bims-moremu Biomed News
on Molecular regulators of muscle mass
Issue of 2021‒10‒10
twenty-nine papers selected by
Anna Vainshtein
Craft Science Inc.

  1. Front Cell Dev Biol. 2021 ;9 738978
      Embryonic myogenesis is a temporally and spatially regulated process that generates skeletal muscle of the trunk and limbs. During this process, mononucleated myoblasts derived from myogenic progenitor cells within the somites undergo proliferation, migration and differentiation to elongate and fuse into multinucleated functional myofibers. Skeletal muscle is the most abundant tissue of the body and has the remarkable ability to self-repair by re-activating the myogenic program in muscle stem cells, known as satellite cells. Post-transcriptional regulation of gene expression mediated by RNA-binding proteins is critically required for muscle development during embryogenesis and for muscle homeostasis in the adult. Differential subcellular localization and activity of RNA-binding proteins orchestrates target gene expression at multiple levels to regulate different steps of myogenesis. Dysfunctions of these post-transcriptional regulators impair muscle development and homeostasis, but also cause defects in motor neurons or the neuromuscular junction, resulting in muscle degeneration and neuromuscular disease. Many RNA-binding proteins, such as members of the muscle blind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) families, display both overlapping and distinct targets in muscle cells. Thus they function either cooperatively or antagonistically to coordinate myoblast proliferation and differentiation. Evidence is accumulating that the dynamic interplay of their regulatory activity may control the progression of myogenic program as well as stem cell quiescence and activation. Moreover, the role of RNA-binding proteins that regulate post-transcriptional modification in the myogenic program is far less understood as compared with transcription factors involved in myogenic specification and differentiation. Here we review past achievements and recent advances in understanding the functions of RNA-binding proteins during skeletal muscle development, regeneration and disease, with the aim to identify the fundamental questions that are still open for further investigations.
    Keywords:  RNA-binding protein; homeostasis; muscle regeneration; myoblast; neuromuscular disease; post-transcriptional regulation; satellite cell activation; skeletal myogenesis
  2. Bio Protoc. 2021 Sep 05. 11(17): e4149
      Skeletal muscles generate force throughout life and require maintenance and repair to ensure efficiency. The population of resident muscle stem cells (MuSCs), termed satellite cells, dwells beneath the basal lamina of adult myofibres and contributes to both muscle growth and regeneration. Upon exposure to activating signals, MuSCs proliferate to generate myoblasts that differentiate and fuse to grow or regenerate myofibres. This myogenic progression resembles aspects of muscle formation and development during embryogenesis. Therefore, the study of MuSCs and their associated myofibres permits the exploration of muscle stem cell biology, including the cellular and molecular mechanisms underlying muscle formation, maintenance and repair. As most aspects of MuSC biology have been described in rodents, their relevance to other species, including humans, is unclear and would benefit from comparison to an alternative vertebrate system. Here, we describe a procedure for the isolation and immunolabelling or culture of adult zebrafish myofibres that allows examination of both myofibre characteristics and MuSC biology ex vivo. Isolated myofibres can be analysed for morphometric characteristics such as the myofibre volume and myonuclear domain to assess the dynamics of muscle growth. Immunolabelling for canonical stemness markers or reporter transgenes identifies MuSCs on isolated myofibres for cellular/molecular studies. Furthermore, viable myofibres can be plated, allowing MuSC myogenesis and analysis of proliferative and differentiative dynamics in primary progenitor cells. In conclusion, we provide a comparative system to amniote models for the study of vertebrate myogenesis, which will reveal fundamental genetic and cellular mechanisms of MuSC biology and inform aquaculture. Graphic abstract: Schematic of Myofibre Isolation and Culture of Muscle Stem Cells from Adult Zebrafish.
    Keywords:  Adult; MuSC; Muscle fibre; Myofibre; Myonucleus; Pax7; Satellite cell; Skeletal muscle; Stem cell; Zebrafish
  3. FASEB J. 2021 Nov;35(11): e21955
      Kabuki syndrome (KS) is a rare genetic disorder caused primarily by mutations in the histone modifier genes KMT2D and KDM6A. The genes have broad temporal and spatial expression in many organs, resulting in complex phenotypes observed in KS patients. Hypotonia is one of the clinical presentations associated with KS, yet detailed examination of skeletal muscle samples from KS patients has not been reported. We studied the consequences of loss of KMT2D function in both mouse and human muscles. In mice, heterozygous loss of Kmt2d resulted in reduced neuromuscular junction (NMJ) perimeter, decreased muscle cell differentiation in vitro and impaired myofiber regeneration in vivo. Muscle samples from KS patients of different ages showed presence of increased fibrotic tissue interspersed between myofiber fascicles, which was not seen in mouse muscles. Importantly, when Kmt2d-deficient muscle stem cells were transplanted in vivo in a physiologic non-Kabuki environment, their differentiation potential is restored to levels undistinguishable from control cells. Thus, the epigenetic changes due to loss of function of KMT2D appear reversible through a change in milieu, opening a potential therapeutic avenue.
