS: Male 9-week-old wild-type (CTSK+/+ , n = 10) and CTSK-knockout (CTSK-/- , n = 10) mice were injected subcutaneously with Lewis lung carcinoma cells (LLC; 5 × 105 ) or saline, respectively. The mice were then subjected to muscle mass and muscle function measurements. HE staining, immunostaining, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting were used to explore the CTSK expression and IRS1/Akt pathway in the gastrocnemius muscle at various time points. In vitro measurements included CTSK expression, IRS1/Akt pathway-related target molecule expressions, and the diameter of C2C12 myotubes with or without LLC-conditioned medium (LCM). An IRS1 ubiquitin assay, and truncation, co-immunoprecipitation, and co-localization experiments were also performed.
    RESULTS: CTSK+/+ cachectic animals exhibited loss of skeletal muscle mass (muscle weight loss of 15%, n = 10, P < 0.01), muscle dysfunction (grip strength loss > 15%, n = 10, P < 0.01), and fibre area (average area reduction > 30%, n = 5, P < 0.01). Compared with that of non-cachectic CTSK+/+ mice, the skeletal muscle of cachectic CTSK+/+ mice exhibited greater degradation of insulin receptor substrate 1 (IRS1, P < 0.01). In this setting, cachectic muscles exhibited decreases in the phosphorylation levels of protein kinase B (Akt308 , P < 0.01; Akt473 , P < 0.05) and anabolic-related proteins (the mammalian target of rapamycin, P < 0.01) and increased levels of catabolism-related proteins (muscle RING-finger protein-1, P < 0.01; MAFbx1, P < 0.01) in CTSK+/+ mice (n = 3). Although there was no difference in LLC tumour growth (n = 10, P = 0.44), CTSK deletion mitigated the IRS1 degradation, loss of the skeletal muscle mass (n = 10, P < 0.01), and dysfunction (n = 10, P < 0.01). In vitro, CTSK silencing prevented the IRS1 ubiquitination and loss of the myotube myosin heavy chain content (P < 0.01) induced by LCM, and these changes were accelerated by CTSK overexpression even without LCM. Immunoprecipitation showed that CTSK selectively acted on IRS1 in the region of amino acids 268 to 574. The results of co-transfection of IRS1-N-FLAG or IRS1-C-FLAG with CTSK suggested that CTSK selectively cleaves IRS1 and causes ubiquitination-related degradation of IRS1.
    CONCLUSIONS: These results demonstrate that CTSK plays a novel role in IRS1 ubiquitination in LLC-induced muscle wasting, and suggest that CTSK could be an effective therapeutic target for cancer-related cachexia.
    Keywords:  Cachexia; Cathepsin K; Insulin receptor substrate 1; Muscle wasting; Ubiquitination
  7. Exp Physiol. 2022 Jan 31.
      NEW FINDINGS: What is the central question of this study? How are the dynamics of IL-15 and its receptors altered during the differentiation of myoblasts into myotubes, and how is IL-15 regulated? What is the main finding and its importance?ABSTRACT: Interleukin-15 (IL-15) is a myokine in the Interleukin-2 (IL-2) family that is generated in the skeletal muscle during exercise. The functional effect of IL-15 involves muscle regeneration and metabolic regulation in skeletal muscle. Reports have indicated that the mechanism of Interleukin-15 receptor subunit alpha (IL-15RA) regulates IL-15 localization in immune cells. However, the dynamic of IL-15 and its receptors, which regulate the IL-15 pathway in skeletal muscle differentiation, have not yet been clarified. This study investigated the mechanism of IL-15 regulation using a mouse skeletal muscle cell line, C2C12 cells. We found that the mRNA expression of IL-15, Interleukin 2 Receptor Subunit Beta (IL-2RB) (CD122), and Interleukin 2 Receptor Subunit Gamma (IL-2RG) (CD132) increased, but that IL-15RA exhibits different kinetics as differentiation progresses. We also found that IL-15, mainly localized in the cytosol, preassembled with IL-15RA in the cytosol and fused to the plasma membrane. Moreover, IL-15RA increased IL-15 protein levels. Our findings suggest that genes comprising the IL-15 signaling complex are enhanced with the differentiation of myotubes and that IL-15RA regulates the protein kinetics of IL-15 signaling in skeletal muscle. This article is protected by copyright. All rights reserved.
  8. Int J Sports Med. 2022 Feb 04.
      The Exercise Boom of the 1970's resulted in the adoption of habitual exercise in a significant portion of the population. Many of these individuals are defying the cultural norms by remaining physically active and competing at a high level in their later years. The juxtaposition between masters athletes and non-exercisers demonstrate the importance of remaining physically active throughout the lifespan on physiological systems related to healthspan (years of healthy living). This includes ~50% improved maximal aerobic capacity (VO2max) and enhanced skeletal muscle health (size, function, as well as metabolic and communicative properties) compared to non-exercisers at a similar age. By taking a reductionist approach to VO2max and skeletal muscle health, we can gain insight into how aging and habitual exercise affects the aging process. Collectively, this review provides a physiological basis for the elite performances seen in masters athletes, as well as the health implications of lifelong exercise with a focus on VO2max, skeletal muscle metabolic fitness, whole muscle size and function, single muscle fiber physiology, and communicative properties of skeletal muscle. This review has significant public health implications due to the potent health benefits of habitual exercise across the lifespan.
  9. Diabetes. 2022 Feb 02. pii: db210934. [Epub ahead of print]
      Chronic hyperglycemia is associated with low response to aerobic exercise training in rodent models and humans, including reduced aerobic exercise capacity and impaired oxidative remodeling in skeletal muscle. Here, we investigated whether glucose lowering with the sodium glucose cotransporter-2 inhibitor (SGLT2i), canagliflozin (Cana; 30 mg/kg/day), could restore exercise training response in a model of hyperglycemia (low dose streptozotocin; STZ). Cana effectively prevented increased blood glucose in STZ-treated mice. After 6 weeks of voluntary wheel running, Cana-treated mice displayed improvements in aerobic exercise capacity, higher capillary density in striated muscle, and a more oxidative fiber-type in skeletal muscle. In contrast, these responses were blunted or absent in STZ mice. Recent work implicates glucose-induced accumulation of skeletal muscle extracellular matrix (ECM) and hyper-activation of JNK/SMAD2 mechanical signaling as potential mechanisms underlying poor exercise response. In line with this, muscle ECM accretion was prevented by Cana in STZ-treated mice. JNK/SMAD2 signaling with acute exercise was 2-fold higher in STZ compared to Control but was normalized by Cana. In human participants, ECM accumulation was associated with increased JNK signaling, low VO2peak and impaired metabolic health (siOGTT). These data demonstrate that hyperglycemia-associated impairments in exercise adaptation can be ameliorated by co-therapy with SGLT2i.
  10. Sports Med. 2022 Feb 03.
      BACKGROUND: Engaging in both resistance and endurance exercise within the same training program, termed 'concurrent exercise training,' is common practice in many athletic disciplines that require a combination of strength and endurance and is recommended by a number of organizations to improve muscular and cardiovascular health and reduce the risk of chronic metabolic disease. Dietary protein ingestion supports skeletal muscle remodeling after exercise by stimulating the synthesis of muscle proteins and can optimize resistance exercise-training mediated increases in skeletal muscle size and strength; however, the effects of protein supplementation on acute and longer-term adaptive responses to concurrent resistance and endurance exercise are unclear.OBJECTIVES: The purpose of this systematic review is to evaluate the effects of dietary protein supplementation on acute changes in muscle protein synthesis and longer-term changes in muscle mass, strength, and aerobic capacity in responses to concurrent resistance and endurance exercise in healthy adults.
    METHODS: A systematic search was conducted in five databases: Scopus, Embase, Medline, PubMed, and Web of Science. Acute and longer-term controlled trials involving concurrent exercise and protein supplementation in healthy adults (ages 18-65 years) were included in this systematic review. Main outcomes of interest were changes in skeletal muscle protein synthesis rates, muscle mass, muscle strength, and whole-body aerobic capacity (i.e., maximal/peak aerobic capacity [VO2max/peak]). The quality of studies was assessed using the National Institute of Health Quality Assessment for Controlled Intervention Studies.
