bims-moremu Biomed News
on Molecular regulators of muscle mass
Issue of 2022‒01‒16
fifty-one papers selected by
Anna Vainshtein
Craft Science Inc.


  1. JCI Insight. 2022 Jan 13. pii: e154746. [Epub ahead of print]
      Mammalian skeletal muscle contains heterogenous myofibers with different contractile and metabolic properties that sustain muscle mass and endurance capacity. The transcriptional regulators that govern these myofiber gene programs have been elucidated. However, the hormonal cues that direct the specification of myofiber types and muscle endurance remain largely unknown. Here we uncover the secreted factor Tsukushi (TSK) as an extracellular signal that is required for maintaining muscle mass, strength, and endurance capacity, and contributes to muscle regeneration. Mice lacking TSK exhibited reduced grip strength and impaired exercise capacity. Muscle transcriptomic analysis revealed that TSK deficiency results in a remarkably selective impairment in the expression of myofibrillar genes characteristic of slow-twitch muscle fibers that is associated with abnormal neuromuscular junction formation. AAV-mediated overexpression of TSK failed to rescue these myofiber defects in adult mice, suggesting that the effects of TSK on myofibers are likely restricted to certain developmental stages. Finally, mice lacking TSK exhibited diminished muscle regeneration following cardiotoxin-induced muscle injury. These findings support a crucial role of TSK as a hormonal cue in the regulation of contractile gene expression, endurance capacity, and muscle regeneration.
    Keywords:  Growth factors; Muscle Biology
    DOI:  https://doi.org/10.1172/jci.insight.154746
  2. BMB Rep. 2022 Jan 10. pii: 5472. [Epub ahead of print]
      Skeletal myogenesis is essential to keep muscle mass and integrity, and impaired myogenesis is closely related to the etiology of muscle wasting. Recently, miR-141-3p has been shown to be induced under various conditions associated with muscle wasting, such as aging, oxidative stress, and mitochondrial dysfunction. However, the functional significance and mechanism of miR-141-3p in myogenic differentiation have not been explored to date. In this study, we investigated the roles of miR-141-3p on CFL2 expression, proliferation, and myogenic differentiation in C2C12 myoblasts. MiR-141-3p appeared to target the 3'UTR of CFL2 directly and suppressed the expression of CFL2, an essential factor for actin filament (F-actin) dynamics. Transfection of miR-141-3p mimic in myoblasts increased F-actin formation and augmented nuclear Yes-associated protein (YAP), a key component of mechanotransduction. Furthermore, miR-141-3p mimic increased myoblast proliferation and promoted cell cycle progression throughout the S and G2/M phases. Consequently, miR-141-3p mimic led to significant suppressions of myogenic factors expression, such as MyoD, MyoG, and MyHC, and hindered the myogenic differentiation of myoblasts. Thus, this study reveals the crucial role of miR-141-3p in myogenic differentiation via CFL2-YAP-mediated mechanotransduction and provides implications of miRNA-mediated myogenic regulation in skeletal muscle homeostasis.
  3. Int J Mol Sci. 2021 Dec 24. pii: 169. [Epub ahead of print]23(1):
      Denervation of skeletal muscle is a debilitating consequence of injury of the peripheral nervous system, causing skeletal muscle to experience robust atrophy. However, the molecular mechanisms controlling the wasting of skeletal muscle due to denervation are not well understood. Here, we demonstrate that transection of the sciatic nerve in Sprague-Dawley rats induced robust skeletal muscle atrophy, with little effect on the neuromuscular junction (NMJ). Moreover, the following study indicates that all three arms of the unfolded protein response (UPR) are activated in denervated skeletal muscle. Specifically, ATF4 and ATF6 are elevated in the cytoplasm of skeletal muscle, while XBP1 is elevated in the nuclei of skeletal muscle. Moreover, XBP1 is expressed in the nuclei surrounding the NMJ. Altogether, these results endorse a potential role of the UPR and, specifically, XBP1 in the maintenance of both skeletal muscle and the NMJ following sciatic nerve transection. Further investigations into a potential therapeutic role concerning these mechanisms are needed.
    Keywords:  ER Stress; UPR; denervation; neuromuscular junction; skeletal muscle atrophy
    DOI:  https://doi.org/10.3390/ijms23010169
  4. J Cachexia Sarcopenia Muscle. 2022 Jan 10.
      BACKGROUND: CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor whose high expression in human cancers is associated with tumour aggressiveness and poor outcomes. Most advanced cancer patients will develop cachexia, characterized by loss of skeletal muscle mass. In response to secreted factors from cachexia-inducing tumours, C/EBPβ is stimulated in muscle, leading to both myofibre atrophy and the inhibition of muscle regeneration. Involved in the regulation of immune responses, C/EBPβ induces the expression of many secreted factors, including cytokines. Because tumour-secreted factors drive cachexia and aggressive tumours have higher expression of C/EBPβ, we examined a potential role for C/EBPβ in the expression of tumour-derived cachexia-inducing factors.METHODS: We used gain-of-function and loss-of-function approaches in vitro and in vivo to evaluate the role of tumour C/EBPβ expression on the secretion of cachexia-inducing factors.
    RESULTS: We report that C/EBPβ overexpression up-regulates the expression of 260 secreted protein genes, resulting in a secretome that inhibits myogenic differentiation (-31%, P < 0.05) and myotube maturation [-38% (fusion index) and -25% (myotube diameter), P < 0.05]. We find that knockdown of C/EBPβ in cachexia-inducing Lewis lung carcinoma cells restores myogenic differentiation (+25%, P < 0.0001) and myotube diameter (+90%, P < 0.0001) in conditioned medium experiments and, in vivo, prevents muscle wasting (-51% for small myofibres vs. controls, P < 0.01; +140% for large myofibres, P < 0.01). Conversely, overexpression of C/EBPβ in non-cachectic tumours converts their secretome into a cachexia-inducing one, resulting in reduced myotube diameter (-41%, P < 0.0001, EL4 model) and inhibition of differentiation in culture (-26%, P < 0.01, EL4 model) and muscle wasting in vivo (+98% small fibres, P < 0.001; -76% large fibres, P < 0.001). Comparison of the differently expressed transcripts coding for secreted proteins in C/EBPβ-overexpressing myoblasts with the secretome from 27 different types of human cancers revealed ~18% similarity between C/EBPβ-regulated secreted proteins and those secreted by highly cachectic tumours (brain, pancreatic, and stomach cancers). At the protein level, we identified 16 novel secreted factors that are present in human cancer secretomes and are up-regulated by C/EBPβ. Of these, we tested the effect of three factors (SERPINF1, TNFRSF11B, and CD93) on myotubes and found that all had atrophic potential (-33 to -36% for myotube diameter, P < 0.01).
    CONCLUSIONS: We find that C/EBPβ is necessary and sufficient to induce the secretion of cachexia-inducing factors by cancer cells and loss of C/EBPβ in tumours attenuates muscle atrophy in an animal model of cancer cachexia. Our findings establish C/EBPβ as a central regulator of cancer cachexia and an important therapeutic target.
    Keywords:  CCAAT-enhancer-binding proteins; Cachexia; Carcinoma, Lewis lung; Muscle, skeletal; Muscular atrophy; Secreted proteins
    DOI:  https://doi.org/10.1002/jcsm.12909
  5. Cell Tissue Res. 2022 Jan 10.
      In skeletal muscle, chronic oxygen depletion induces a disturbance leading to muscle atrophy. Mechanical stress (physical exercise) and nutritional supplement therapy are commonly used against loss of muscle mass and undernutrition in hypoxia, while oxygenation therapy is preferentially used to counteract muscle fatigue and exercise intolerance. However, the impact of oxygenation on skeletal muscle cells remains poorly understood, in particular on signalling pathways regulating protein balance. Thus, we investigated the effects of each separated treatment (mechanical stress, nutritional supplementation and oxygenation therapy) on intracellular pathways involved in protein synthesis and degradation that are imbalanced in skeletal muscle cells atrophy resulting from hypoxia. Myotubes under hypoxia were treated by electrical stimulation, amino acids supplement or oxygenation period. Signalling pathways involved in protein synthesis (PI3K-Akt-mTOR) and degradation (FoxO1 and FoxO3a) were investigated, so as autophagy, ubiquitin-proteasome system and myotube morphology. Electrical stimulation and oxygenation treatment resulted in higher myotube diameter, myogenic fusion index and myotubes density until 48 h post-treatment compared to untreated hypoxic myotubes. Both treatments also induced inhibition of FoxO3a and decreased activity of ubiquitin-proteasome system; however, their impact on protein synthesis pathway was specific for each one. Indeed, electrical stimulation impacted upstream proteins to mTOR (i.e., Akt) while oxygenation treatment activated downstream targets of mTOR (i.e., 4E-BP1 and P70S6K). In contrast, amino acid supplementation had very few effects on myotube morphology nor on protein homeostasis. This study demonstrated that electrical stimulation or oxygenation period are two effective treatments to fight against hypoxia-induced muscle atrophy, acting through different molecular adaptations.