    Keywords:  Kabuki syndrome; NMJ; muscle differentiation; muscle regeneration; muscle stem cells; muscular dystrophy
  4. Front Pharmacol. 2021 ;12 746513
      Stem cells represent a key resource in regenerative medicine, however, there is a critical need for pharmacological modulators to promote efficient conversion of stem cells into a myogenic lineage. We have previously shown that bexarotene, an agonist of retinoid X receptor (RXR) approved for cancer therapy, promotes the specification and differentiation of skeletal muscle progenitors. To decipher the molecular regulation of rexinoid signaling in myogenic differentiation, we have integrated RNA-seq transcription profiles with ChIP-seq of H4K8, H3K9, H3K18, H3K27 acetylation, and H3K27 methylation in addition to that of histone acetyl-transferase p300 in rexinoid-promoted myoblast differentiation. Here, we provide details regarding data collection, validation and omics integration analyses to offer strategies for future data application and replication. Our analyses also reveal molecular pathways underlying different patterns of gene expression and p300-associated histone acetylation at distinct chromatin states in rexinoid-enhanced myoblast differentiation. These datasets can be repurposed for future studies to examine the relationship between signaling molecules, chromatin modifiers and histone acetylation in myogenic regulation, providing a framework for discovery and functional characterization of muscle-specific loci.
    Keywords:  chromatin; gene regulation; histone acetylation; rexinoid; stem cell differentiation
  5. Sci Rep. 2021 Oct 05. 11(1): 19796
      We previously reported that growth promoter-induced skeletal muscle hypertrophy co-ordinately upregulated expression of genes associated with an integrated stress response (ISR), as well as potential ISR regulators. We therefore used Adeno-Associated Virus (AAV)-mediated overexpression of these genes, individually or in combination, in mouse skeletal muscle to test whether they induced muscle hypertrophy. AAV of each target gene was injected into mouse Tibialis anterior (TA) and effects on skeletal muscle growth determined 28 days later. Individually, AAV constructs for Arginase-2 (Arg2) and Activating transcription factor-5 (Atf5) reduced hindlimb muscle weights and upregulated expression of genes associated with an ISR. AAV-Atf5 also decreased Myosin heavy chain (MyHC)-IIB mRNA, but increased MyHC-IIA and isocitrate dehydrogenase-2 (Idh2) mRNA, suggesting ATF5 is a novel transcriptional regulator of Idh2. AAV-Atf5 reduced the size of both TA oxidative and glycolytic fibres, without affecting fibre-type proportions, whereas Atf5 combined with Cebpg (CCAAT enhancer binding protein-gamma) only reduced the size of glycolytic fibres and tended to increase the proportion of oxidative fibres. It is likely that persistent Atf5 overexpression maintains activation of the ISR, thereby reducing protein synthesis and/or increasing protein degradation and possibly apoptosis, resulting in inhibition of muscle growth, with overexpression of Arg2 having a similar effect.
  6. J Clin Endocrinol Metab. 2021 Oct 06. pii: dgab725. [Epub ahead of print]
      BACKGROUND: Familial Partial Lipodystrophy (FPL), Dunnigan variety is characterized by skeletal muscle hypertrophy and insulin resistance besides fat loss from the extremities. The cause for the muscle hypertrophy, and its functional consequences is not known.OBJECTIVE: To compare muscle strength and endurance, besides muscle protein synthesis rate between subjects with FPL and matched controls (n = 6 in each group). In addition, we studied skeletal muscle mitochondrial function and gene expression pattern to help understand the mechanisms for the observed differences.
    METHODS: Body composition by DEXA, insulin sensitivity by minimal modelling, assessment of peak muscle strength and fatigue, skeletal muscle biopsy and calculation of muscle protein synthesis rate, mitochondrial respirometry, skeletal muscle transcriptome, proteome and gene set enrichment analysis.