    RESULTS: Four acute studies including 84 trained young males and ten longer-term studies including 167 trained and 391 untrained participants fulfilled the eligibility criteria. All included acute studies demonstrated that protein ingestion enhanced myofibrillar protein synthesis rates, but not mitochondrial protein synthesis rates during post-exercise recovery after an acute bout of concurrent exercise. Of the included longer-term training studies, five out of nine reported that protein supplementation enhanced concurrent training-mediated increases in muscle mass, while five out of nine studies reported that protein supplementation enhanced concurrent training-mediated increases in muscle strength and/or power. In terms of aerobic adaptations, all six included studies reported no effect of protein supplementation on concurrent training-mediated increases in VO2max/peak.
    CONCLUSION: Protein ingestion after an acute bout of concurrent exercise further increases myofibrillar, but not mitochondrial, protein synthesis rates during post-exercise recovery. There is some evidence that protein supplementation during longer-term training further enhances concurrent training-mediated increases in skeletal muscle mass and strength/power, but not whole-body aerobic capacity (i.e., VO2max/peak).
  11. J Cachexia Sarcopenia Muscle. 2022 Feb 03.
      BACKGROUND: Iron excess has been proposed as an essential factor in skeletal muscle wasting. Studies have reported correlations between muscle iron accumulation and atrophy, either through ageing or by using experimental models of secondary iron overload. However, iron treatments performed in most of these studies induced an extra-pathophysiological iron overload, more representative of intoxication or poisoning. The main objective of this study was to determine the impact of iron excess closer to pathophysiological conditions on structural and metabolic adaptations (i) in differentiated myotubes and (ii) in skeletal muscle exhibiting oxidative (i.e. the soleus) or glycolytic (i.e. the gastrocnemius) metabolic phenotypes.METHODS: The impact of iron excess was assessed in both in vitro and in vivo models. Murine differentiated myotubes were exposed to ferric ammonium citrate (FAC) (i.e. 10 and 50 μM) for the in vitro component. The in vivo model was achieved by a single iron dextran subcutaneous injection (1 g/kg) in mice. Four months after the injection, soleus and gastrocnemius muscles were harvested for analysis.
    RESULTS: In vitro, iron exposure caused dose-dependent increases of iron storage protein ferritin (P < 0.01) and dose-dependent decreases of mRNA TfR1 levels (P < 0.001), which support cellular adaptations to iron excess. Extra-physiological iron treatment (50 μM FAC) promoted myotube atrophy (P = 0.018), whereas myotube size remained unchanged under pathophysiological treatment (10 μM FAC). FAC treatments, whatever the doses tested, did not affect the expression of proteolytic markers (i.e. NF-κB, MurF1, and ubiquitinated proteins). In vivo, basal iron content and mRNA TfR1 levels were significantly higher in the soleus compared with the gastrocnemius (+130% and +127%; P < 0.001, respectively), supporting higher iron needs in oxidative skeletal muscle. Iron supplementation induced muscle iron accumulation in the soleus and gastrocnemius muscles (+79%, P < 0.001 and +34%, P = 0.002, respectively), but ferritin protein expression only increased in the gastrocnemius (+36%, P = 0.06). Despite iron accumulation, muscle weight, fibre diameter, and myosin heavy chain distribution remained unchanged in either skeletal muscle.
    CONCLUSIONS: Together, these data support that under pathophysiological conditions, skeletal muscle can protect itself from the related deleterious effects of excess iron.
    Keywords:  Disuse; Mitochondria; Myosin heavy chain; Sarcopenia; Typology
  12. Clin Exp Pharmacol Physiol. 2022 Feb 02.
      Previous studies reported inconsistent findings on autophagy activation in skeletal muscles after acute exercise. In this study, we investigated the effect of a single bout of exhaustive treadmill exercise on AMPK and autophagy activations in mice gastrocnemius muscle in vivo. Male ICR/CD-1 mice were randomly divided into the control and exercise groups. The later was subjected to a single bout of exhaustive treadmill exercise. Changes of AMPK, phosphorylation of AMPKThr172 (pAMPKThr172 ), and autophagy markers including Beclin1, LC3II/LC3I and p62 mRNA and protein expressions in gastrocnemius muscle at different times (0, 6, 12, 24 h) after the exercise were analyzed by quantitative real-time PCR and western blot. Our results demonstrated that a single bout of exhaustive treadmill exercise significantly induced AMPK content and AMPK activity at 0, 6 and 12h after the exercise, and changed the expressions of autophagy markers at different time points in the recovery period respectively. Moreover, we observed positive correlations between expressions of LC3II/LC3I ratio and pAMPKThr172 or AMPK, and a negative correlation between expressions of p62 and AMPK or pAMPKThr172 . In conclusion, a single bout of exhaustive treadmill exercise in mice caused a prolonged activation of AMPK and improved autophagy in the gastrocnemius muscle. The regulation of autophagic markers were related to enhanced AMPK activity. The findings indicate that acute exercise enhanced AMPK-related autophagy activation may be the underlying molecular mechanism that regulates cellular energy metabolism during exercise.
    Keywords:  A single bout of exhaustive treadmill exercise; AMPK activity; Autophagy; Skeletal muscle
  13. Amino Acids. 2022 Feb 02.
      Glutamine is an amino acid previously linked with improved skeletal muscle metabolism and insulin signaling, however, past observations often use cell culture models with only supraphysiological concentrations. Additionally, past reports have yet to simultaneously investigate both metabolic outcomes and insulin signaling. The present report utilized cell culture experiments and measured the effects of both physiological and supraphysiological levels of glutamine on myotube metabolism and insulin signaling/resistance. It was hypothesized the addition of glutamine at any level would increase cell metabolism and related gene expression, as well as improve insulin signaling versus respective control cells. C2C12 myotubes were treated with glutamine ranging from 0.25 mM-4 mM (or media control) for 24 h to capture a range of physiological and supraphysiological concentrations. qRT-PCR was used to measure metabolic gene expression. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Insulin sensitivity (indicated by pAkt:Akt) and metabolism following glucose/insulin infusion were also assessed. Glutamine treatment consistently increased mitochondrial and glycolytic metabolism versus true controls (cells treated with media void of glutamine), however, supraphysiological glutamine did not enhance metabolism beyond that of cells with physiological levels of glutamine. Neither physiological nor supraphysiological levels of glutamine altered insulin signaling regardless of insulin stimulation or insulin resistance when compared with respective controls. These data demonstrate excess glutamine does not appear to alter myotube metabolism or glucose disposal when base levels of glutamine are present. Moreover, glutamine does not appear to alter insulin sensitivity regardless of level of insulin resistance or presence of insulin stimulation.
    Keywords:  Insulin resistance; Mitochondrial biogenesis; Skeletal muscle; c2c12 myotubes; pAkt/Akt
  14. Oxid Med Cell Longev. 2022 ;2022 5694223
      Cisplatin (DDP), a widely used chemotherapeutic drug in cancer treatment, causes oxidative stress, resulting in cancer cachexia and skeletal muscle atrophy. This study investigated the effects and activity of silibinin (SLI) in reducing DDP-induced oxidative stress and skeletal muscle atrophy in vivo and in vitro. SLI alleviated weight loss, food intake, muscle wasting, adipose tissue depletion, and organ weight reduction induced by DDP and improved the reduction of grip force caused by DDP. SLI can attenuated the increase in reactive oxygen species (ROS) levels, the decrease in Nrf2 expression, the decrease in the fiber cross-sectional area, and changes in fiber type induced by DDP. SLI regulated the ERK/FoxO and JNK/FoxO pathways by downregulating the abnormal increase in ROS and Nrf2 expression in DDP-treated skeletal muscle and C2C12 myotube cells. Further, SLI inhibited the upregulation of MAFbx and Mstn, the downregulation of MyHC and MyoG, the increase in protein degradation, and the decrease of protein synthesis. The protective effects of SLI were reversed by cotreatment with JNK agonists and ERK inhibitors. These results suggest that SLI can reduce DDP-induced skeletal muscle atrophy by reducing oxidative stress and regulating ERK/FoxO and JNK/FoxO pathways.