    Keywords:  Electrical stimulation; Myotube morphology; Oxygenation treatment; Protein homeostasis; Skeletal muscle hypoxia
    DOI:  https://doi.org/10.1007/s00441-021-03492-x
  6. FEBS J. 2022 Jan 13.
      Muscle stem cells (MuSCs) are required for life-long muscle regeneration. In general, aging has been linked to a decline in the numbers and the regenerative potential of MuSCs. Muscle regeneration depends on the proper functioning of MuSCs, which is itself dependent on intricate interactions with its niche components. Aging is associated with both cell-intrinsic and niche-mediated changes, which can be the result of transcriptional, post-transcriptional or post-translational alterations in MuSCs or in the components of their niche. The interplay between cell intrinsic alterations in MuSCs and changes in the stem cell niche environment during aging and its impact on the number and the function of MuSCs is an important emerging area of research. In this review, we discuss whether the decline in the regenerative potential of MuSCs with age is the cause or the consequence of aging skeletal muscle. Understanding the effect of aging on MuSCs and the individual components of their niche is critical to develop effective therapeutic approaches to diminish or reverse the age-related defects in muscle regeneration.
    Keywords:  Aging; Muscle stem cells; Regeneration; Skeletal muscle; Stem cell niche
    DOI:  https://doi.org/10.1111/febs.16352
  7. Nat Commun. 2022 Jan 10. 13(1): 168
      Skeletal muscle serves fundamental roles in organismal health. Gene expression fluctuations are critical for muscle homeostasis and the response to environmental insults. Yet, little is known about post-transcriptional mechanisms regulating such fluctuations while impacting muscle proteome. Here we report genome-wide analysis of mRNA methyladenosine (m6A) dynamics of skeletal muscle hypertrophic growth following overload-induced stress. We show that increases in METTL3 (the m6A enzyme), and concomitantly m6A, control skeletal muscle size during hypertrophy; exogenous delivery of METTL3 induces skeletal muscle growth, even without external triggers. We also show that METTL3 represses activin type 2 A receptors (ACVR2A) synthesis, blunting activation of anti-hypertrophic signaling. Notably, myofiber-specific conditional genetic deletion of METTL3 caused spontaneous muscle wasting over time and abrogated overload-induced hypertrophy; a phenotype reverted by co-administration of a myostatin inhibitor. These studies identify a previously unrecognized post-transcriptional mechanism promoting the hypertrophic response of skeletal muscle via control of myostatin signaling.
    DOI:  https://doi.org/10.1038/s41467-021-27848-7
  8. Am J Physiol Cell Physiol. 2022 Jan 12.
      Angiogenesis and muscle satellite cell (SC)-mediated myonuclear accretion are considered essential for the robust response of contraction-induced muscle hypertrophy. Moreover, both myonucleus and SCs are physically adjacent to capillaries and are the major sites for the expression of proangiogenic factors, such as VEGF, in the skeletal muscle. Thus, events involving the addition of new myonuclei via activation of SCs may play an important role in angiogenesis during muscle hypertrophy. However, the relevance among myonuclei number, capillary density, and angiogenesis factor is not demonstrated. The Notch effector HeyL is specifically expressed in SCs in skeletal muscle and is crucial for SC proliferation by inhibiting MyoD in overload-induced muscle hypertrophy. Here, we tested whether the addition of new myonuclei by SC in overloaded muscle is associated with angiogenic adaptation by reanalyzing skeletal muscle from HeyL knockout (KO) mice, which show blunted responses of SC proliferation, myonucleus addition, and overload-induced muscle hypertrophy. Reanalysis confirmed blunted SC proliferation and myonuclear accretion in the plantaris muscle of HeyL-KO mice 9 weeks after synergist ablation. Interestingly, the increase in capillary-fiber ratio observed in WT mice was impaired in HeyL-KO mice. In both WT and HeyL-KO mice, the expression of VEGFA and VEGFB was similarly increased in response to overload. In addition, the expression pattern of TSP-1, a negative regulator of angiogenesis, was also not changed between WT and HeyL-KO mice. Collectively, these results suggest that SCs activation-myonuclear accretion plays a crucial role in angiogenesis during overload-induced muscle hypertrophy via independent of angiogenesis regulators.
    Keywords:  HeyL; angiogenesis; muscle hypertrophy; myonuclei; satellite cell
    DOI:  https://doi.org/10.1152/ajpcell.00343.2021
  9. Stem Cell Reports. 2022 Jan 11. pii: S2213-6711(21)00593-2. [Epub ahead of print]17(1): 82-95
      Adult skeletal muscle stem cells (MuSCs) are important for muscle regeneration and constitute a potential source of cell therapy. However, upon isolation, MuSCs rapidly exit quiescence and lose transplantation potency. Maintenance of the quiescent state in vitro preserves MuSC transplantation efficiency and provides an opportunity to study the biology of quiescence. Here we show that Tubastatin A (TubA), an Hdac6 inhibitor, prevents primary cilium resorption, maintains quiescence, and enhances MuSC survival ex vivo. Phenotypic characterization and transcriptomic analysis of TubA-treated cells revealed that TubA maintains most of the biological features and molecular signatures of quiescence. Furthermore, TubA-treated MuSCs showed improved engraftment ability upon transplantation. TubA also induced a return to quiescence and improved engraftment of cycling MuSCs, revealing a potentially expanded application for MuSC therapeutics. Altogether, these studies demonstrate the ability of TubA to maintain MuSC quiescence ex vivo and to enhance the therapeutic potential of MuSCs and their progeny.
    Keywords:  HDAC; Tubastatin A; muscle stem cells; primary cilium; quiescence; transplantation
    DOI:  https://doi.org/10.1016/j.stemcr.2021.11.012
  10. Aging (Albany NY). 2022 Jan 13. 14(undefined):
      Aging-associated muscle wasting and impaired regeneration are caused by deficiencies in muscle stem cell (MuSC) number and function. We postulated that aged MuSCs are intrinsically impaired in their responsiveness to omnipresent mechanical cues through alterations in MuSC morphology, mechanical properties, and number of integrins, culminating in impaired proliferative capacity. Here we show that aged MuSCs exhibited significantly lower growth rate and reduced integrin-α7 expression as well as lower number of phospho-paxillin clusters than young MuSCs. Moreover, aged MuSCs were less firmly attached to matrigel-coated glass substrates compared to young MuSCs, as 43% of the cells detached in response to pulsating fluid shear stress (1 Pa). YAP nuclear localization was 59% higher than in young MuSCs, yet YAP target genes Cyr61 and Ctgf were substantially downregulated. When subjected to pulsating fluid shear stress, aged MuSCs exhibited reduced upregulation of proliferation-related genes. Together these results indicate that aged MuSCs exhibit impaired mechanosensitivity and growth potential, accompanied by altered morphology and mechanical properties as well as reduced integrin-α7 expression. Aging-associated impaired muscle regenerative capacity and muscle wasting is likely due to aging-induced intrinsic MuSC alterations and dysfunctional mechanosensitivity.
    Keywords:  YAP signaling; aging; mechanosensitivity; muscle stem cell; proliferation
    DOI:  https://doi.org/10.18632/aging.203830
  11. Mech Ageing Dev. 2022 Jan 10. pii: S0047-6374(22)00012-4. [Epub ahead of print]202 111630
      Sarcopenia is the age-related decrease in skeletal muscle mass, and current therapies for this disease are ineffective. We previously showed that ileal farnesoid X receptor (FXR)-fibroblast growth factor 15/19 (FGF15/19) signaling acts as a regulator of gut microbiota to mediate host skeletal muscle. However, the therapeutic potential of this pathway for sarcopenia is unknown. This study showed that ileal FXR-FGF15/19 signaling was downregulated in older men and aged male mice due to changes in the gut microbiota and microbial bile acid metabolism during aging. In addition, the intestine-specific FXR agonist fexaramine increased skeletal muscle mass and improve muscle performance in aged mice. Ileal FXR activation increased skeletal muscle protein synthesis in a FGF15/19-dependent way, indicating that ileal FXR-FGF15/19 signaling is a potential therapeutic target for sarcopenia.
    Keywords:  Bile acid; FGF15/19; FXR; Fexaramine; Skeletal muscle
    DOI:  https://doi.org/10.1016/j.mad.2022.111630
  12. NPJ Regen Med. 2022 Jan 14. 7(1): 5
      Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease in which extraskeletal (heterotopic) bone forms within tissues such as skeletal muscles, often in response to injury. Mutations in the BMP type I receptor ACVR1/ALK2 cause FOP by increasing BMP pathway signaling. In contrast to the growing understanding of the inappropriate formation of bone tissue within the muscle in FOP, much is still unknown about the regenerative capacity of adult diseased muscles. Utilizing an inducible ACVR1R206H knock-in mouse, we found that injured Acvr1R206H/+ skeletal muscle tissue regenerates poorly. We demonstrated that while two resident stem cell populations, muscle stem cells (MuSCs) and fibro/adipogenic progenitors (FAPs), have similar proliferation rates after injury, the differentiation potential of mutant MuSCs is compromised. Although MuSC-specific deletion of the ACVR1R206H mutation does not alter the regenerative potential of skeletal muscles in vivo, Acvr1R206H/+ MuSCs form underdeveloped fibers that fail to fuse in vitro. We further determined that FAPs from Acvr1R206H/+ mice repress the MuSC-mediated formation of Acvr1R206H/+ myotubes in vitro. These results identify a previously unrecognized role for ACVR1R206H in myogenesis in FOP, via improper interaction of tissue-resident stem cells during skeletal muscle regeneration.