    RESULTS: Despite increased muscularity, FPL subjects did not demonstrate increased muscle strength but had earlier fatigue on chest press exercise. Decreased mitochondrial state 3 respiration in the presence of fatty acid substrate was noted, concurrent to elevated muscle lactate and decreased long-chain acylcarnitine. Based on gene transcriptome, there was significant down regulation of many critical metabolic pathways involved in mitochondrial biogenesis and function. Moreover, the overall pattern of gene expression was indicative of accelerated aging in FPL subjects. A lower muscle protein synthesis and down regulation of gene transcripts involved in muscle protein catabolism was observed.
    CONCLUSION: Increased muscularity in FPL is not due to increased muscle protein synthesis and is likely due to reduced muscle protein degradation. Impaired mitochondrial function and altered gene expression likely explain the metabolic abnormalities and skeletal muscle dysfunction in FPL subjects.
    Keywords:  Lipodystrophy; Mitochondria; insulin resistance; skeletal muscle hypertrophy
  7. Biochem Biophys Res Commun. 2021 Sep 30. pii: S0006-291X(21)01366-8. [Epub ahead of print]580 35-40
      TNF-α and NF-κB signaling is involved in the wasting of skeletal muscle in various conditions, in addition to cancer cachexia. TNF-α and NF-κB signaling promotes the expression level of muscle RING finger protein 1, a ubiquitin ligase, causing muscle degradation. Several studies have indicated that of TNF-α and NF-κB signaling suppresses muscle differentiation by reducing the levels of MyoD protein. On the other hand, TNF-α and NF-κB is required for myoblast proliferation. Thus, the role of TNF-α and NF-κB signaling in the process of myogenesis and regeneration of skeletal muscle is not completely elucidated. Here, we reported that TNF-α reduced the width of single fibers of skeletal muscle in an organ culture model. TNF-α and p65 repressed the transactivation of MyoD and suppressed myoblast differentiation. In addition, TNF-α increased the number of satellite cells, and NF-κB signaling was promoted at the proliferation stage during skeletal muscle regeneration in vivo. TNF-α and NF-κB signaling regulate myogenesis to inhibit differentiation and promote proliferation in satellite cells.
    Keywords:  Cachexia; MyoD; NF-κB; Satellite cell; Skeletal muscle; TNF-α
  8. Curr Protoc. 2021 Oct;1(10): e263
      Skeletal muscle stem cells (MuSCs) reside in a complex niche composed of the muscle fiber plasma membrane and the laminin-rich basal lamina surrounded by the microvasculature, as well as different supportive cell types such as fibro-adipogenic progenitors residing in the interstitial extracellular matrix. Within the first few hours after tissue damage, MuSCs undergo cytoskeletal rearrangements and transcriptional changes that prime the cells for activation. Due to their time-consuming nature, enzymatic methods for liberation of single muscle fibers with fully quiescent MuSCs are challenging. Moreover, during enzymatic digestion, important niche components including the microvasculature and the collagenous interstitial matrix are destroyed. Here, we provide a method for the visualization of MuSCs on muscle fibers in their intact niche. Our method relies on mechanical teasing of fiber bundles from fixed skeletal muscles. We demonstrate that teased muscle fiber bundles allow the investigator to capture a representative snapshot of the MuSC niche in skeletal muscle, and outline how stem cell morphology and different microenvironmental components can be visualized. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of fiber bundles Basic Protocol 2: Immunofluorescence staining of MuSCs on fiber bundles Support Protocol: Preparation of Sylgard dishes.
    Keywords:  MuSCs; microenvironment; quiescence; satellite cells; skeletal muscle; stem cell niche
  9. Mol Aspects Med. 2021 Oct 05. pii: S0098-2997(21)00101-1. [Epub ahead of print] 101041
      Beside inherited muscle diseases many catabolic conditions such as insulin resistance, malnutrition, cancer growth, aging, infections, chronic inflammatory status, inactivity, obesity are characterized by loss of muscle mass, strength and function. The decrease of muscle quality and quantity increases morbidity, mortality and has a major impact on the quality of life. One of the pathogenetic mechanisms of muscle wasting is the dysregulation of the main protein and organelles quality control system of the cell: the autophagy-lysosome. This review will focus on the role of the autophagy-lysosome system in the different conditions of muscle loss. We will also dissect the signalling pathways that are involved in excessive or defective autophagy regulation. Finally, the state of the art of autophagy modulators that have been used in preclinical or clinical studies to ameliorate muscle mass will be also described.