  15. Postepy Biochem. 2021 12 31. 67(4): 420-435
      MicroRNAs (miRNAs), although do not encode proteins, they are involved in many biological processes. Here we focus on their role in skeletal muscle development and function. In health, they play an important role during skeletal muscle regeneration by regulating satellite cells quiescence, activation, proliferation, differentiation into myoblasts, and finally formation of myotubes. Moreover, miRNAs play a role in muscles disease development. For this reason, they can be used as disease biomarkers or potential therapeutic targets. Moreover, physical activity also influences the changes in miRNA expression. Certain types of exercises, their duration, and intensity differently impact the expression of many miRNAs.
  16. Skelet Muscle. 2022 Jan 29. 12(1): 3
      Motor unit remodelling involving repeated denervation and re-innervation occurs throughout life. The efficiency of this process declines with age contributing to neuromuscular deficits. This study investigated differentially expressed genes (DEG) in muscle following peroneal nerve crush to model motor unit remodelling in C57BL/6 J mice. Muscle RNA was isolated at 3 days post-crush, RNA libraries were generated using poly-A selection, sequenced and analysed using gene ontology and pathway tools. Three hundred thirty-four DEG were found in quiescent muscle from (26mnth) old compared with (4-6mnth) adult mice and these same DEG were present in muscle from adult mice following nerve crush. Peroneal crush induced 7133 DEG in muscles of adult and 699 DEG in muscles from old mice, although only one DEG (ZCCHC17) was found when directly comparing nerve-crushed muscles from old and adult mice. This analysis revealed key differences in muscle responses which may underlie the diminished ability of old mice to repair following nerve injury.
    Keywords:  Ageing; Crush; Motor neuron; Neurodegeneration; RNAseq; Skeletal muscle; Transcriptomic
  17. Transl Cancer Res. 2021 Jun;10(6): 3020-3032
      Background: Cancer associated-cachexia, which involves progressive skeletal muscle loss, is induced by multiple factors. However, the underlying mechanism remains unclear. Dynamin-related protein 1 (DRP1), a major modulator of mitochondrial fission, has been reported to participate in muscle turnover. This study aimed to explore the role of DRP1 in muscle during the process of cancer associated-cachexia (CAC) via an in vitro model and the mechanisms involved.Methods: C26 colon cancer cell-conditioned medium (CM) was used to incubate with C2C12 myotubes to simulate cachexia. Myotubes were then transduced with lentiviral vectors of DRP1-small interfering RNA (siRNA), DRP1 overexpression plasmid, or a control plasmid to regulate the DRP1 levels, and their diameters were assessed using a biological microscope. Furthermore, transcriptome sequencing was performed to screen the pathways involved, and real-time polymerase chain reaction (RT-PCR) was used for verification.
    Results: The cachexia model was successfully established with a decreased myotube diameter and increased DRP1 expression. DRP1 knockdown significantly ameliorated myotube wasting during cachexia, while DRP1 overexpression intensified this phenomenon. Transcriptome sequencing indicated that DRP1 knockdown was associated with the activation of ribosomal biogenesis. However, PCR results showed that compared to the control, one of the ribosomal biogenesis marker's (Ubf) level was decreased by C26 CM, and DRP1 knockdown did not significantly restore its level.
    Conclusions: During C26 CM-induced cachexia, DRP1 was activated, while the regulation of DRP1 levels was able to modulate the atrophy of C2C12 myotubes. The underlying mechanism of the alleviated muscle atrophy induced by DRP1 knockdown was likely associated with increased ribosomal activity.
    Keywords:  Cachexia; dynamins; muscular atrophy; neoplasms; ribosomes
  18. Genes Dev. 2022 Feb 03.
      The process of tissue regeneration occurs in a developmentally timed manner, yet the role of circadian timing is not understood. Here, we identify a role for the adult muscle stem cell (MuSC)-autonomous clock in the control of muscle regeneration following acute ischemic injury. We observed greater muscle repair capacity following injury during the active/wake period as compared with the inactive/rest period in mice, and loss of Bmal1 within MuSCs leads to impaired muscle regeneration. We demonstrate that Bmal1 loss in MuSCs leads to reduced activated MuSC number at day 3 postinjury, indicating a failure to properly expand the myogenic precursor pool. In cultured primary myoblasts, we observed that loss of Bmal1 impairs cell proliferation in hypoxia (a condition that occurs in the first 1-3 d following tissue injury in vivo), as well as subsequent myofiber differentiation. Loss of Bmal1 in both cultured myoblasts and in vivo activated MuSCs leads to reduced glycolysis and premature activation of prodifferentiation gene transcription and epigenetic remodeling. Finally, hypoxic cell proliferation and myofiber formation in Bmal1-deficient myoblasts are restored by increasing cytosolic NAD+ Together, we identify the MuSC clock as a pivotal regulator of oxygen-dependent myoblast cell fate and muscle repair through the control of the NAD+-driven response to injury.
    Keywords:  NAD+; circadian rhythm; hypoxia; muscle regeneration; muscle stem cell
  19. Nat Commun. 2022 Feb 03. 13(1): 653
      Mitochondria are energy-generating organelles and mitochondrial biogenesis is stimulated to meet energy requirements in response to extracellular stimuli, including exercise. However, the mechanisms underlying mitochondrial biogenesis remain unknown. Here, we demonstrate that transcriptional coactivator with PDZ-binding motif (TAZ) stimulates mitochondrial biogenesis in skeletal muscle. In muscle-specific TAZ-knockout (mKO) mice, mitochondrial biogenesis, respiratory metabolism, and exercise ability were decreased compared to wild-type mice. Mechanistically, TAZ stimulates the translation of mitochondrial transcription factor A via Ras homolog enriched in brain (Rheb)/Rheb like 1 (Rhebl1)-mTOR axis. TAZ stimulates Rhebl1 expression via TEA domain family transcription factor. Rhebl1 introduction by adeno-associated virus or mTOR activation recovered mitochondrial biogenesis in mKO muscle. Physiologically, mKO mice did not stimulate exercise-induced mitochondrial biogenesis. Collectively, our results suggested that TAZ is a novel stimulator for mitochondrial biogenesis and exercise-induced muscle adaptation.
  20. Biosci Biotechnol Biochem. 2022 Feb 02. pii: zbac021. [Epub ahead of print]
      We examined the effects of branched-chain amino acids (BCAA) and electrical pulse stimulation (EPS) on the mTORC1 pathway in muscle satellite cells (MSCs) isolated from branched-chain α-keto acid dehydrogenase kinase (BDK) knockout (KO) mice in vitro. MSCs were isolated from BDK KO and wild-type (WT) mice, proliferated, and differentiated into myotubes. BCAA stimulation increased the phosphorylation of p70 S6 kinase (p70S6K), a marker of protein translation initiation, in MSCs from WT and BDK KO mice, but the rate of the increase was higher in MSCs isolated from BDK KO mice. Contrarily, there was no difference in the increase in p70S6K phosphorylation by EPS. Acute BDK knockdown in MSCs from WT mice using shRNA decreased p70S6K phosphorylation in response to BCAA stimulation. Collectively, the susceptibility of mTORC1 to BCAA stimulation was elevated by chronic, but not acute, enhancement of BCAA catabolism.
    Keywords:  Skeletal muscle satellite cell; branched-chain α-keto acid dehydrogenase kinase; electrical pulse stimulation; mTORC1
  21. Sci Rep. 2022 Feb 04. 12(1): 1966
      Trk-fused gene (TFG) mutations have been identified in patients with several neurodegenerative diseases. In this study, we attempted to clarify the effects of TFG deletions in motor neurons and in muscle fibers, using tissue-specific TFG knockout (vMNTFG KO and MUSTFG KO) mice. vMNTFG KO, generated by crossing TFG floxed with VAChT-Cre, showed deterioration of motor function and muscle atrophy especially in slow-twitch soleus muscle, in line with the predominant Cre expression in slow-twitch fatigue-resistant (S) and fast-twitch fatigue-resistant (FR) motor neurons. Consistently, denervation of the neuromuscular junction (NMJ) was apparent in the soleus, but not in the extensor digitorum longus, muscle. Muscle TFG expressions were significantly downregulated in vMNTFG KO, presumably due to decreased muscle IGF-1 concentrations. However, interestingly, MUSTFG KO mice showed no apparent impairment of muscle movements, though a denervation marker, AChRγ, was elevated and Agrin-induced AChR clustering in C2C12 myotubes was inhibited. Our results clarify that loss of motor neuron TFG is sufficient for the occurrence of NMJ degeneration and muscle atrophy, though lack of muscle TFG may exert an additional effect. Reduced muscle TFG, also observed in aged mice, might be involved in age-related NMJ degeneration, and this issue merits further study.