    DOI:  https://doi.org/10.1038/s41536-021-00201-8
  13. J Appl Physiol (1985). 2022 Jan 13.
      Endurance exercise triggers skeletal muscle adaptations, including enhanced insulin signaling, glucose metabolism, and mitochondrial biogenesis. However, exercise-induced skeletal muscle adaptations may not occur in some cases, a condition known as exercise-resistance. Methylglyoxal (MG) is a highly reactive dicarbonyl metabolite and has detrimental effects on the body such as causing diabetic complications, mitochondrial dysfunction, and inflammation. This study aimed to clarify the effect of methylglyoxal on skeletal muscle molecular adaptations following endurance exercise. Mice were randomly divided into 4 groups (n = 12 per group): sedentary control group, voluntary exercise group, MG-treated group, and MG-treated with voluntary exercise group. Mice in the voluntary exercise group were housed in a cage with a running wheel, while mice in the MG-treated groups received drinking water containing 1% MG. Four weeks of voluntary exercise induced several molecular adaptations in the plantaris muscle, including increased expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), mitochondria complex proteins, toll-like receptor 4 (TLR4), 72-kDa heat shock protein (HSP72), hexokinase II, and glyoxalase 1; this also enhanced insulin-stimulated Akt Ser473 phosphorylation and citrate synthase activity. However, these adaptations were suppressed with MG treatment. In the soleus muscle, the exercise-induced increases in the expression of TLR4, HSP72, and advanced glycation end products receptor 1 were inhibited with MG treatment. These findings suggest that MG is a factor that inhibits endurance exercise-induced molecular responses including mitochondrial adaptations, insulin signaling activation, and the upregulation of several proteins related to mitochondrial biogenesis, glucose handling, and glycation in primarily fast-twitch skeletal muscle.
    Keywords:  exercise-resistance; glycation; insulin signaling; mitochondria; non-responder
    DOI:  https://doi.org/10.1152/japplphysiol.00539.2021
  14. J Cachexia Sarcopenia Muscle. 2022 Jan 09.
      BACKGROUND: The role of Numb, a protein that is important for cell fate and development and that, in human muscle, is expressed at reduced levels with advanced age, was investigated; adult mice skeletal muscle and its localization and function within myofibres were determined.METHODS: Numb expression was evaluated by western blot. Numb localization was determined by confocal microscopy. The effects of conditional knock out (cKO) of Numb and the closely related gene Numb-like in skeletal muscle fibres were evaluated by in situ physiology, transmission and focused ion beam scanning electron microscopy, three-dimensional reconstruction of mitochondria, lipidomics, and bulk RNA sequencing. Additional studies using primary mouse myotubes investigated the effects of Numb knockdown on cell fusion, mitochondrial function, and calcium transients.
    RESULTS: Numb protein expression was reduced by ~70% (P < 0.01) at 24 as compared with 3 months of age in gastrocnemius and tibialis anterior muscle. Numb was localized within muscle fibres as bands traversing fibres at regularly spaced intervals in close proximity to dihydropyridine receptors. The cKO of Numb and Numb-like reduced specific tetanic force by 36% (P < 0.01), altered mitochondrial spatial relationships to sarcomeric structures, increased Z-line spacing by 30% (P < 0.0001), perturbed sarcoplasmic reticulum organization and reduced mitochondrial volume by over 80% (P < 0.01). Only six genes were differentially expressed in cKO mice: Itga4, Sema7a, Irgm2, Vezf1, Mib1, and Tmem132a. Several lipid mediators derived from polyunsaturated fatty acids through lipoxygenases were up-regulated in Numb cKO skeletal muscle: 12-HEPE was increased by ~250% (P < 0.05) and 17,18-EpETE by ~240% (P < 0.05). In mouse primary myotubes, Numb knockdown reduced cell fusion (~20%, P < 0.01) and delayed the caffeine-induced rise in cytosolic calcium concentrations by more than 100% (P < 0.01).
    CONCLUSIONS: These findings implicate Numb as a critical factor in skeletal muscle structure and function and suggest that Numb is critical for calcium release. We therefore speculate that Numb plays critical roles in excitation-contraction coupling, one of the putative targets of aged skeletal muscles. These findings provide new insights into the molecular underpinnings of the loss of muscle function observed with sarcopenia.
    Keywords:  Ageing; Excitation contraction coupling; Mitochondria; Sarcomere; Sarcopenia
    DOI:  https://doi.org/10.1002/jcsm.12907
  15. Cell Metab. 2022 Jan 07. pii: S1550-4131(21)00636-7. [Epub ahead of print]
      Mitophagy is a quality control mechanism that eliminates damaged mitochondria, yet its significance in mammalian pathophysiology and aging has remained unclear. Here, we report that mitophagy contributes to mitochondrial dysfunction in skeletal muscle of aged mice and human patients. The early disease stage is characterized by muscle fibers with central nuclei, with enhanced mitophagy around these nuclei. However, progressive mitochondrial dysfunction halts mitophagy and disrupts lysosomal homeostasis. Interestingly, activated or halted mitophagy occur in a mosaic manner even in adjacent muscle fibers, indicating cell-autonomous regulation. Rapamycin restores mitochondrial turnover, indicating mTOR-dependence of mitochondrial recycling in advanced disease stage. Our evidence suggests that (1) mitophagy is a hallmark of age-related mitochondrial pathology in mammalian muscle, (2) mosaic halting of mitophagy is a mechanism explaining mosaic respiratory chain deficiency and accumulation of pathogenic mtDNA variants in adult-onset mitochondrial diseases and normal aging, and (3) augmenting mitophagy is a promising therapeutic approach for muscle mitochondrial dysfunction.
    Keywords:  SBFSEM; centrally nucleated fibers; lysosome; mito-QC; mitochondrial disease; mitochondrial myopathy; mitophagy; patient; ragged-red fibers
    DOI:  https://doi.org/10.1016/j.cmet.2021.12.017
  16. ACS Appl Bio Mater. 2021 Sep 20. 4(9): 7070-7080
      In skeletal-muscle regeneration, it is critical to promote efferocytosis of immune cells and differentiation of satellite cells/postnatal muscle stem cells at the damaged sites. With the optimized poloxamer 407 composition gelled at body temperature, the drugs can be delivered locally. The purpose of this study is to develop a topical injection therapeutic agent for muscle regeneration, sarcopenia, and cachexia. Herein, we construct an injectable, in situ hydrogel system consisting of CD146, IGF-1, collagen I/III, and poloxamer 407, termed CIC gel. The secreted CD146 then binds to VEGFR2 on the muscle surface and effectively induces efferocytosis of neutrophils and macrophages. IGF-1 promotes satellite cell differentiation, and biocompatible collagen evades immune responses of the CIC gel. Consequently, these combined molecules activate muscle regeneration via autophagy and suppress muscle inflammation and apoptosis. Conclusively, we provide an applicable concept of the myogenesis-activating protein formulation, broadening the thermoreversible hydrogel to protein therapeutics for damaged muscle recovery.
    Keywords:  CD146/IGF-1/collagen-packed hydrogel; muscular inflammation; poloxamer 407; skeletal-muscle regeneration; thermosensitive vehicles
    DOI:  https://doi.org/10.1021/acsabm.1c00688
  17. Bio Protoc. 2021 Dec 05. 11(23): e4238
      Satellite cells (SCs) are muscle stem cells capable of regenerating injured muscle. The study of their functional potential depends on the availability of methods for the isolation and expansion of pure SCs, which retain myogenic properties after serial passages in vitro. Here, we describe a protocol for the isolation and in vitro expansion of highly pure mouse and human SCs based on ice-cold treatment (ICT). The ICT is carried out by briefly incubating the dish containing a heterogeneous mix of adherent muscle mononuclear cells on ice for 15-30 min, which leads to the detachment only of the SCs, and gives rise to SC cultures with 95-100% purity. This approach can also be used to passage the cells, allowing SC expansion over extended periods of time without compromising their proliferation or differentiation potential. Overall, the ICT method is cost-effective, accessible, technically simple, reproducible, and highly efficient. Graphic abstract: Figure 1.Satellite cell isolation using the ice-cold treatment method.
    Keywords:  In vitro expansion ; MyoD; Pax7; Satellite cell isolation; Skeletal muscle
    DOI:  https://doi.org/10.21769/BioProtoc.4238
  18. Mol Ther Nucleic Acids. 2022 Mar 08. 27 319-334
      Skeletal muscle is a regulator of the body's energy expenditure and metabolism. Abnormal regulation of skeletal muscle-specific genes leads to various muscle diseases. Long non-coding RNAs (lncRNAs) have been demonstrated to play important roles in muscle growth and muscle atrophy. To explore the potential function of muscle-associated lncRNA, we analyzed our previous RNA-sequencing data and selected the lncRNA (LncEDCH1) as the research object. In this study, we report that LncEDCH1 is specifically enriched in skeletal muscle, and its transcriptional activity is positively regulated by transcription factor SP1. LncEDCH1 regulates myoblast proliferation and differentiation in vitro. In vivo, LncEDCH1 reduces intramuscular fat deposition, activates slow-twitch muscle phenotype, and inhibits muscle atrophy. Mechanistically, LncEDCH1 binds to sarcoplasmic/ER calcium ATPase 2 (SERCA2) protein to enhance SERCA2 protein stability and increase SERCA2 activity. Meanwhile, LncEDCH1 improves mitochondrial efficiency possibly through a SERCA2-mediated activation of the AMPK pathway. Our findings provide a strategy for using LncEDCH1 as an effective regulator for the treatment of muscle atrophy and energy metabolism.