    Keywords:  Atrophy; Autophagy; Disuse; Muscle wasting; Proteostasis; Skeletal muscle
  10. Aging (Albany NY). 2021 Oct 05. 13(undefined):
      Eggs are rich in nutrients and contain a lot of protein. Although eggs have proved to accelerate the growth of C2C12 cells, the regulatory and mechanism of fertilized egg yolk extract (FEYE) on skeletal muscle development and fat metabolism remains unclearly. The mice were treated with FEYE by gavage for 24 d, we found that FEYE can inhibit the expression of skeletal muscle atrophy genes such as MSTN and Murf-1, and up-regulate the expression levels of MYOD, MYOG and Irisin. In addition, the treatment of FEYE induced UCP1 and PGC1α high expression in WAT, thereby causing WAT browning reaction. In order to confirm the composition of FEYE, we performed protein full spectrum identification (LC MS/MS) analysis and found the most enriched component is vitellogenin 2 (VTG2). Therefore, we added the recombinant protein VTG2 to C2C12 cells and found that VTG2 promoted the proliferation and differentiation of C2C12 cells. After that, we further proved that VTG2 inhibited the expression of MSTN and improved the expression of MYOD and Irisin. Finally, the dual luciferase test proved that VTG2 directly inhibited the transcriptional activity of MSTN. Our results conclude that FEYE inhibits the expression of MSTN in muscle tissues by delivering VTG2, thereby promoting skeletal muscle development, and can also promote the expression level of FNDC5 in serum. Then, FNDC5 acts on the fat through the serum, stimulating the browning reaction of white adipocytes. Therefore, VTG2 can be used to stop muscle consumption, improve skeletal muscle aging, and prevent obesity.
    Keywords:  FEYE; VTG2; browning; proliferation and differentiation; skeletal muscle
  11. J Neuromuscul Dis. 2021 Sep 30.
      BACKGROUND: Myogenesis is a dynamic process involving temporal changes in the expression of many genes. Lack of dystrophin protein such as in Duchenne muscular dystrophy might alter the natural course of gene expression dynamics during myogenesis.OBJECTIVE: To gain insight into the dynamic temporal changes in protein expression during differentiation of normal and dystrophin deficient myoblasts to myotubes.
    METHOD: A super SILAC spike-in strategy in combination and LC-MS/MS was used for temporal proteome profiling of normal and dystrophin deficient myoblasts during differentiation. The acquired data was analyzed using Proteome Discoverer 2.2. and data clustering using R to define significant temporal changes in protein expression.
    RESULTS: sFour major temporal protein clusters that showed sequential dynamic expression profiles during myogenesis of normal myoblasts were identified. Clusters 1 and 2, consisting mainly of proteins involved mRNA splicing and processing expression, were elevated at days 0 and 0.5 of differentiation then gradually decreased by day 7 of differentiation, then remained lower thereafter. Cluster 3 consisted of proteins involved contractile muscle and actomyosin organization. They increased in their expression reaching maximum at day 7 of differentiation then stabilized thereafter. Cluster 4 consisting of proteins involved in skeletal muscle development glucogenesis and extracellular remodeling had a lower expression during myoblast stage then gradually increased in their expression to reach a maximum at days 11-15 of differentiation. Lack of dystrophin expression in DMD muscle myoblast caused major alteration in temporal expression of proteins involved in cell adhesion, cytoskeleton, and organelle organization as well as the ubiquitination machinery.
    CONCLUSION: Time series proteome profiling using super SILAC strategy is a powerful method to assess temporal changes in protein expression during myogenesis and to define the downstream consequences of lack of dystrophin on these temporal protein expressions. Key alterations were identified in dystrophin deficient myoblast differentiation compared to normal myoblasts. These alterations could be an attractive therapeutic target.