  22. Acta Physiol (Oxf). 2022 Jan 29. e13791
      Generally, skeletal muscles are known to work with your bones to give your body power and strength. They enable us to move, maintain posture and balance and to perform daily activities. But the muscular system does so much more. Skeletal muscle is the body's largest and most dynamic reservoir of protein, comprising 40-45% of a healthy individual's body weight [1]. Several studies on muscle cell protein metabolism have been published in Acta Physiologica.
  23. Front Physiol. 2021 ;12 698166
      In Duchenne muscular dystrophy (DMD), lack of dystrophin increases the permeability of myofiber plasma membranes to ions and larger macromolecules, disrupting calcium signaling and leading to progressive muscle wasting. Although the biological origin and meaning are unclear, alterations of phosphatidylcholine (PC) are reported in affected skeletal muscles of patients with DMD that may include higher levels of fatty acid (FA) 18:1 chains and lower levels of FA 18:2 chains, possibly reflected in relatively high levels of PC 34:1 (with 16:0_18:1 chain sets) and low levels of PC 34:2 (with 16:0_18:2 chain sets). Similar PC alterations have been reported to occur in the mdx mouse model of DMD. However, altered ratios of PC 34:1 to PC 34:2 have been variably reported, and we also observed that PC 34:2 levels were nearly equally elevated as PC 34:1 in the affected mdx muscles. We hypothesized that experimental factors that often varied between studies; including muscle types sampled, mouse ages, and mouse diets; may strongly impact the PC alterations detected in dystrophic muscle of mdx mice, especially the PC 34:1 to PC 34:2 ratios. In order to test our hypothesis, we performed comprehensive lipidomic analyses of PC and phosphatidylethanolamine (PE) in several muscles (extensor digitorum longus, gastrocnemius, and soleus) and determined the mdx-specific alterations. The alterations in PC 34:1 and PC 34:2 were closely monitored from the neonate period to the adult, and also in mice raised on several diets that varied in their fats. PC 34:1 was naturally high in neonate's muscle and decreased until age ∼3-weeks (disease onset age), and thereafter remained low in WT muscles but was higher in regenerated mdx muscles. Among the muscle types, soleus showed a distinctive phospholipid pattern with early and diminished mdx alterations. Diet was a major factor to impact PC 34:1/PC 34:2 ratios because mdx-specific alterations of PC 34:2 but not PC 34:1 were strictly dependent on diet. Our study identifies high PC 34:1 as a consistent biochemical feature of regenerated mdx-muscle and indicates nutritional approaches are also effective to modify the phospholipid compositions.
    Keywords:  Duchenne; mdx; muscular dystrophy; oleic acid; phosphatidylcholine; phospholipid; skeletal muscle
  24. Aging (Albany NY). 2022 Feb 03. 14(undefined):
      Snell dwarf mice with the Pit1dw/dw mutation are deficient in growth hormone, prolactin, and thyroid stimulating hormone and exhibit >40% lifespan extension. This longevity is accompanied by compromised muscular performance. However, research regarding young (3-month-old) Snell dwarf mice demonstrate exceptional responsivity to resistance-type training especially in terms of a shifted fiber type distribution and increased protein levels of vascular cell adhesion molecule-1 (VCAM-1), a possible mediator of such remodeling. In the present study, we investigated whether this responsiveness persists at 12 months of age. Unlike 12-month-old control mice, age-matched Snell dwarf mice remained resistant to training-induced maladaptive decreases in performance and muscle mass. This was accompanied by retainment of the remodeling capacity in muscles of Snell dwarf mice to increase VCAM-1 protein levels and a shift in myosin heavy chain (MHC) isoform distribution with training. Even decreasing training frequency for control mice, an alteration which protected muscles from maladaptation at 12 months of age, did not result in the overt remodeling observed for Snell dwarf mice. The results demonstrate a distinct remodeling response to resistance-type exercise operative in the context of the Pit1dw/dw mutation of long-lived Snell dwarf mice.
    Keywords:  plantarflexor muscles; skeletal muscle; stretch-shortening contractions
  25. iScience. 2022 Jan 21. 25(1): 103616
      Adult skeletal muscle is a plastic tissue that can adapt its size to workload. Here, we show that RhoA within myofibers is needed for overload-induced hypertrophy by controlling satellite cell (SC) fusion to the growing myofibers without affecting protein synthesis. At the molecular level, we demonstrate that RhoA controls in a cell autonomous manner Erk1/2 activation and the expressions of extracellular matrix (ECM) regulators such as Mmp9/Mmp13/Adam8 and macrophage chemo-attractants such as Ccl3/Cx3cl1. Their decreased expression in RhoA mutants is associated with ECM and fibrillar collagen disorganization and lower macrophage infiltration. Moreover, matrix metalloproteinases inhibition and macrophage depletion in controls phenocopied the altered growth of RhoA mutants while having no effect in mutants showing that their action is RhoA-dependent. These findings unravel the implication of RhoA within myofibers, in the building of a permissive microenvironment for muscle hypertrophic growth and for SC accretion through ECM remodeling and inflammatory cell recruitment.
    Keywords:  Biological sciences; Cell biology; Functional aspects of cell biology; Stem cells research
  26. BMC Genomics. 2022 Feb 01. 23(1): 93
      BACKGROUND: The formation and functioning of muscles are fundamental aspects of animal biology, and the evolution of 'muscle genes' is central to our understanding of this tissue. Feeding-fasting-refeeding experiments have been widely used to assess muscle cellular and metabolic responses to nutrition. Though these studies have focused on vertebrate models and only a few invertebrate systems, they have found similar processes are involved in muscle degradation and maintenance. Motivation for these studies stems from interest in diseases whose pathologies involve muscle atrophy, a symptom also triggered by fasting, as well as commercial interest in the muscle mass of animals kept for consumption. Experimentally modelling atrophy by manipulating nutritional state causes muscle mass to be depleted during starvation and replenished with refeeding so that the genetic mechanisms controlling muscle growth and degradation can be understood.RESULTS: Using amphioxus, the earliest branching chordate lineage, we address the gap in previous work stemming from comparisons between distantly related vertebrate and invertebrate models. Our amphioxus feeding-fasting-refeeding muscle transcriptomes reveal a highly conserved myogenic program and that the pro-orthologues of many vertebrate myoblast fusion genes were present in the ancestral chordate, despite these invertebrate chordates having unfused mononucleate myocytes. We found that genes differentially expressed between fed and fasted amphioxus were orthologous to the genes that respond to nutritional state in vertebrates. This response is driven in a large part by the highly conserved IGF/Akt/FOXO pathway, where depleted nutrient levels result in activation of FOXO, a transcription factor with many autophagy-related gene targets.
    CONCLUSION: Reconstruction of these gene networks and pathways in amphioxus muscle provides a key point of comparison between the distantly related groups assessed thus far, significantly refining the reconstruction of the ancestral state for chordate myoblast fusion genes and identifying the extensive role of duplicated genes in the IGF/Akt/FOXO pathway across animals. Our study elucidates the evolutionary trajectory of muscle genes as they relate to the increased complexity of vertebrate muscles and muscle development.
    Keywords:  Cephalochordate; FOXO; Gene duplication; Genome duplication; Insulin Growth Factor; Lancelet; Muscle development
  27. Cell Rep. 2022 Feb 01. pii: S2211-1247(22)00034-1. [Epub ahead of print]38(5): 110323
      Rhabdomyosarcoma (RMS) is a pediatric muscle sarcoma characterized by expression of the myogenic lineage transcription factors (TFs) MYOD1 and MYOG. Despite high expression of these TFs, RMS cells fail to terminally differentiate, suggesting the presence of factors that alter their functions. Here, we demonstrate that the developmental TF SIX1 is highly expressed in RMS and critical for maintaining a muscle progenitor-like state. SIX1 loss induces differentiation of RMS cells into myotube-like cells and impedes tumor growth in vivo. We show that SIX1 maintains the RMS undifferentiated state by controlling enhancer activity and MYOD1 occupancy at loci more permissive to tumor growth over muscle differentiation. Finally, we demonstrate that a gene signature derived from SIX1 loss correlates with differentiation status and predicts RMS progression in human disease. Our findings demonstrate a master regulatory role of SIX1 in repression of RMS differentiation via genome-wide alterations in MYOD1 and MYOG-mediated transcription.