    Keywords:  Ca2+ homeostasis; LncEDCH1; mitochondrial biogenesis; muscle atrophy; sarcoplasmic/ER calcium ATPase 2
    DOI:  https://doi.org/10.1016/j.omtn.2021.12.004
  19. Cancers (Basel). 2021 Dec 22. pii: 28. [Epub ahead of print]14(1):
      Cancer cachexia is a multifactorial and devastating syndrome characterized by severe skeletal muscle mass loss and dysfunction. As cachexia still has neither a cure nor an effective treatment, better understanding of skeletal muscle plasticity in the context of cancer is of great importance. Although aerobic exercise training (AET) has been shown as an important complementary therapy for chronic diseases and associated comorbidities, the impact of AET on skeletal muscle mass maintenance during cancer progression has not been well documented yet. Here, we show that previous AET induced a protective mechanism against tumor-induced muscle wasting by modulating the Akt/mTORC1 signaling and eukaryotic initiation factors, specifically eIF2-α. Thereafter, it was determined whether the in vivo Akt activation would induce a hypertrophic profile in cachectic muscles. As observed for the first time, Akt-induced hypertrophy was able and sufficient to either prevent or revert cancer cachexia by modulating both Akt/mTORC1 pathway and the eIF-2α activation, and induced a better muscle functionality. These findings provide evidence that skeletal muscle tissue still preserves hypertrophic potential to be stimulated by either AET or gene therapy to counteract cancer cachexia.
    Keywords:  Akt-induced hypertrophy; Akt/mTORC1 signaling; cancer cachexia; eIF-2α; physical exercise; skeletal muscle plasticity; translation initiation
    DOI:  https://doi.org/10.3390/cancers14010028
  20. PLoS One. 2022 ;17(1): e0261723
      Skeletal muscle atrophy is a physiological response to disuse, aging, and disease. We compared changes in muscle mass and the transcriptome profile after short-term immobilization in a divergent model of high and low responders to endurance training to identify biological processes associated with the early atrophy response. Female rats selectively bred for high response to endurance training (HRT) and low response to endurance training (LRT; n = 6/group; generation 19) underwent 3 day hindlimb cast immobilization to compare atrophy of plantaris and soleus muscles with line-matched controls (n = 6/group). RNA sequencing was utilized to identify Gene Ontology Biological Processes with differential gene set enrichment. Aerobic training performed prior to the intervention showed HRT improved running distance (+60.6 ± 29.6%), while LRT were unchanged (-0.3 ± 13.3%). Soleus atrophy was greater in LRT vs. HRT (-9.0 ±8.8 vs. 6.2 ±8.2%; P<0.05) and there was a similar trend in plantaris (-16.4 ±5.6% vs. -8.5 ±7.4%; P = 0.064). A total of 140 and 118 biological processes were differentially enriched in plantaris and soleus muscles, respectively. Soleus muscle exhibited divergent LRT and HRT responses in processes including autophagy and immune response. In plantaris, processes associated with protein ubiquitination, as well as the atrogenes (Trim63 and Fbxo32), were more positively enriched in LRT. Overall, LRT demonstrate exacerbated atrophy compared to HRT, associated with differential gene enrichments of biological processes. This indicates that genetic factors that result in divergent adaptations to endurance exercise, may also regulate biological processes associated with short-term muscle unloading.
    DOI:  https://doi.org/10.1371/journal.pone.0261723
  21. Int J Mol Sci. 2021 Dec 23. pii: 148. [Epub ahead of print]23(1):
      A large set of FoxOs-dependent genes play a primary role in controlling muscle mass during hindlimb unloading. Mitochondrial dysfunction can modulate such a process. We hypothesized that endurance exercise before disuse can protect against disuse-induced muscle atrophy by enhancing peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) expression and preventing mitochondrial dysfunction and energy-sensing AMP-activated protein kinase (AMPK) activation. We studied cross sectional area (CSA) of muscle fibers of gastrocnemius muscle by histochemistry following 1, 3, 7, and 14 days of hindlimb unloading (HU). We used Western blotting and qRT-PCR to study mitochondrial dynamics and FoxOs-dependent atrogenes' expression at 1 and 3 days after HU. Preconditioned animals were submitted to moderate treadmill exercise for 7 days before disuse. Exercise preconditioning protected the gastrocnemius from disuse atrophy until 7 days of HU. It blunted alterations in mitochondrial dynamics up to 3 days after HU and the expression of most atrogenes at 1 day after disuse. In preconditioned mice, the activation of atrogenes resumed 3 days after HU when mitochondrial dynamics, assessed by profusion and pro-fission markers (mitofusin 1, MFN1, mitofusin 2, MFN2, optic atrophy 1, OPA1, dynamin related protein 1, DRP1 and fission 1, FIS1), PGC1α levels, and AMPK activation were at a basal level. Therefore, the normalization of mitochondrial dynamics and function was not sufficient to prevent atrogenes activation just a few days after HU. The time course of sirtuin 1 (SIRT1) expression and content paralleled the time course of atrogenes' expression. In conclusion, seven days of endurance exercise counteracted alterations of mitochondrial dynamics and the activation of atrogenes early into disuse. Despite the normalization of mitochondrial dynamics, the effect on atrogenes' suppression died away within 3 days of HU. Interestingly, muscle protection lasted until 7 days of HU. A longer or more intense exercise preconditioning may prolong atrogenes suppression and muscle protection.
    Keywords:  atrogenes; disuse atrophy; hindlimb unloading; physical preconditioning
    DOI:  https://doi.org/10.3390/ijms23010148
  22. PLoS Genet. 2022 Jan 13. 18(1): e1010015
      Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by progressive weakness and degeneration of specific muscles. OPMD is due to extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Aggregation of the mutant protein in muscle nuclei is a hallmark of the disease. Previous transcriptomic analyses revealed the consistent deregulation of the ubiquitin-proteasome system (UPS) in OPMD animal models and patients, suggesting a role of this deregulation in OPMD pathogenesis. Subsequent studies proposed that UPS contribution to OPMD involved PABPN1 aggregation. Here, we use a Drosophila model of OPMD to address the functional importance of UPS deregulation in OPMD. Through genome-wide and targeted genetic screens we identify a large number of UPS components that are involved in OPMD. Half dosage of UPS genes reduces OPMD muscle defects suggesting a pathological increase of UPS activity in the disease. Quantification of proteasome activity confirms stronger activity in OPMD muscles, associated with degradation of myofibrillar proteins. Importantly, improvement of muscle structure and function in the presence of UPS mutants does not correlate with the levels of PABPN1 aggregation, but is linked to decreased degradation of muscle proteins. Oral treatment with the proteasome inhibitor MG132 is beneficial to the OPMD Drosophila model, improving muscle function although PABPN1 aggregation is enhanced. This functional study reveals the importance of increased UPS activity that underlies muscle atrophy in OPMD. It also provides a proof-of-concept that inhibitors of proteasome activity might be an attractive pharmacological approach for OPMD.
    DOI:  https://doi.org/10.1371/journal.pgen.1010015
  23. Cell Death Discov. 2022 Jan 10. 8(1): 4
      Serum response factor (SRF) regulates differentiation and proliferation by binding to RhoA-actin-activated MKL or Ras-MAPK-activated ELK transcriptional coactivators, but the molecular mechanisms responsible for SRF regulation remain unclear. Here, we show that Nemo-like kinase (NLK) is required for the promotion of SRF/ELK signaling in human and mouse cells. NLK was found to interact with and phosphorylate SRF at serine residues 101/103, which in turn enhanced the association between SRF and ELK. The enhanced affinity of SRF/ELK antagonized the SRF/MKL pathway and inhibited mouse myoblast differentiation in vitro. In a skeletal muscle-specific Nlk conditional knockout mouse model, forming muscle myofibers underwent hypertrophic growth, resulting in an increased muscle and body mass phenotype. We propose that both phosphorylation of SRF by NLK and phosphorylation of ELKs by MAPK are required for RAS/ELK signaling, confirming the importance of this ancient pathway and identifying an important role for NLK in modulating muscle development in vivo.
    DOI:  https://doi.org/10.1038/s41420-021-00774-9
  24. Nat Commun. 2022 Jan 10. 13(1): 22
      Activation of the sympathetic nervous system causes pronounced metabolic changes that are mediated by multiple adrenergic receptor subtypes. Systemic treatment with β2-adrenergic receptor agonists results in multiple beneficial metabolic effects, including improved glucose homeostasis. To elucidate the underlying cellular and molecular mechanisms, we chronically treated wild-type mice and several newly developed mutant mouse strains with clenbuterol, a selective β2-adrenergic receptor agonist. Clenbuterol administration caused pronounced improvements in glucose homeostasis and prevented the metabolic deficits in mouse models of β-cell dysfunction and insulin resistance. Studies with skeletal muscle-specific mutant mice demonstrated that these metabolic improvements required activation of skeletal muscle β2-adrenergic receptors and the stimulatory G protein, Gs. Unbiased transcriptomic and metabolomic analyses showed that chronic β2-adrenergic receptor stimulation caused metabolic reprogramming of skeletal muscle characterized by enhanced glucose utilization. These findings strongly suggest that agents targeting skeletal muscle metabolism by modulating β2-adrenergic receptor-dependent signaling pathways may prove beneficial as antidiabetic drugs.