    Keywords:  Duchenne muscular dystrophy; Dystrophin; Mass spectrometry; SILAC; mass; myoblasts; myogenesis; myotubes; proteome profiling
  12. Comput Methods Programs Biomed. 2021 Sep 24. pii: S0169-2607(21)00511-3. [Epub ahead of print]211 106437
      BACKGROUND AND OBJECTIVE: The skeletal muscle is composed of integrated tissues mainly composed of myofibers i.e., long, cylindrical syncytia, whose cytoplasm is mostly occupied by parallel myofibrils. In section, each myofibril is organized in serially end-to-end arranged sarcomeres connected by Z lines. In muscle disorders, these structural and functional units can undergo structural alterations in terms of Z-line and sarcomere lengths, as well as lateral alignment of Z-line among adjacent myofibrils. In this view, objectifying alterations of the myofibril and sarcomere architecture would provide a solid foundation for qualitative observations. In this work, specific quantitative parameters characterizing the sarcomere and myofibril arrangement were defined using a computerized analysis of ultrastructural images.METHODS: computerized analysis was carried out on transmission electron microscopy pictures of the murine vastus lateralis muscle. Samples from both euploid (control) and trisomic (showing myofiber alterations) Ts65Dn mice were used. Two routines were written in MATLAB to measure specific structural parameters on sarcomeres and myofibrils. The output included the Z-line, M-line, and sarcomere lengths, the Aspect Ratio (AsR) and Curviness (Cur) sarcomere shape parameters, myofibril axis (α angle), and the H parameter (evaluation of sequence of Z-lines of adjacent myofibrils).
    RESULTS: Both routines worked well in control (euploid) skeletal muscle yielding consistent quantitative data of sarcomere and myofibril structural organization. In comparison with euploid, trisomic muscle showed statistically significant lower Z-line length, similar M-line length, and statistically significant lower sarcomere length. Both AsR and Cur were statistically significantly lower in trisomic muscle, suggesting the sarcomere is barrel-shaped in the latter. The angle (α) distribution showed that the sarcomere axes are almost parallel in euploid muscle, while a large variability occurs in trisomic tissue. The mean value of H was significantly higher in trisomic versus euploid muscle indicating that Z-lines are not perfectly aligned in trisomic muscle.
    CONCLUSIONS: Our procedure allowed us to accurately extract and quantify sarcomere and myofibril parameters from the high-resolution electron micrographs thereby yielding an effective tool to quantitatively define trisomy-associated muscle alterations. These results pave the way to future objective quantification of skeletal muscle changes in pathological conditions.
    SHORT ABSTRACT: The skeletal muscle is composed of integrated tissues mainly composed of myofibers i.e., long, cylindrical syncytia, whose cytoplasm is mostly occupied by parallel myofibrils organized in serially end-to-end arranged sarcomeres. Several pieces of evidence have highlighted that in muscle disorders and diseases the sarcomere structure may be altered. Therefore, objectifying alterations of the myofibril and sarcomere architecture would provide a solid foundation for qualitative observations. A computerized analysis was carried out on transmission electron microscopy images of euploid (control) and trisomic (showing myofiber alterations) skeletal muscle. Two routines were written in MATLAB to measure nine sarcomere and myofibril structural parameters. Our computational method confirmed and expanded on previous qualitative ultrastructural findings defining several trisomy-associated skeletal muscle alterations. The proposed procedure is a potentially useful tool to quantitatively define skeletal muscle changes in pathological conditions involving the sarcomere.
    Keywords:  Morphology; Myofibril; Semi-automatic routine; Transmission electron microscopy; Ultrastructure; Z-line displacement
  13. Exp Gerontol. 2021 Sep 30. pii: S0531-5565(21)00361-2. [Epub ahead of print]155 111579
      A decline in skeletal muscle mitochondrial function is associated with the loss of skeletal muscle size and function during knee osteoarthritis (OA). We have recently reported that 12-weeks of dietary rapamycin (Rap, 14 ppm), with or without metformin (Met, 1000 ppm), increased plasma glucose and OA severity in male Dunkin Hartley (DH) guinea pigs, a model of naturally occurring, age-related OA. The purpose of the current study was to determine if increased OA severity after dietary Rap and Rap+Met was accompanied by impaired skeletal muscle mitochondrial function. Mitochondrial respiration and hydrogen peroxide (H2O2) emissions were evaluated in permeabilized muscle fibers via high-resolution respirometry and fluorometry using either a saturating bolus or titration of ADP. Rap and Rap+Met decreased complex I (CI)-linked respiration and tended to increase ADP sensitivity, consistent with previous findings in patients with end-stage OA. The decrease in CI-linked respiration was accompanied with lower CI protein abundance. Rap and Rap+Met did not change mitochondrial H2O2 emissions. There were no differences between mitochondrial function in Rap versus Rap+Met suggesting that Rap was likely driving the change in mitochondrial function. This is the first inquiry into how lifespan extending treatments Rap and Rap+Met can influence skeletal muscle mitochondria in a model of age-related OA. Collectively, our data suggest that Rap with or without Met inhibits CI-linked capacity and increases ADP sensitivity in DH guinea pigs that have greater OA severity.