    Keywords:  CUT&RUN; MYOD1; SIX1; chromatin; mouse xenograft; muscle differentiation; muscle progenitor; rhabdomyosarcoma; transcriptional control; zebrafish
  28. Sports Med. 2022 Feb 04.
      Addressing skeletal muscle mass loss is an important focus in oncology research to improve clinical outcomes, including cancer treatment tolerability and survival. Exercise is likely a necessary component of muscle-mass-preserving interventions for people with cancer. However, randomized controlled trials with exercise that include people with cancer with increased susceptibility to more rapid and severe muscle mass loss are limited. The aim of the current review is to highlight features of cancer-related skeletal muscle mass loss, discuss the impact in patients most at risk, and describe the possible role of exercise as a management strategy. We present current gaps within the exercise oncology literature and offer several recommendations for future studies to support research translation, including (1) utilizing accurate and reliable body composition techniques to assess changes in skeletal muscle mass, (2) incorporating comprehensive assessments of patient health status to allow personalized exercise prescription, (3) coupling exercise with robust nutritional recommendations to maximize the impact on skeletal muscle outcomes, and (4) considering key exercise intervention features that may improve exercise efficacy and adherence. Ultimately, the driving forces behind skeletal muscle mass loss are complex and may impede exercise tolerability and efficacy. Our recommendations are intended to foster the design of high-quality patient-centred research studies to determine whether exercise can counteract muscle mass loss in people with cancer and, as such, improve knowledge on this topic.
  29. Cell Biochem Biophys. 2022 Feb 05.
      Short bouts of heat can induce a hormetic stress response, whereas prolonged or excessive exposure can elicit detrimental effects. We previously demonstrated an increase in autophagic signaling in C2C12 myotubes in response to 1 h of heat at 40 °C. In opposition, longer durations of heat exposure (e.g., 12 and 24 h) lead to an accumulation of autophagasomes and elevations in markers of cellular inflammation, oxidative stress, and apoptosis. Whether a longer, yet moderate, duration of 2 h of heat further enhances autophagic flux and attenuates stress and inflammatory signaling, or transitions the cell toward a dysregulation of autophagy is unclear. In this study, C2C12 myotubes were maintained at 37 °C or exposed to 40 °C (HT) for 2 h, and harvested immediately or following 2, 8, or 24 h of recovery. Two hours of HT immediately increased pAMPK (T172; p = 0.001), and subsequently increased pULK1 (S555) at 2 h of recovery (p = 0.028). LC3 II was increased at 8 h (p = 0.043) and 24 h (p = 0.015) of recovery, whereas p62 was elevated at 2 h (p = 0.002) and 8 h (p < 0.001) of recovery, but returned to baseline by 24 h. In Bafilomycin A1 treated cells, p62 was further increased immediately following HT (p = 0.041). There was also a significant elevation in p-p38 (Thr180/Try182), pJNK (Thr183/Tyr185), and pNFκB (Ser536). These findings suggest that as short as 2 h of heat exposure contributes to cell stress and accumulation of autophagasomes in skeletal muscle.
    Keywords:  AMPK; Autophagy; Heat; LC3; MAPK; Skeletal muscle
  30. Front Neurol. 2021 ;12 814174
      Duchenne muscular dystrophy (DMD) is an X-linked recessive, infancy-onset neuromuscular disorder characterized by progressive muscle weakness and atrophy, leading to delay of motor milestones, loss of autonomous ambulation, respiratory failure, cardiomyopathy, and premature death. DMD originates from mutations in the DMD gene that result in a complete absence of dystrophin. Dystrophin is a cytoskeletal protein which belongs to the dystrophin-associated protein complex, involved in cellular signaling and myofiber membrane stabilization. To date, the few available therapeutic options are aimed at lessening disease progression, but persistent loss of muscle tissue and function and premature death are unavoidable. In this scenario, one of the most promising therapeutic strategies for DMD is represented by adeno-associated virus (AAV)-mediated gene therapy. DMD gene therapy relies on the administration of exogenous micro-dystrophin, a miniature version of the dystrophin gene lacking unnecessary domains and encoding a truncated, but functional, dystrophin protein. Limited transgene persistence represents one of the most significant issues that jeopardize the translatability of DMD gene replacement strategies from the bench to the bedside. Here, we critically review preclinical and clinical studies of AAV-mediated gene therapy in DMD, focusing on long-term transgene persistence in transduced tissues, which can deeply affect effectiveness and sustainability of gene replacement in DMD. We also discuss the role played by the overactivation of the immune host system in limiting long-term expression of genetic material. In this perspective, further studies aimed at better elucidating the need for immune suppression in AAV-treated subjects are warranted in order to allow for life-long therapy in DMD patients.
    Keywords:  Duchenne muscular dystrophy; adeno-associated virus; dystrophin; gene therapy; microdystrophin; persistence
  31. J Clin Invest. 2022 Feb 01. pii: e139420. [Epub ahead of print]132(3):
      A sarcomere is the contractile unit of the myofibril in striated muscles such as cardiac and skeletal muscles. The assembly of sarcomeres depends on multiple molecules that serve as raw materials and participate in the assembly process. However, the mechanism of this critical assembly process remains largely unknown. Here, we found that the cell fate determinant Numb and its homolog Numblike regulated sarcomere assembly and maintenance in striated muscles. We discovered that Numb and Numblike are sarcomeric molecules that were gradually confined to the Z-disc during striated muscle development. Conditional knockout of Numb and Numblike severely compromised sarcomere assembly and its integrity and thus caused organelle dysfunction. Notably, we identified that Numb and Numblike served as sarcomeric α-Actin-binding proteins (ABPs) and shared a conserved domain that can bind to the barbed end of sarcomeric α-Actin. In vitro fluorometric α-Actin polymerization assay showed that Numb and Numblike also played a role in the sarcomeric α-Actin polymerization process. Last, we demonstrate that Numb and Numblike regulate sarcomeric α-Actinin-dependent (ACTN-dependent) Z-disc consolidation in the sarcomere assembly and maintenance. In summary, our studies show that Numb and its homolog Numblike regulate sarcomere assembly and maintenance in striated muscles, and demonstrate a molecular mechanism by which Numb/Numblike, sarcomeric α-Actin, and ACTN cooperate to control thin filament formation and Z-disc consolidation.
    Keywords:  Muscle; Muscle Biology
  32. Int J Endocrinol. 2022 ;2022 2539519
      Long noncoding RNA (lncRNA) is a crucial factor in the progression of insulin resistance (IR). Resveratrol (RSV) exhibits promising therapeutic potential for IR. However, there are few studies on whether RSV improves IR through lncRNA. This study aimed to determine whether RSV could influence the expression of lncRNA and to elucidate the underlying mechanism. Mice were divided into three groups: control group, high-fat diet (HFD) group, and HFD + RSV group. We conducted a high-throughput sequencing analysis to detect lncRNA and mRNA expression signatures and the ceRNA-network in the skeletal muscles of mice that were fed an HFD to induce IR. Hierarchical clustering, gene enrichment, and gene ceRNA-network analyses were subsequently conducted. Differentially expressed lncRNAs were selected and validated via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The biological functions of the selected lncRNAs were investigated by silencing the target genes via lentivirus transfection of C2C12 mouse myotube cells. RSV treatment reversed the expression of 338 mRNAs and 629 lncRNAs in the skeletal muscles of mice with HFD-induced IR. The results of the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes database analyses indicated that the differentially expressed mRNAs modulated type II diabetes mellitus. After validating randomly selected lncRNAs via RT-qPCR, we identified a novel lncRNA, NONMMUT044897.2, which was upregulated in the HFD group and reversed with RSV treatment. Additionally, NONMMUT044897.2 was proven to function as a ceRNA of microRNA- (miR-) 7051-5p. Suppressor of Cytokine Signaling 1 (SOCS1) was confirmed as a target of miR-7051-5p. We further performed lentivirus transfection to knock down NONMMUT044897.2 in vitro and found that NONMMUT044897.2 silenced SOCS1 and potentiated the insulin signaling pathway. Hence, RSV mimicked the silencing effect of lentivirus transfection on NONMMUT044897.2. Our study revealed that RSV reduced IR in mouse skeletal muscles via the regulation of NONMMUT044897.2.