    DOI:  https://doi.org/10.1038/s41467-021-27540-w
  25. Aging (Albany NY). 2022 Jan 11. 14(undefined):
      With a graying population and increasing longevity, it is essential to identify life transition in later years and discern heterogeneity among older people. Subclassifying the elderly population to inspect the subdivisions for pathophysiological differences is particularly important for the investigation of age-related illnesses. For this purpose, using 24- and 28-month-old mice to represent the "young-old" and "old-old", respectively, we compared their skeletal muscle transcriptomes and found each in a distinct stage: early/gradual (E-aging) and late/accelerated aging phase (L-aging). Principal component analysis showed that the old-old transcriptomes were largely disengaged from the forward transcriptomic trajectory generated in the younger-aged group, indicating a substantial change in gene expression profiles during L-aging. By calculating the transcriptomic distance, it was found that the 28-month group was closer to the two-month group than to the 24-month group. The divergence rate per month for the transcriptomes was the highest in L-aging, twice as fast as the rate in E-aging. Indeed, many of the L-aging genes were significantly altered in transcription, although the changes did not seem random but rather coordinated in a variety of functional gene sets. Of 2,707 genes transcriptionally altered during E-aging, two-thirds were also significantly changed during L-aging, to either downturning or upturning way. The downturn genes were related to mitochondrial function and translational gene sets, while the upturn genes were linked to inflammation-associated gene sets. Our results provide a transcriptomic muscle signature that distinguishes old-old mice from young-old mice. This can help to methodically examine muscle disorders in the elderly.
    Keywords:  early and late phase aging; old-old; skeletal muscle; transcriptome; young-old
    DOI:  https://doi.org/10.18632/aging.203812
  26. Int J Mol Sci. 2021 Dec 22. pii: 75. [Epub ahead of print]23(1):
      The molecular mechanisms of skeletal muscle atrophy under extended periods of either disuse or microgravity are not yet fully understood. The transition of Homer isoforms may play a key role during neuromuscular junction (NMJ) imbalance/plasticity in space. Here, we investigated the expression pattern of Homer short and long isoforms by gene array, qPCR, biochemistry, and laser confocal microscopy in skeletal muscles from male C57Bl/N6 mice (n = 5) housed for 30 days in space (Bion-flight = BF) compared to muscles from Bion biosatellite on the ground-housed animals (Bion ground = BG) and from standard cage housed animals (Flight control = FC). A comparison study was carried out with muscles of rats subjected to hindlimb unloading (HU). Gene array and qPCR results showed an increase in Homer1a transcripts, the short dominant negative isoform, in soleus (SOL) muscle after 30 days in microgravity, whereas it was only transiently increased after four days of HU. Conversely, Homer2 long-form was downregulated in SOL muscle in both models. Homer immunofluorescence intensity analysis at the NMJ of BF and HU animals showed comparable outcomes in SOL but not in the extensor digitorum longus (EDL) muscle. Reduced Homer crosslinking at the NMJ consequent to increased Homer1a and/or reduced Homer2 may contribute to muscle-type specific atrophy resulting from microgravity and HU disuse suggesting mutual mechanisms.
    Keywords:  Homer isoform switch; NMJ adaptation; hindlimb unloading; microgravity; muscle atrophy
    DOI:  https://doi.org/10.3390/ijms23010075
  27. J Cell Biol. 2022 Feb 07. pii: e202104022. [Epub ahead of print]221(2):
      Protein lysine acetylation is a post-translational modification that regulates protein structure and function. It is targeted to proteins by lysine acetyltransferases (KATs) or removed by lysine deacetylases. This work identifies a role for the KAT enzyme general control of amino acid synthesis protein 5 (GCN5; KAT2A) in regulating muscle integrity by inhibiting DNA binding of the transcription factor/repressor Yin Yang 1 (YY1). Here we report that a muscle-specific mouse knockout of GCN5 (Gcn5skm-/-) reduces the expression of key structural muscle proteins, including dystrophin, resulting in myopathy. GCN5 was found to acetylate YY1 at two residues (K392 and K393), disrupting the interaction between the YY1 zinc finger region and DNA. These findings were supported by human data, including an observed negative correlation between YY1 gene expression and muscle fiber diameter. Collectively, GCN5 positively regulates muscle integrity through maintenance of structural protein expression via acetylation-dependent inhibition of YY1. This work implicates the role of protein acetylation in the regulation of muscle health and for consideration in the design of novel therapeutic strategies to support healthy muscle during myopathy or aging.
    DOI:  https://doi.org/10.1083/jcb.202104022
  28. Int J Mol Sci. 2021 Dec 22. pii: 108. [Epub ahead of print]23(1):
      RNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of heterogeneous nuclear ribonucleoprotein K (hnRNPK) for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level. The hnRNPK-binding region of Myoparr was required to repress myogenin expression. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays lncRNA-associated and -independent multiple roles during myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.
    Keywords:  RNA-binding protein; endoplasmic reticulum stress; myogenic differentiation; transcriptional regulation
    DOI:  https://doi.org/10.3390/ijms23010108
  29. Front Endocrinol (Lausanne). 2021 ;12 791363
      Background and Aims: To understand the role of microRNAs in muscle atrophy caused by androgen-depletion, we performed microarray analysis of microRNA expression in the skeletal muscles of Sham, orchiectomized (ORX), and androgen-treated ORX mice.Methods: To clarify role and mechanisms of let-7e-5p in the muscle, the effect of let-7e-5p overexpression or knockdown on the expression of myosin heavy chain, glucose uptake, and mitochondrial function was investigated in C2C12 myotube cells. Moreover, we examined serum let-7e-5p levels among male subjects with type 2 diabetes.
    Results: We found that the expression of the miRNA, lethal (let)-7e-5p was significantly lower in ORX mice than that in Sham mice (p = 0.027); however, let-7e-5p expression in androgen-treated ORX mice was higher (p = 0.047). Suppression of let-7e-5p significantly upregulated the expression of myosin heavy chain, glucose uptake, and mitochondrial function. Real-time PCR revealed a possible regulation involving let-7e-5p and Igf2bp2 mRNA and protein in C2C12 cells. The serum let-7e-5p levels were significantly lower, which might be in compensation, in subjects with decreased muscle mass compared to subjects without decreased muscle mass. Let-7e-5p downregulates the expression of Igf2bp2 in myotube cells and inhibits the growth of the myosin heavy chain.
    Conclusions: Based on our study, serum level of let-7e-5p may be used as a potential diagnostic marker for muscle atrophy.
    Keywords:  Igf2bp2; let-7e-5p; micro RNA; muscle atrophy; sarcopenia
    DOI:  https://doi.org/10.3389/fendo.2021.791363
  30. J Cachexia Sarcopenia Muscle. 2022 Jan 14.
      BACKGROUND: Skeletal muscle wasting and dysfunction are common characteristics noted in people who suffer from chronic kidney disease (CKD). The mechanisms by which this occurs are complex, and although progress has been made, the key underpinning mechanisms are not yet fully elucidated. With work to date primarily conducted in nephrectomy-based animal models, translational capacity to our patient population has been challenging. This could be overcome if rationale developing work could be conducted in human based models with greater translational capacity. This could be achieved using cells derived from patient biopsies, if they retain phenotypic traits noted in vivo.METHODS: Here, we performed a systematic characterization of CKD derived muscle cells (CKD; n = 10; age: 54.40 ± 15.53 years; eGFR: 22.25 ± 13.22 ml/min/1.73 m2 ) in comparison with matched controls (CON; n = 10; age: 58.66 ± 14.74 years; eGFR: 85.81 ± 8.09 ml/min/1.73 m2 ). Harvested human derived muscle cells (HDMCs) were taken through proliferative and differentiation phases and investigated in the context of myogenic progression, inflammation, protein synthesis, and protein breakdown. Follow up investigations exposed HDMC myotubes from each donor type to 0, 0.4, and 100 nM of IGF-1 in order to investigate any differences in anabolic resistance.
    RESULTS: Harvested human derived muscle cells isolated from CKD patients displayed higher rates of protein degradation (P = 0.044) alongside elevated expression of both TRIM63 (2.28-fold higher, P = 0.054) and fbox32 (6.4-fold higher, P < 0.001) in comparison with CONs. No differences were noted in rates of protein synthesis under basal conditions (P > 0.05); however, CKD derived cells displayed a significant degree of anabolic resistance in response to IGF-1 stimulation (both doses) in comparison with matched CONs (0.4 nm: P < 0.001; 100 nM: P < 0.001).
    CONCLUSIONS: In summary, we report for the first time that HDMCs isolated from people suffering from CKD display key hallmarks of the well documented in vivo phenotype. Not only do these findings provide further mechanistic insight into CKD specific cachexia, but they also demonstrate this is a reliable and suitable model in which to perform targeted experiments to begin to develop novel therapeutic strategies targeting the CKD associated decline in skeletal muscle mass and function.