    Keywords:  Aging; Healthspan; Metformin; Mitochondria; mTOR
  14. J Gen Physiol. 2021 Nov 01. pii: e202113031. [Epub ahead of print]153(11):
      Study reveals how a slowly activating calcium channel is able to control rapid excitation-contraction coupling in skeletal muscle.
  15. Clin Exp Pharmacol Physiol. 2021 Oct 06.
      This study aims to elucidate the role of Transcription factor EB (TFEB) in protecting C2C12 myotubes against palmitate (PA)-induced insulin resistance (IR) and explored its mechanism associated with autophagy. PA treatment significantly decreased insulin sensitivity in myotubes and downregulated TFEB protein expression. TFEB overexpression significantly reversed the PA-suppressed glucose transporter 4 (GLUT4) protein expression and improved intracellular glucose uptake and consumption, and also alleviated the decrease of authphagy markers induced by PA. The effect of TFEB overexpression on GLUT4 was also abolished by the autophagy inhibitor 3-MA. In addition, AMPKɑ2-DN inhibited or abolished the effects of TFEB overexpression on upregulation of GLUT4 and PA-induced decrease of autophagy marker expressions. Taken together, our data demonstrated that upregulation of TFEB improved PA-induced IR in C2C12 myotubes by enhancing autophagy and upregulating AMPK activity. TFEB, as a critical regulator of glucose homeostasis in skeletal muscle cells, may be a potential therapeutic target for IR and Type 2 diabetes.
    Keywords:  AMPK; C2C12 myotubes; TFEB; autophagy; insulin resistance
  16. J Cachexia Sarcopenia Muscle. 2021 Oct 03.
      BACKGROUND: Although mounting evidence indicates that insulin resistance (IR) co-occurs with mitochondrial dysfunction in skeletal muscle, there is no clear causal link between mitochondrial dysfunction and IR pathogenesis. In this study, the exact role of mitochondria in IR development was determined.METHODS: Six-week-old C57BL/6 mice were fed a high-fat diet for 2 weeks to induce acute IR or for 24 weeks to induce chronic IR (n = 8 per group). To characterize mitochondrial function, we measured citrate synthase activity, ATP content, mitochondrial DNA (mtDNA) content, and oxygen consumption rate in gastrocnemius and liver tissues. We intraperitoneally administered mitochondrial division inhibitor 1 (mdivi-1) to mice with acute IR and measured mitochondrial adaptive responses such as mitophagy, mitochondrial unfolded protein response (UPRmt), and oxidative stress (n = 6 per group).
    RESULTS: Acute IR occurred coincidently with impaired mitochondrial function, including reduced citrate synthase activity (-37.8%, P < 0.01), ATP production (-88.0%, P < 0.01), mtDNA (-53.1%, P < 0.01), and mitochondrial respiration (-52.2% for maximal respiration, P < 0.05) in skeletal muscle but not in liver. Administration of mdivi-1 attenuated IR development by increasing mitochondrial function (+58.5% for mtDNA content, P < 0.01; 4.06 ± 0.69 to 5.84 ± 0.95 pmol/min/mg for citrate synthase activity, P < 0.05; 13.06 ± 0.70 to 34.87 ± 0.70 pmol/min/g for maximal respiration, P < 0.001). Western blot analysis showed acute IR resulted in increased autophagy (mitophagy) and UPRmt induction in muscle tissue. This adaptive response was inhibited by mdivi-1, which reduced the mitochondrial oxidative stress of skeletal muscle during acute IR.
    CONCLUSIONS: Acute IR induced mitochondrial oxidative stress that impaired mitochondrial function in skeletal muscle. Improving mitochondrial function has important potential for treating acute IR.