  33. Cell Biochem Biophys. 2022 Feb 04.
      Chronic low back pain (CLBP) is a common symptom of lumbar degenerative disease. Degeneration of the lumbar paravertebral muscles causes a loss of muscle mass and strength, which is a vital factor causing CLBP and often accompanied by lipid infiltration. Tandem mass spectrometry (TMT) was used to identify differentially expressed proteins in lipid-infiltrated and normal muscles. The results show that fatty acid binding protein 4 (FABP4) participated in the peroxisome proliferator-activated receptor-γ (PPAR γ) signaling pathway as an up-regulated protein, which is related to lipogenesis in diverse cells. In addition, chronic inflammation is believed to be involved in lumbar muscle degeneration and lipogenesis, with interleukin-4 (IL-4) considered as the predominant contributor. In present study, we investigate the effect of FABP4 on lipogenesis in human skeletal muscle cells (HSMCs) stimulated by Interleukin-4 (IL-4) and explore the mechanistic basis. We found expression level of FABP4 in lipid-infiltrated muscles was significantly higher than that in normal muscles. Lipogenesis in HSMCs could be increased by IL-4 treatment, as well as by FABP4 overexpression. FABP4 inhibition suppressed IL-4-mediated lipogenesis in HSMCs, whereas the PPAR γ inhibitor alleviated lipogenesis in both IL-4-treated and FABP4-overexpressed HSMCs. Collectively, the results indicate that FABP4 induces lipogenesis in HSMCs stimulated with IL-4 via activating the PPAR γ signaling pathway. Our study offers a detailed perspective on the pathogenesis of muscle lipid infiltration and provides a potential target for the clinical treatment strategy of muscle lipid infiltration and CLBP.
    Keywords:  FABP4; HSMCs; Interleukin-4; Lipogenesis; PPAR γ signaling pathway
  34. Gene Ther. 2022 Feb 01.
      Duchenne muscular dystrophy (DMD) is a muscle wasting disorder caused by mutations in the gene encoding dystrophin. Gene therapy using micro-dystrophin (MD) transgenes and recombinant adeno-associated virus (rAAV) vectors hold great promise. To overcome the limited packaging capacity of rAAV vectors, most MD do not include dystrophin carboxy-terminal (CT) domain. Yet, the CT domain is known to recruit α1- and β1-syntrophins and α-dystrobrevin, a part of the dystrophin-associated protein complex (DAPC), which is a signaling and structural mediator of muscle cells. In this study, we explored the impact of inclusion of the dystrophin CT domain on ΔR4-23/ΔCT MD (MD1), in DMDmdx rats, which allows for relevant evaluations at muscular and cardiac levels. We showed by LC-MS/MS that MD1 expression is sufficient to restore the interactions at a physiological level of most DAPC partners in skeletal and cardiac muscles, and that inclusion of the CT domain increases the recruitment of some DAPC partners at supra-physiological levels. In parallel, we demonstrated that inclusion of the CT domain does not improve MD1 therapeutic efficacy on DMD muscle and cardiac pathologies. Our work highlights new evidences of the therapeutic potential of MD1 and strengthens the relevance of this candidate for gene therapy of DMD.
  35. Front Cell Dev Biol. 2021 ;9 808095
      Uncoupling protein 1 (UCP1), the hallmark protein responsible for nonshivering thermogenesis in adipose tissue (especially brown adipose tissue) has regained researchers' attention in the context of metabolic disorders following the realization that UCP1 can be activated in adult humans and reconstituted in pigs. Both skeletal muscle and adipose tissue are highly dynamic tissues that interact at the metabolic and hormonal level in response to internal and external stress, and they coordinate in maintaining whole-body metabolic homeostasis. Here, we utilized lipidomics and transcriptomics to identify the altered lipid profiles and regulatory pathways in skeletal muscles from adipocyte-specific UCP1 knock-in (KI) pigs. UCP1 KI changed the contents of glycerophospholipids and acyl carnitines of skeletal muscles. Several metabolic regulatory pathways were more enriched in the UCP1 KI skeletal muscle. Comparison of the transcriptomes of adipose and skeletal muscle suggested that nervous system or chemokine signaling might account for the crosstalk between these two tissues in UCP1 KI pigs. Comparison of the lipid biomarkers from UCP1 KI pigs and other mammals suggested associations between UCP1 KI-induced metabolic alternations and metabolic and muscle dysfunction. Our study reveals the lipid dynamics and transcriptional programs in the skeletal muscle of UCP1 KI pigs and suggests that a network regulates metabolic homeostasis between skeletal muscle and adipose tissue.
    Keywords:  UCP1-KI; adipose tissue; crosstalk; lipidomics; obesity; pig; skeletal muscle; transcriptome
  36. Front Physiol. 2021 ;12 810391
      Polyhydramnios is a condition related to an excessive accumulation of amniotic fluid in the third trimester of pregnancy and it can be acute and chronic depending on the duration. Published data suggest that during muscle development, in the stage of late histochemical differentiation decreased mechanical loading cause decreased expression of myosin heavy chain (MHC) type 1 leading to slow-to-fast transition. In the case of chronic polyhydramnios, histochemical muscle differentiation could be affected as a consequence of permanent decreased physical loading. Most affected would be muscles which are the most active i.e., spine extensor muscles and muscles of legs. Long-lasting decreased mechanical loading on muscle should cause decreased expression of MHC type 1 leading to slow-to-fast transition, decreased number of muscle fiber type I especially in extensor muscles of spine and legs. Additionally, because MHC type 1 is present in all skeletal muscles it could lead to various degrees of hypotrophy depending on constituting a percentage of MHC type 1 in affected muscles. These changes in the case of preexisting muscle disorders have the potential to deteriorate the muscle condition additionally. Given these facts, idiopathic chronic polyhydramnios is a rare opportunity to study the influence of reduced physical loading on muscle development in the human fetus. Also, it could be a medical entity to examine the influence of micro- and hypogravity conditions on the development of the fetal muscular system during the last trimester of gestation.
    Keywords:  chronic polyhydramnios; development; fetus; muscle; reduced gravity
  37. Sci Rep. 2022 Feb 01. 12(1): 1688
      Organophosphorus (OP) compounds that inhibit acetylcholinesterase are a common cause of poisoning worldwide, resulting in several hundred thousand deaths each year. The pathways activated during OP compound poisoning via overstimulation of muscarinic acetylcholine receptors (mAChRs) play a decisive role in toxidrome. The antidotal therapy includes atropine, which is a nonspecific blocker of all mAChR subtypes. Atropine is efficient for mitigating depression in respiratory control centers but does not benefit patients with OP-induced skeletal muscle weakness. By using an ex vivo model of OP-induced muscle weakness, we studied the effects of the M1/M4 mAChR antagonist pirenzepine and the M2/M4 mAChR antagonist methoctramine on the force of mouse diaphragm muscle contraction. It was shown that weakness caused by the application of paraoxon can be significantly prevented by methoctramine (1 µM). However, neither pirenzepine (0.1 µM) nor atropine (1 µM) was able to prevent muscle weakness. Moreover, the application of pirenzepine significantly reduced the positive effect of methoctramine. Thus, balanced modulation of neuromuscular synaptic transmission via M1 and M2 mAChRs contributes to paraoxon-induced muscle weakness. It was shown that methoctramine (10 µmol/kg, i.p.) and atropine (50 µmol/kg, i.p.) were equieffective toward increasing the survival of mice poisoned with a 2xLD50 dose of paraoxon.
  38. Sci Rep. 2022 Jan 31. 12(1): 1635
      Lactate production is an important clue for understanding metabolic and signal responses to exercise but its measurement is difficult. Therefore, this study aimed (1) to develop a method of calculating lactate production volume during exercise based on blood lactate concentration and compare the effects between endurance exercise training (EX) and PGC-1α overexpression (OE), (2) to elucidate which proteins and enzymes contribute to changes in lactate production due to EX and muscle PGC-1α OE, and (3) to elucidate the relationship between lactate production volume and signaling phosphorylations involved in mitochondrial biogenesis. EX and PGC-1α OE decreased muscle lactate production volume at the absolute same-intensity exercise, but only PGC-1α OE increased lactate production volume at the relative same-intensity exercise. Multiple linear regression revealed that phosphofructokinase, monocarboxylate transporter (MCT)1, MCT4, and citrate synthase equally contribute to the lactate production volume at high-intensity exercise within physiological adaptations, such as EX, not PGC-1α OE. We found that an exercise intensity-dependent increase in the lactate production volume was associated with a decrease in glycogen concentration and an increase in P-AMPK/T-AMPK. This suggested that the calculated lactate production volume was appropriate and reflected metabolic and signal responses but further modifications are needed for the translation to humans.