    Keywords:  Anabolic resistance; Cachexia; Chronic kidney disease; Protein breakdown; Skeletal muscle
    DOI:  https://doi.org/10.1002/jcsm.12802
  31. Int J Mol Sci. 2021 Dec 21. pii: 1. [Epub ahead of print]23(1):
      BACKGROUND/AIMS: Epigenetic regulation is considered the main molecular mechanism underlying the developmental origin of health and disease's (DOHAD) hypothesis. Previous studies that have investigated the role of paternal exercise on the metabolic health of the offspring did not control for the amount and intensity of the training or possible effects of adaptation to exercise and produced conflicting results regarding the benefits of parental exercise to the next generation. We employed a precisely regulated exercise regimen to study the transgenerational inheritance of improved metabolic health.METHODS: We subjected male mice to a well-controlled exercise -training program to investigate the effects of paternal exercise on glucose tolerance and insulin sensitivity in their adult progeny. To investigate the molecular mechanisms of epigenetic inheritance, we determined chromatin markers in the skeletal muscle of the offspring and the paternal sperm.
    RESULTS: Offspring of trained male mice exhibited improved glucose homeostasis and insulin sensitivity. Paternal exercise modulated the DNA methylation profile of PI3Kca and the imprinted H19/Igf2 locus at specific differentially methylated regions (DMRs) in the skeletal muscle of the offspring, which affected their gene expression. Remarkably, a similar DNA methylation profile at the PI3Kca, H19, and Igf2 genes was present in the progenitor sperm indicating that exercise-induced epigenetic changes that occurred during germ cell development contributed to transgenerational transmission.
    CONCLUSION: Paternal exercise might be considered as a strategy that could promote metabolic health in the offspring as the benefits can be inherited transgenerationally.
    Keywords:  DNA methylation; exercise training; metabolism; molecular mechanisms; transgenerational inheritance
    DOI:  https://doi.org/10.3390/ijms23010001
  32. Cells. 2022 Jan 04. pii: 160. [Epub ahead of print]11(1):
      Obesity and ageing place a tremendous strain on the global healthcare system. Age-related sarcopenia is characterized by decreased muscular strength, decreased muscle quantity, quality, and decreased functional performance. Sarcopenic obesity (SO) is a condition that combines sarcopenia and obesity and has a substantial influence on the older adults' health. Because of the complicated pathophysiology, there are disagreements and challenges in identifying and diagnosing SO. Recently, it has become clear that dysbiosis may play a role in the onset and progression of sarcopenia and SO. Skeletal muscle secretes myokines during contraction, which play an important role in controlling muscle growth, function, and metabolic balance. Myokine dysfunction can cause and aggravate obesity, sarcopenia, and SO. The only ways to prevent and slow the progression of sarcopenia, particularly sarcopenic obesity, are physical activity and correct nutritional support. While exercise cannot completely prevent sarcopenia and age-related loss in muscular function, it can certainly delay development and slow down the rate of sarcopenia. The purpose of this review was to discuss potential pathways to muscle deterioration in obese individuals. We also want to present the current understanding of the role of various factors, including microbiota and myokines, in the process of sarcopenia and SO.
    Keywords:  adipokines; adipose tissue; ageing; exercise; microbiota; myokines; sarcopenia; sarcopenic obesity; skeletal muscle
    DOI:  https://doi.org/10.3390/cells11010160
  33. Int J Mol Sci. 2021 Dec 31. pii: 468. [Epub ahead of print]23(1):
      Skeletal muscle is capable of changing its structural parameters, metabolic rate and functional characteristics within a wide range when adapting to various loading regimens and states of the organism. Prolonged muscle inactivation leads to serious negative consequences that affect the quality of life and work capacity of people. This review examines various conditions that lead to decreased levels of muscle loading and activity and describes the key molecular mechanisms of muscle responses to these conditions. It also details the theoretical foundations of various methods preventing adverse muscle changes caused by decreased motor activity and describes these methods. A number of recent studies presented in this review make it possible to determine the molecular basis of the countermeasure methods used in rehabilitation and space medicine for many years, as well as to identify promising new approaches to rehabilitation and to form a holistic understanding of the mechanisms of gravity force control over the muscular system.
    Keywords:  atrophy; disuse; disuse countermeasures; myosin phenotype; oxidative capacity; protein breakdown; protein synthesis; skeletal muscle; unloading
    DOI:  https://doi.org/10.3390/ijms23010468
  34. Biol Open. 2022 01 15. pii: bio058978. [Epub ahead of print]11(1):
      Skeletal muscle tissue is severely affected in myotonic dystrophy type 1 (DM1) patients, characterised by muscle weakness, myotonia and muscle immaturity in the most severe congenital form of the disease. Previously, it was not known at what stage during myogenesis the DM1 phenotype appears. In this study we differentiated healthy and DM1 human embryonic stem cells to myoblasts and myotubes and compared their differentiation potential using a comprehensive multi-omics approach. We found myogenesis in DM1 cells to be abnormal with altered myotube generation compared to healthy cells. We did not find differentially expressed genes between DM1 and non-DM1 cell lines within the same developmental stage. However, during differentiation we observed an aberrant inflammatory response and increased CpG methylation upstream of the CTG repeat at the myoblast level and RNA mis-splicing at the myotube stage. We show that early myogenesis modelled in hESC reiterates the early developmental manifestation of DM1.
    Keywords:  CpG methylation; Human embryonic stem cells; Myogenic differentiation; Myotonic dystrophy type 1; RNA mis-splicing
    DOI:  https://doi.org/10.1242/bio.058978
  35. Sci Rep. 2022 Jan 10. 12(1): 311
      BDNF (brain-derived neurotrophic factor) is present in skeletal muscle, controlling muscular metabolism, strength and regeneration processes. However, there is no consensus on BDNF cellular source. Furthermore, while endothelial tissue expresses BDNF in large amount, whether endothelial cells inside muscle expressed BDNF has never been explored. The aim of the present study was to provide a comprehensive analysis of BDNF localization in rat skeletal muscle. Cellular localization of BDNF and activated Tropomyosin-related kinase B (TrkB) receptors was studied by immunohistochemical analysis on soleus (SOL) and gastrocnemius (GAS). BDNF and activated TrkB levels were also measured in muscle homogenates using Western blot analysis and/or Elisa tests. The results revealed BDNF immunostaining in all cell types examined with a prominent staining in endothelial cells and a stronger staining in type II than type I muscular fibers. Endothelial cells but not other cells displayed easily detectable activated TrkB receptor expression. Levels of BDNF and activated TrkB receptors were higher in SOL than GAS. In conclusion, endothelial cells are an important and still unexplored source of BDNF present in skeletal muscle. Endothelial BDNF expression likely explains why oxidative muscle exhibits higher BDNF levels than glycolytic muscle despite higher the BDNF expression by type II fibers.
    DOI:  https://doi.org/10.1038/s41598-021-03740-8
  36. Exp Gerontol. 2022 Jan 10. pii: S0531-5565(22)00004-3. [Epub ahead of print] 111696
      
    Keywords:  Atrophy; Masters athletes; Motor unit; Muscle; Neuroprotection; Physical activity; Sarcopenia; Training
    DOI:  https://doi.org/10.1016/j.exger.2022.111696
  37. J Cachexia Sarcopenia Muscle. 2022 Jan 10.
      Cachexia is a syndrome characterized by involuntary weight loss and wasting of skeletal muscle mass. It is associated with worse overall survival and quality of life. The cancer-induced systemic inflammation and the consequent host derived catabolic stimuli, trigger cachexia by inhibiting muscle protein synthesis and enhancing muscle catabolism. The muscle itself may further promote chronic inflammation, introducing a vicious catabolic circle. Nutritional support alone plays a limited role in the treatment of cancer cachexia and should be combined with other interventions. Physical exercise lowers systemic inflammation and promotes muscle anabolism. It also attenuates the age-related physical decline in elderly and it might counteract the muscle wasting induced by the cancer cachexia syndrome. This review describes how cancer-induced systemic inflammation promotes muscle wasting and whether physical exercise may represent a suitable treatment for cancer-induced cachexia, particularly in patients with non-small cell lung cancer. We summarized pre-clinical and clinical studies investigating whether physical exercise would improve muscle performance and whether this improvement would translate in a clinically meaningful benefit for patients with cancer, in terms of survival and quality of life. Moreover, this review describes the results of studies investigating the interplay between physical exercise and the immune system, including the role of the intestinal microbiota.
    Keywords:  Cachexia; Gut microbiota; Immune system; Physical exercise; Systemic inflammation
    DOI:  https://doi.org/10.1002/jcsm.12900
  38. Front Endocrinol (Lausanne). 2021 ;12 772925
      Metabolic dysfunction, dysregulated differentiation, and atrophy of skeletal muscle occur as part of a cluster of abnormalities associated with the development of Type 2 diabetes mellitus (T2DM). Recent interest has turned to the attention of the role of 1-deoxysphingolipids (1-DSL), atypical class of sphingolipids which are found significantly elevated in patients diagnosed with T2DM but also in the asymptomatic population who later develop T2DM. In vitro studies demonstrated that 1-DSL have cytotoxic properties and compromise the secretion of insulin from pancreatic beta cells. However, the role of 1-DSL on the functionality of skeletal muscle cells in the pathophysiology of T2DM still remains unclear. This study aimed to investigate whether 1-DSL are cytotoxic and disrupt the cellular processes of skeletal muscle precursors (myoblasts) and differentiated cells (myotubes) by performing a battery of in vitro assays including cell viability adenosine triphosphate assay, migration assay, myoblast fusion assay, glucose uptake assay, and immunocytochemistry. Our results demonstrated that 1-DSL significantly reduced the viability of myoblasts in a concentration and time-dependent manner, and induced apoptosis as well as cellular necrosis. Importantly, myoblasts were more sensitive to the cytotoxic effects induced by 1-DSL rather than by saturated fatty acids, such as palmitate, which are critical mediators of skeletal muscle dysfunction in T2DM. Additionally, 1-DSL significantly reduced the migration ability of myoblasts and the differentiation process of myoblasts into myotubes. 1-DSL also triggered autophagy in myoblasts and significantly reduced insulin-stimulated glucose uptake in myotubes. These findings demonstrate that 1-DSL directly compromise the functionality of skeletal muscle cells and suggest that increased levels of 1-DSL observed during the development of T2DM are likely to contribute to the pathophysiology of muscle dysfunction detected in this disease.