    Keywords:  Insulin resistance; Mitochondria; Mitophagy; Oxidative stress; Skeletal muscle
  17. Front Physiol. 2021 ;12 736905
      Regular exercise training induces mitochondrial biogenesis in the brain via activation of peroxisome proliferator-activated receptor gamma-coactivator 1α (PGC-1α). However, it remains unclear whether a single bout of exercise would increase mitochondrial biogenesis in the brain. Therefore, we first investigated whether mitochondrial biogenesis in the hippocampus is affected by a single bout of exercise in mice. A single bout of high-intensity exercise, but not low- or moderate-intensity, increased hippocampal PGC-1α mRNA and mitochondrial DNA (mtDNA) copy number at 12 and 48h. These results depended on exercise intensity, and blood lactate levels observed immediately after exercise. As lactate induces mitochondrial biogenesis in the brain, we examined the effects of acute lactate administration on blood and hippocampal extracellular lactate concentration by in vivo microdialysis. Intraperitoneal (I.P.) lactate injection increased hippocampal extracellular lactate concentration to the same as blood lactate level, promoting PGC-1α mRNA expression in the hippocampus. However, this was suppressed by administering UK5099, a lactate transporter inhibitor, before lactate injection. I.P. UK5099 administration did not affect running performance and blood lactate concentration immediately after exercise but attenuated exercise-induced hippocampal PGC-1α mRNA and mtDNA copy number. In addition, hippocampal monocarboxylate transporters (MCT)1, MCT2, and brain-derived neurotrophic factor (BDNF) mRNA expression, except MCT4, also increased after high-intensity exercise, which was abolished by UK5099 administration. Further, injection of 1,4-dideoxy-1,4-imino-D-arabinitol (glycogen phosphorylase inhibitor) into the hippocampus before high-intensity exercise suppressed glycogen consumption during exercise, but hippocampal lactate, PGC-1α, MCT1, and MCT2 mRNA concentrations were not altered after exercise. These results indicate that the increased blood lactate released from skeletal muscle may induce hippocampal mitochondrial biogenesis and BDNF expression by inducing MCT expression in mice, especially during short-term high-intensity exercise. Thus, a single bout of exercise above the lactate threshold could provide an effective strategy for increasing mitochondrial biogenesis in the hippocampus.
    Keywords:  exercise; hippocampus; lactate; microdialysis; mitochondrial biogenesis; peroxisome proliferator-activated receptor gamma-coactivator 1α
  18. Biomaterials. 2021 Oct 01. pii: S0142-9612(21)00530-5. [Epub ahead of print]278 121173
      Severe traumatic skeletal muscle injuries, such as volumetric muscle loss (VML), result in the obliteration of large amounts of skeletal muscle and lead to permanent functional impairment. Current clinical treatments are limited in their capacity to regenerate damaged muscle and restore tissue function, promoting the need for novel muscle regeneration strategies. Advances in tissue engineering, including cell therapy, scaffold design, and bioactive factor delivery, are promising solutions for VML therapy. Herein, we review tissue engineering strategies for regeneration of skeletal muscle, development of vasculature and nerve within the damaged muscle, and achievements in immunomodulation following VML. In addition, we discuss the limitations of current state of the art technologies and perspectives of tissue-engineered bioconstructs for muscle regeneration and functional recovery following VML.
    Keywords:  Biomaterials; Immunomodulation; Innervation; Skeletal muscle regeneration; Tissue engineering; Vascularization; Volumetric muscle loss
  19. Appl Physiol Nutr Metab. 2021 Oct 04. 1-11
      This systematic review and meta-analysis determined whether the ergogenic effects of branched-chain amino acids (BCAA) ameliorated markers of muscle damage and performance following strenuous exercise. In total, 25 studies were included, consisting of 479 participants (age 24.3 ± 8.3 years, height 1.73 ± 0.06 m, body mass 70.8 ± 9.5 kg, females 26.3%). These studies were rated as fair to excellent following the PEDro scale. The outcome measures were compared between the BCAA and placebo conditions at 24 and 48 hours following muscle-damaging exercises, using standardised mean differences and associated p-values via forest plots. Our meta-analysis demonstrated significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) at 48 hours post-exercise (standardised mean difference [SMD] = -0.41; p < 0.05) for the BCAA than placebo conditions, whilst muscle soreness was significant at 24 hours post-exercise (SMD = -0.28 ≤ d ≤ -0.61; p < 0.05) and 48 hours post-exercise (SMD = -0.41 ≤ d≤ -0.92; p < 0.01). However, no significant differences were identified between the BCAA and placebo conditions for muscle performance at 24 or 48 hours post-exercise (SMD = 0.08 ≤ d ≤ 0.21; p > 0.05). Overall, BCAA reduced the level of muscle damage biomarkers and muscle soreness following muscle-damaging exercises. However, the potential benefits of BCAA for muscle performance recovery is questionable and warrants further investigation to determine the practicality of BCAA for ameliorating muscle damage symptoms in diverse populations. PROSPERO registration number: CRD42020191248. Novelty: BCAA reduces the level of creatine kinase and muscle soreness following strenuous exercise with a dose-response relationship. BCAA does not accelerate recovery for muscle performance.