  39. J Tissue Eng Regen Med. 2022 Feb 03.
      Aging hinders the effectiveness of regenerative medicine strategies targeting the repair of volumetric muscle loss (VML) injury. Anabolic steroids have been shown to improve several factors which contribute to the age-related decline in muscle's regenerative capacity. In this study, the impact of exogenous nandrolone decanoate (ND) administration on the effectiveness of a VML regenerative repair strategy was explored using an aged animal model. Unilateral tibialis anterior VML injuries were repaired in 18-month-aged animal models (male Fischer 344 rat) using decellularized human skeletal muscle scaffolds supplemented with autologous minced muscle. The contralateral limb was left untreated/uninjured. Following repair, ND(+) or a carrier control (ND-) was delivered via weekly injection for a period of 8 weeks. At 8 weeks, muscle isometric torque, gene expression, and tissue structure were assessed. ND(+) treatment did not improve contractile torque recovery following VML repair when compared to carrier only ND(-) injection controls. Peak isometric torque in the ND(+) VML repair group remained significantly below contralateral uninjured control values (4.69 ± 1.18vs. 7.46 ± 1.53 N mm/kg) and was statistically indistinguishable from carrier only ND(-) VML repair controls (4.47 ± 1.18 N mm/kg). Gene expression for key myogenic genes (Pax7, MyoD, MyoG, IGF-1) were not significantly elevated in response to ND injection, suggesting continued age related myogenic impairment even in the presence of ND(+) treatment. ND injection did reduce the histological appearance of fibrosis at the site of VML repair, and increased expression of the collagen III gene, suggesting some positive effects on repair site matrix regulation. Overall, the results presented in this study suggest that a decline in regenerative capacity with aging may present an obstacle to regenerative medicine strategies targeting VML injury and that the delivery of anabolic stimuli via ND administration was unable to overcome this decline.
    Keywords:  VML; aging; animal model; musculoskeletal; orthopedics; steroid
  40. Ageing Res Rev. 2022 Jan 29. pii: S1568-1637(22)00018-6. [Epub ahead of print]76 101576
      Sarcopenia is a systemic disease with progressive and generalized skeletal muscle dysfunction defined by age-related low muscle mass, high content of muscle slow fibers, and low muscle function. Muscle phenotypes and sarcopenia risk are heritable; however, the genetic architecture and molecular mechanisms underlying sarcopenia remain largely unclear. In recent years, significant progress has been made in determining susceptibility loci using genome-wide association studies. In addition, recent advances in omics techniques, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, offer new opportunities to identify novel targets to help us understand the pathophysiology of sarcopenia. However, each individual technology cannot capture the entire view of the biological complexity of this disorder, while integrative multi-omics analyses may be able to reveal new insights. Here, we review the latest findings of multi-omics studies for sarcopenia and provide an in-depth summary of our current understanding of sarcopenia pathogenesis. Leveraging multi-omics data could give us a holistic understanding of sarcopenia etiology that may lead to new clinical applications. This review offers guidance and recommendations for fundamental research, innovative perspectives, and preventative and therapeutic interventions for sarcopenia.
    Keywords:  Epidemiology; Genomics; Metabolomics; Proteomics; Sarcopenia; Transcriptomics
  41. Proc Natl Acad Sci U S A. 2022 Feb 08. pii: e2120476119. [Epub ahead of print]119(6):
      Emerging evidence indicates that a subset of RNA molecules annotated as noncoding contain short open reading frames that code for small functional proteins called microproteins, which have largely been overlooked due to their small size. To search for cardiac-expressed microproteins, we used a comparative genomics approach and identified mitolamban (Mtlbn) as a highly conserved 47-amino acid transmembrane protein that is abundantly expressed in the heart. Mtlbn localizes specifically to the inner mitochondrial membrane where it interacts with subunits of complex III of the electron transport chain and with mitochondrial respiratory supercomplexes. Genetic deletion of Mtlbn in mice altered complex III assembly dynamics and reduced complex III activity. Unbiased metabolomic analysis of heart tissue from Mtlbn knockout mice further revealed an altered metabolite profile consistent with deficiencies in complex III activity. Cardiac-specific Mtlbn overexpression in transgenic (TG) mice induced cardiomyopathy with histological, biochemical, and ultrastructural pathologic features that contributed to premature death. Metabolomic analysis and biochemical studies indicated that hearts from Mtlbn TG mice exhibited increased oxidative stress and mitochondrial dysfunction. These findings reveal Mtlbn as a cardiac-expressed inner mitochondrial membrane microprotein that contributes to mitochondrial electron transport chain activity through direct association with complex III and the regulation of its assembly and function.
    Keywords:  cardiac; microprotein; mitochondria; oxidative phosphorylation
  42. Adv Mater. 2022 Feb 04. e2110618
      CRISPR-Cas9 may offer new therapeutics for genetic diseases through gene disruption via nonhomologous end joining (NHEJ) or gene correction via homology-directed repair (HDR). However, clinical transition of CRISPR technology is limited by the lack of safe and efficient delivery systems. Here, we report facilely fabricated pH-responsive polymer nanoparticles capable of safely and efficiently delivering Cas9 ribonucleoprotein alone (termed NHEJ-NP, diameter = 29.4 nm), or together with donor DNA (termed HDR-NP, diameter = 33.3 nm). Moreover, intravenously, intratracheally, and intramuscularly injected NHEJ-NP induced efficient gene editing in mouse liver, lung, and skeletal muscle, respectively. Intramuscularly injected HDR-NP also led to muscle strength recovery in a Duchenne muscular dystrophy mouse model. NHEJ-NP and HDR-NP possess many desirable properties including high payload loading content, small and uniform sizes, high editing efficiency, good biocompatibility, low immunogenicity, and ease of production, storage, and transport, making them great interest for various genome editing applications with clinical potentials. This article is protected by copyright. All rights reserved.
    Keywords:  CRISPR-Cas9; Genome Editing; Nanomedicine
  43. Front Physiol. 2021 ;12 749049
      The phenotype of sarcopenic obesity is frequently associated with impaired muscle strength and performance. Ectopic lipid deposition may interfere with muscle anabolic response especially during aging. Evidence is scarce concerning the potential interplay among aging and nutrient imbalance on skeletal muscle functionality. The objective of the present study was to investigate the impact of protein intake in the context of an obesogenic diet on skeletal muscle functional properties and intramuscular lipid infiltration. Two groups of forty-two adult and thirty-seven old male Wistar rats were randomly divided into four groups: isocaloric standard diet (12% protein, 14% lipid, as ST12); isocaloric standard (high-protein) diet (25% protein, 14% lipid, ST25); hypercaloric high-fat (normal-protein) diet (12% protein, 45% lipid, HF12); and hypercaloric high-fat (high-protein) diet (25% protein, 45% lipid, HF25). The nutritional intervention lasted 10 weeks. Total body composition was measured through Echo-MRI. Lipids were extracted from tibialis anterior muscle and analyzed by gas-liquid chromatography. The functional properties of the plantarflexor muscles were evaluated in vivo on an isokinetic dynamometer. Maximal torque was assessed from the torque-frequency relationship in isometric condition and maximal power was evaluated from the torque-velocity relationship in concentric condition. In adult rats high-protein intake combined with high-fat diet determined a lower decrease in relative isometric torque, normalized to either FFM or body weight, compared with adult rats fed a high-fat normal-protein diet. High-fat diet was also detrimental to relative muscle power, as normalized to body weight, that decreased to a larger extent in adult rats fed a high-fat normal-protein diet than their counterparts fed a normal-fat, high-protein diet. The effect of high-fat diet observed in adults, with the enhanced protein intake (25%) conferring some kind of protection against the negative effects of HFD, may be linked to the reduced intramuscular fat in this group, which may have contributed to preserve, at least partly, the contractile properties. A potential role for high-protein diet in preventing ectopic lipid deposition needs to be explored in future research. Detrimental effects of high- fat diet on skeletal muscle performance are mitigated by high- protein intake in adult rats but not in old rats.