    Keywords:  1-deoxysphingolipids; autophagy; glucose uptake; myoblast differentiation; myoblasts; myotubes; type 2 diabetes mellitus
    DOI:  https://doi.org/10.3389/fendo.2021.772925
  39. Int J Mol Sci. 2021 Dec 31. pii: 429. [Epub ahead of print]23(1):
      Both Type 1 diabetes mellitus (DM1) and type 2 diabetes mellitus (DM2) are associated with an increased risk of limb amputation in peripheral arterial disease (PAD). How diabetes contributes to poor PAD outcomes is poorly understood but may occur through different mechanisms in DM1 and DM2. Previously, we identified a disintegrin and metalloproteinase gene 12 (ADAM12) as a key genetic modifier of post-ischemic perfusion recovery. In an experimental PAD, we showed that ADAM12 is regulated by miR-29a and this regulation is impaired in ischemic endothelial cells in DM1, contributing to poor perfusion recovery. Here we investigated whether miR-29a regulation of ADAM12 is altered in experimental PAD in the setting of DM2. We also explored whether modulation of miR-29a and ADAM12 expression can improve perfusion recovery and limb function in mice with DM2. Our result showed that in the ischemic limb of mice with DM2, miR-29a expression is poorly downregulated and ADAM12 upregulation is impaired. Inhibition of miR-29a and overexpression of ADAM12 improved perfusion recovery, reduced skeletal muscle injury, improved muscle function, and increased cleaved Tie 2 and AKT phosphorylation. Thus, inhibition of miR-29a and or augmentation of ADAM12 improves experimental PAD outcomes in DM2 likely through modulation of Tie 2 and AKT signalling.
    Keywords:  ADAM12; diabetes mellitus; high fat diet and PAD; miR-29a
    DOI:  https://doi.org/10.3390/ijms23010429
  40. Inflammation. 2022 Jan 14.
      Inflammation in muscle induces the synthesis of mediators that can impair protein synthesis and enhance proteolysis, and when sustained lead to muscle atrophy. Furthermore, muscle-derived mediators that are secreted may participate in disrupting the function of other peripheral organs. Selective identification of newly synthesized proteins can provide insight on biological processes that depend on the continued synthesis of specific proteins to maintain homeostasis as well as those proteins that are up- or down-regulated in response to inflammation. We used puromycin-associated nascent chain proteomics (PUNCH-P) to characterize new protein synthesis in C2C12 myotubes and changes resulting from their exposure to the inflammatory mediators lipopolysaccharide (LPS) and interferon (IFN)-γ for either a short (4 h) or prolonged (16 h) time period. We identified sequences of nascent polypeptide chains belonging to a total of 1523 proteins and report their detection from three independent samples of each condition at each time point. The identified nascent proteins correspond to approximately 15% of presently known proteins in C2C12 myotubes and are enriched in specific cellular components and pathways. A subset of these proteins was identified only in treated samples and has functional characteristics consistent with the synthesis of specific new proteins in response to LPS/IFNγ. Thus, the identification of proteins from their nascent polypeptide chains provides a resource to analyze the role of new synthesis of proteins in both protein homeostasis and in proteome responses to stimuli in C2C12 myotubes. Our results reveal a profile of actively translating proteins for specific cellular components and biological processes in normal C2C12 myotubes and a different enrichment of proteins in response to LPS/IFNγ. Collectively, our data disclose a highly interconnected network that integrates the regulation of cellular proteostasis and reveal a diverse immune response to inflammation in muscle which may underlie the concomitantly observed atrophy and be important in inter-organ communication.
    Keywords:  Immune response; Inflammation; LPS; Muscle; Proteome
    DOI:  https://doi.org/10.1007/s10753-022-01622-3
  41. Front Genet. 2021 ;12 775369
      PIWI-interacting RNAs (piRNAs) are small single-stranded RNAs that can repress transposon expression via epigenetic silencing and transcript degradation. They have been identified predominantly in the ovary and testis, where they serve essential roles in transposon silencing in order to protect the integrity of the genome in the germline. The potential expression of piRNAs in somatic cells has been controversial. In the present study we demonstrate the expression of piRNAs derived from both genic and transposon RNAs in the intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta. These piRNAs are abundantly expressed, ∼27 nt long, map antisense to transposons, are oxidation resistant, exhibit a 5' uridine bias, and amplify via the canonical ping-pong pathway. An RNA-seq analysis demonstrated that 19 piRNA pathway genes are expressed in the ISMs and are developmentally regulated. The abundance of piRNAs does not change when the muscles initiate developmentally-regulated atrophy, but are repressed coincident with the commitment of the muscles undergo programmed cell death at the end of metamorphosis. This change in piRNA expression is correlated with the repression of several retrotransposons and the induction of specific DNA transposons. The developmentally-regulated changes in the expression of piRNAs, piRNA pathway genes, and transposons are all regulated by 20-hydroxyecdysone, the steroid hormone that controls the timing of ISM death. Taken together, these data provide compelling evidence for the existence of piRNA in somatic tissues and suggest that they may play roles in developmental processes such as programmed cell death.
    Keywords:  Manduca sexta; RNA interference; development; ping-pong amplification; small RNAs; transposon
    DOI:  https://doi.org/10.3389/fgene.2021.775369
  42. Front Cell Dev Biol. 2021 ;9 785712
      Myostatin (MSTN), a member of the transforming growth factor-β superfamily, can negatively regulate the growth and development of skeletal muscle by autocrine or paracrine signaling. Mutation of the myostatin gene under artificial or natural conditions can lead to a significant increase in muscle quality and produce a double-muscle phenotype. Here, we review the similarities and differences between myostatin and other members of the transforming growth factor-β superfamily and the mechanisms of myostatin self-regulation. In addition, we focus extensively on the regulation of myostatin functions involved in myogenic differentiation, myofiber type conversion, and skeletal muscle protein synthesis and degradation. Also, we summarize the induction of reactive oxygen species generation and oxidative stress by myostatin in skeletal muscle. This review of recent insights into the function of myostatin will provide reference information for future studies of myostatin-regulated skeletal muscle formation and may have relevance to agricultural fields of study.
    Keywords:  degradation; myogenesis; myostatin; protein synthesis; skeletal muscle development
    DOI:  https://doi.org/10.3389/fcell.2021.785712
  43. Nat Commun. 2022 Jan 10. 13(1): 166
      Muscle cell death in polymyositis is induced by CD8+ cytotoxic T lymphocytes. We hypothesized that the injured muscle fibers release pro-inflammatory molecules, which would further accelerate CD8+ cytotoxic T lymphocytes-induced muscle injury, and inhibition of the cell death of muscle fibers could be a novel therapeutic strategy to suppress both muscle injury and inflammation in polymyositis. Here, we show that the pattern of cell death of muscle fibers in polymyositis is FAS ligand-dependent necroptosis, while that of satellite cells and myoblasts is perforin 1/granzyme B-dependent apoptosis, using human muscle biopsy specimens of polymyositis patients and models of polymyositis in vitro and in vivo. Inhibition of necroptosis suppresses not only CD8+ cytotoxic T lymphocytes-induced cell death of myotubes but also the release of inflammatory molecules including HMGB1. Treatment with a necroptosis inhibitor or anti-HMGB1 antibodies ameliorates myositis-induced muscle weakness as well as muscle cell death and inflammation in the muscles. Thus, targeting necroptosis in muscle cells is a promising strategy for treating polymyositis providing an alternative to current therapies directed at leukocytes.
    DOI:  https://doi.org/10.1038/s41467-021-27875-4
  44. Nat Commun. 2022 Jan 10. 13(1): 149
      Cachexia is associated with poor prognosis in chronic heart failure patients, but the underlying mechanisms of cachexia triggered disease progression remain poorly understood. Here, we investigate whether the dysregulation of myokine expression from wasting skeletal muscle exaggerates heart failure. RNA sequencing from wasting skeletal muscles of mice with heart failure reveals a reduced expression of Ostn, which encodes the secreted myokine Musclin, previously implicated in the enhancement of natriuretic peptide signaling. By generating skeletal muscle specific Ostn knock-out and overexpressing mice, we demonstrate that reduced skeletal muscle Musclin levels exaggerate, while its overexpression in muscle attenuates cardiac dysfunction and myocardial fibrosis during pressure overload. Mechanistically, Musclin enhances the abundance of C-type natriuretic peptide (CNP), thereby promoting cardiomyocyte contractility through protein kinase A and inhibiting fibroblast activation through protein kinase G signaling. Because we also find reduced OSTN expression in skeletal muscle of heart failure patients, augmentation of Musclin might serve as therapeutic strategy.