    Keywords:  aging; dynapenia; muscle function; muscle lipid content; sarcopenic obesity
  44. Dis Model Mech. 2022 Jan 31. pii: dmm.049327. [Epub ahead of print]
      Exercise interventions are beneficial for reducing the risk of age-related diseases, including amyloidosis, but the underlying molecular links remain unclear. Here, we investigated the protective role of interval exercise training in a mouse model of age-related systemic apolipoprotein A-II amyloidosis (AApoAII) and identified potential mechanisms. Mice subjected to sixteen weeks of exercise showed improved whole-body physiologic functions and exhibited substantial inhibition of amyloidosis, particularly in the liver and spleen. Exercise activated the hepatic p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway and the downstream transcription factor tumor suppressor p53. This activation resulted in elevated expression and phosphorylation of heat shock protein beta-1 (HSPB1), a chaperone that defends against protein aggregation. In amyloidosis-induced mice, the hepatic p38 MAPK-related adaptive responses were additively enhanced by exercise. We observed that with exercise, greater amounts of phosphorylated HSPB1 accumulated at amyloid deposition areas, which we suspect inhibits amyloid fibril formation. Collectively, our findings demonstrate the exercise-activated specific chaperone prevention of amyloidosis, and suggest that exercise may amplify intracellular stress-related protective adaptation pathways against age-associated disorders such as amyloidosis.
    Keywords:  Amyloidosis; Exercise; Heat shock protein beta-1; Mouse model; RNA sequencing analysis; p38 MAPK signaling pathway
  45. Adv Nutr. 2022 Feb 02. pii: nmac009. [Epub ahead of print]
      Consumers are increasingly encouraged to consume more plant-based foods and lower their consumption of foods from animal origin. Concurrently, older adults are recommended to consume an adequate amount of high-quality dietary protein for the prevention of age-related muscle loss. In the current perspective, we discuss why it may not be preferred to consume a vegan diet at an older age. Our perspective is based on the proposed lower bioavailability and functionality of proteins in a vegan diet due to the matrix of the whole-food protein sources, the lower essential amino acid (EAA) content, and specific EAA deficiencies in proteins derived from plant-based foods. We propose that a vegan diet increases the risk of an inadequate protein intake at an older age and that current strategies to improve the anabolic properties of plant-based foods are not feasible for many older adults. We provide recommendations for further research to substantiate the remaining knowledge gaps regarding the consequences of a vegan diet on skeletal muscle mass and strength at an older age.
    Keywords:  ageing; animal-based food; plant-based diet; plant-based food; protein; sustainable food
  46. Hum Gene Ther. 2022 Feb 01.
      Pompe disease is an autosomal recessive lysosomal storage disorder caused by deficiency of acid α-glucosidase (GAA), resulting in skeletal muscle weakness and cardiomyopathy. Muscle weakness progresses despite currently available therapy, which has prompted the development of gene therapy with adeno-associated virus (AAV) type 2 vectors cross-packaged as AAV8 (2/8). Preclinical studies of gene therapy demonstrated that the minimum effective dose for biochemical correction with AAV2/8-LSPhGAA was approximately 2 x 1011 vector genomes (vg)/kg body weight. The current study examined the transduction of AAV2/8-LSPeGFP vector in adult GAA-KO mice with Pompe disease, and correlated that degree of transduction with the biochemical correction achieved by the same dose of AAV2/8-LSPhGAA. The minimum effective dose was found to be approximately 2 x 1011 vg/kg, with all hepatocytes variably transducing at this dose. At this dose, liver GAA significantly increased, while liver glycogen significantly decreased. The 2 x 1011 vg/kg dose was sufficient to significantly decrease diaphragm glycogen. However, the heart, diaphragm, and quadriceps all required a four-fold higher dose to achieve correction of GAA deficiency in association with significant clearance of stored glycogen, which correlated with increased serum GAA activity. These data indicate that AAV2/8-LSPeGFP transduced all hepatocytes when the 2 x 1011 vg/kg dose was administered, which correlated with partial biochemical correction from the equivalent dose of AAV2/8-LSPhGAA. Together these data support the conclusion that substantial transduction of the liver is required to achieve biochemical correction from AAV2/8-LSPhGAA.
  47. Neurology. 2022 Feb 04. pii: 10.1212/WNL.0000000000200032. [Epub ahead of print]
      BACKGROUND AND OBJECTIVES: Facioscapulohumeral muscular dystrophy type 2 (FSHD2) and arhinia are two distinct disorders caused by pathogenic variants in the same gene, SMCHD1. The mechanism underlying this phenotypic divergence remains unclear. In this study, we characterize the neuromuscular phenotype of individuals with arhinia caused by SMCHD1 variants and analyze their complex genetic and epigenetic criteria to assess their risk for FSHD2.METHODS: Eleven individuals with congenital nasal anomalies, including arhinia, nasal hypoplasia, or anosmia, underwent a neuromuscular exam, genetic testing, muscle ultrasound, and muscle MRI. Risk for FSHD2 was determined by combined genetic and epigenetic analysis of 4q35 haplotype, D4Z4 repeat length and methylation profile. We also compared expression levels of pathogenic DUX4 mRNA in primary myoblasts or dermal fibroblasts (upon myogenic differentiation or epigenetic transdifferentiation, respectively) in these individuals to those with confirmed FSHD2.
    RESULTS: Among the eleven individuals with rare, pathogenic, heterozygous missense variants in exons 3-11 of SMCHD1, only a subset (n=3/11; 1 male, 2 females; age 25-51 years) met the strict genetic and epigenetic criteria for FSHD2 (D4Z4 repeat unit length <21 in cis with a 4qA haplotype, and D4Z4 methylation <30%). None of the 3 individuals had typical clinical manifestations or muscle imaging findings consistent with FSHD2. However, the arhinia patients meeting the permissive genetic and epigenetic criteria for FSHD2 displayed some DUX4 expression in dermal fibroblasts under the epigenetic de-repression by drug treatment and in the primary myoblasts undergoing myogenic differentiation.
    DISCUSSION: In this cross-sectional study, we identified arhinia patients who meet the full genetic and epigenetic criteria for FSHD2 and display the molecular hallmark of FSHD, that is DUX4 de-repression and expression in vitro, but who do not manifest with the typical clinicopathologic phenotype of FSHD2. The distinct dichotomy between FSHD2 and arhinia phenotypes despite an otherwise poised DUX4 locus implies the presence of novel disease-modifying factors that seem to operate as a "switch", resulting in one phenotype and not the other. Identification and further understanding of these disease-modifying factors will likely provide valuable insight with therapeutic implications for both diseases.
  48. J Appl Physiol (1985). 2022 Feb 03.
      Cardiovasomobility is a novel concept that encompasses the integration of cardiovascular and skeletal muscle function in health and disease with critical modification by physical activity, or lack thereof. Compelling evidence indicates that physical activity improves health while a sedentary, or inactive, lifestyle accelerates cardiovascular and skeletal muscle dysfunction and hastens disease progression. Identifying causative factors for vascular and skeletal muscle dysfunction, especially in humans, has proven difficult due to the limitations associated with cross-sectional investigations. Therefore, experimental models of physical inactivity and disuse, which mimic hospitalization, injury, and illness provide important insight into the mechanisms and consequences of vascular and skeletal muscle dysfunction. This review provides an overview of the experimental models of disuse and inactivity and focuses on the integrated responses of the vasculature and skeletal muscle in response to disuse/inactivity. The timecourse and magnitude of dysfunction evoked by various models of disuse/inactivity are discussed in detail and evidence in support of the critical roles of mitochondrial function and oxidative stress are presented. Lastly, strategies aimed at preserving vascular and skeletal muscle dysfunction during disuse/inactivity are reviewed. Within the context of cardiovasomobility, experimental manipulation of physical activity, provides valuable insight into the mechanisms responsible for vascular and skeletal muscle dysfunction that limit mobility, degrade quality of life, and hasten the onset of disease.
    Keywords:  disuse; inactivity; metabolism; oxidative stress; physical activity