    DOI:  https://doi.org/10.1038/s41467-021-27634-5
  45. Braz J Med Biol Res. 2022 ;pii: S0100-879X2022000100602. [Epub ahead of print]55 e11597
      The effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation associated with exercise training at different intensities and frequencies on skeletal muscle regeneration of muscle-injured rats was investigated. Male Wistar rats were divided into sedentary and trained groups. The sedentary groups were subdivided into non-injured (SED-Ct), non-injured supplemented with HMB (SED-Ct-HMB), injured (SED), and injured with HMB (SED-HMB), and the trained groups were injured, supplemented with HMB, and then divided into training three times a week without load (HT3) or with load (HT3L) and training five times a week without load (HT5) and with load (HT5L). The rats received a daily dose of HMB associated with 60 min of swimming with or without 5% body mass load for 14 days. On the 15th day, cryoinjury was performed in the right tibialis anterior muscle (TA), and 48 h later, supplementation and training continued for 15 days. After the last session, the TA was dissected and a cross-sectional area (CSA) of muscle fibers was used to determine the percentage of CSA fibers and connective tissue (%CT), as well as the total and phosphorylated protein contents. SED-HMB showed increased CSA and decreased %CT and TGF-β when compared to SED. HT3 showed increased CSA and reduced %CT accompanied by increased IGF-1/Akt, myogenin, and MuRF1, and decreased TGF-β. The CSA of HT5L also increased, but at the cost of a higher %CT compared to the other groups. Our results demonstrated that HMB associated with training without load and with lower frequency per week may be a valuable strategy for skeletal muscle regeneration.
    DOI:  https://doi.org/10.1590/1414-431X2021e11597
  46. Appl Physiol Nutr Metab. 2022 Jan 11.
      The purpose of this paper was to conduct a systematic review and meta-analysis of studies that compared muscle hypertrophy and strength gains between resistance training protocols employing very low (VLL<30% of 1RM or >35 RM), low (LL30%-59% of 1RM, or 16-35 RM), moderate (ML60%-79% of 1RM, or 8 -15RM) and high load (HL≥80% of 1RM, or ≤7 RM) with matched volume loads (sets x reps x weight). A pooled analysis of the standardized mean difference for 1RM strength outcomes across the studies showed a benefit favoring HL vs. LL and vs. ML; and favoring ML vs. LL. Results from LL and VLL indicated little difference. A pooled analysis of the standardized mean difference for hypertrophy outcomes across all studies showed no differences between the training loads. Our findings indicate that, when volume load is equated between conditions, the highest loads induce superior dynamic strength gains. Alternatively, hypertrophic adaptations are similar irrespective of the magnitude of load. NOVELTY BULLETS: • Training with higher loads elicits greater gains in 1RM muscle strength when compared to lower loads, even when volume load is equated between conditions. • Muscle hypertrophy is similar irrespective of the magnitude of load, even when volume load is equated between conditions.
    DOI:  https://doi.org/10.1139/apnm-2021-0515
  47. Int J Mol Sci. 2021 Dec 22. pii: 59. [Epub ahead of print]23(1):
      While in most patients the identification of genetic alterations causing dystrophinopathies is a relatively straightforward task, a significant number require genomic and transcriptomic approaches that go beyond a routine diagnostic set-up. In this work, we present a Becker Muscular Dystrophy patient with elevated creatinine kinase levels, progressive muscle weakness, mild intellectual disability and a muscle biopsy showing dystrophic features and irregular dystrophin labelling. Routine molecular techniques (Southern-blot analysis, multiplex PCR, MLPA and genomic DNA sequencing) failed to detect a defect in the DMD gene. Muscle DMD transcript analysis (RT-PCR and cDNA-MLPA) showed the absence of exons 75 to 79, seen to be present at the genomic level. These results prompted the application of low-coverage linked-read whole-genome sequencing (WGS), revealing a possible rearrangement involving DMD intron 74 and a region located upstream of the PRDX4 gene. Breakpoint PCR and Sanger sequencing confirmed the presence of a ~8 Mb genomic inversion. Aberrant DMD transcripts were subsequently identified, some of which contained segments from the region upstream of PRDX4. Besides expanding the mutational spectrum of the disorder, this study reinforces the importance of transcript analysis in the diagnosis of dystrophinopathies and shows how WGS has a legitimate role in clinical laboratory genetics.
    Keywords:  DMD; dystrophinopathies; inversion; whole genome sequencing (WGS)
    DOI:  https://doi.org/10.3390/ijms23010059
  48. J Clin Invest. 2022 Jan 13. pii: e141775. [Epub ahead of print]
      Piezo1 forms mechanically-activated non-selective cation channels that contribute to endothelial response to fluid flow. Here we reveal an important role in the control of capillary density. Conditional endothelial-specific deletion of Piezo1 in adult mice depressed physical performance. Muscle microvascular endothelial cell apoptosis and capillary rarefaction were evident and sufficient to account for the effect on performance. There was selective upregulation of thrombospondin-2 (TSP2), an inducer of endothelial apoptosis, with no effect on thrombospondin-1 (TSP1), a related important player in muscle physiology. TSP2 was poorly expressed in muscle endothelial cells but robustly expressed in muscle pericytes, in which nitric oxide (NO) repressed the Tsp2 gene without effect on Tsp1. In the endothelial cells, Piezo1 was required for normal expression of endothelial nitric oxide synthase (eNOS). The data suggest an endothelial-pericyte partnership of muscle in which endothelial Piezo1 senses blood flow to sustain capillary density and thereby maintain physical capability.
    Keywords:  Ion channels; Microcirculation; Muscle Biology; Skeletal muscle; Vascular Biology
    DOI:  https://doi.org/10.1172/JCI141775
  49. Cell Metab. 2022 Jan 10. pii: S1550-4131(21)00635-5. [Epub ahead of print]
      Tissue sensitivity and response to exercise vary according to the time of day and alignment of circadian clocks, but the optimal exercise time to elicit a desired metabolic outcome is not fully defined. To understand how tissues independently and collectively respond to timed exercise, we applied a systems biology approach. We mapped and compared global metabolite responses of seven different mouse tissues and serum after an acute exercise bout performed at different times of the day. Comparative analyses of intra- and inter-tissue metabolite dynamics, including temporal profiling and blood sampling across liver and hindlimb muscles, uncovered an unbiased view of local and systemic metabolic responses to exercise unique to time of day. This comprehensive atlas of exercise metabolism provides clarity and physiological context regarding the production and distribution of canonical and novel time-dependent exerkine metabolites, such as 2-hydroxybutyrate (2-HB), and reveals insight into the health-promoting benefits of exercise on metabolism.
    Keywords:  2-hydroxybutyrate; arteriovenous metabolomics; circadian rhythms; exercise metabolism; exerkines; metabolomics; multitissue analysis
    DOI:  https://doi.org/10.1016/j.cmet.2021.12.016
  50. J Muscle Res Cell Motil. 2022 Jan 12.
      Skeletal muscle contractions are caused to release myokines by muscle fiber. This study investigated the myogenic regulatory factors, as MHC I, IIA, IIX, Myo-D, MRF4, Murf, Atrogin-1, Decorin, Myonection, and IL-15 mRNA expression in the response of eccentric vs concentric contraction. Eighteen healthy men were randomly divided into two eccentric and concentric groups, each of 9 persons. Isokinetic contraction protocols included maximal single-leg eccentric or concentric knee extension tasks at 60°/s with the dominant leg. Contractions consisted of a maximum of 12 sets of 10 reps, and the rest time between each set was 30 s. The baseline biopsy was performed 4 weeks before the study, and post-test biopsies were taken immediately after exercise protocols from the vastus lateralis muscle. The gene expression levels were evaluated using Real-Time PCR methods. The eccentric group showed a significantly lower RPE score than the concentric group (P ≤ 0.05). A significant difference in MyoD, MRF4, Myonection, and Decorin mRNA, were observed following eccentric or concentric contractions (P ≤ 0.05). The MHC I, MHC IIA, IL-15 mRNA has been changed significantly compared to the pre-exercise in the concentric group (P ≤ 0.05). While only MHC IIX and Atrogin-1 mRNA changed significantly in the eccentric group (P ≤ 0.05). Additionally, the results showed a significant difference in MyoD, MRF4, IL-15, and Decorin at the follow-up values between eccentric or concentric groups (P ≤ 0.05). Our findings highlight the growing importance of elucidating the different responses of muscle growth factors associated with a myogenic activity such as MHC IIA, Decorin, IL-15, Myonectin, Decorin, MuRF1, and MHC IIX mRNA in following various types of exercise.
    Keywords:  Concentric contraction; Eccentric contraction; Gene expression; Myogenic regulatory factors
    DOI:  https://doi.org/10.1007/s10974-021-09613-x
  51. Nutrients. 2021 Dec 23. pii: 52. [Epub ahead of print]14(1):
      Sarcopenia is one of the main issues associated with the process of aging. Characterized by muscle mass loss, it is triggered by several conditions, including sedentary habits and negative net protein balance. According to World Health Organization, it is expected a 38% increase in older individuals by 2025. Therefore, it is noteworthy to establish recommendations to prevent sarcopenia and several events and comorbidities associated with this health issue condition. In this review, we discuss the role of these factors, prevention strategies, and recommendations, with a focus on protein intake and exercise.
    Keywords:  aging; exercise; metabolism; nutrition; protein
    DOI:  https://doi.org/10.3390/nu14010052