    Keywords:  creatine kinase; créatine kinase; douleur musculaire; isoleucine; leucine; muscle soreness; supplement; supplément; valine
  20. J Sports Med Phys Fitness. 2021 Oct 05.
      INTRODUCTION: To compare changes in muscle size, strength, and power between free-weight and machine-based exercises.EVIDENCE ACQUISITION: The online databases of Pubmed, Scopus, and Web of Science were each searched using the following terms: ""free weights" OR barbells OR dumbbells AND machines" up until September 15, 2020. A three-level random effects meta-analytic model was used to compute effect sizes.
    EVIDENCE SYNTHESIS: When strength was tested using a free-weight exercise, individuals training with free-weights gained more strength than those training with machines [ES: 0.655; (95% CI: 0.269, 1.041)]. When strength was tested a machine-based exercise incorporated as part of the machine-based training program, individuals training with machines gained more strength than those training with free-weights [ES: -0.784 (95% CI: -1.223, -0.344)]. When strength was tested using a neutral device, machines and free-weight exercises resulted in similar strength gains [ES: 0.128 (95% CI: -0303, 0.559)]. There were no differences in the change in power [ES: -0.049 (95% CI: -0.557, 0.460)] or muscle hypertrophy [ES: -0.01 (95% CI: -0.525, 0.545)] between exercise modes.
    CONCLUSIONS: Individuals looking to increase strength and power should take into account the specificity of exercise, and how their strength and power will be tested and applied. Individuals looking to increase general strength and muscle mass to maintain health may choose whichever activity they prefer and are more likely to adhere to.
  21. Biochim Biophys Acta Gen Subj. 2021 Oct 05. pii: S0304-4165(21)00176-8. [Epub ahead of print] 130017
      BACKGROUND: Autophagy, a highly conserved homeostatic mechanism, is essential for cell survival. The decline of autophagy function has been implicated in various diseases as well as aging. Although mitochondria play a key role in the autophagy process, whether mitochondrial-derived peptides are involved in this process has not been explored.METHODS: We developed a high through put screening method to identify potential autophagy inducers among mitochondrial-derived peptides. We used three different cell lines, mice, c.elegans, and a human cohort to validate the observation.
    RESULTS: Humanin, a mitochondrial-derived peptide, increases autophagy and maintains autophagy flux in several cell types. Humanin administration increases the expression of autophagy-related genes and lowers accumulation of harmful misfolded proteins in mice skeletal muscle, suggesting that humanin-induced autophagy potentially contributes to the improved skeletal function. Moreover, autophagy is a critical role in humanin-induced lifespan extension in C. elegans.
    CONCLUSIONS: Humanin is an autophagy inducer.
    GENERAL SIGNIFICANCE: This paper presents a significant, novel discovery regarding the role of the mitochondrial derived peptide humanin in autophagy regulation and as a possible therapeutic target for autophagy in various age-related diseases.
    Keywords:  Autophagy; Humanin; Lifespan; Mitochondrial-derived peptides
  22. Toxicol In Vitro. 2021 Sep 30. pii: S0887-2333(21)00176-4. [Epub ahead of print]77 105251
      β2-adrenoceptor (β2AR) agonists can stimulate skeletal muscle growth. Their illegal use in food-producing animals, human athletes and bodybuilders causes adverse health effects. In the present study, we developed 3D-QSAR models for predicting the activity of chemicals which can stimulate skeletal muscle growth through β2AR. The activity of 25 β2AR agonists was measured by β2AR-cAMP response element (CRE) -luciferase (Luc) reporter assay. The 3D-QSAR models were built using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The CoMFA and CoMSIA models displayed high external predictability (R2 0.996 and 0.992, respectively) and good statistical robustness, and revealed that electrostatic effects were the most prominent forces influencing the activity of β2AR agonists. The CoMFA and CoMSIA contour plots provided clues regarding the main chemical features responsible for the activity variations and also resulted in predictions which correlate very well with the observed activity. In vitro study with differentiated myotubes showed that the potency orders of β2AR agonists in activating the β2AR-CRE-Luc reporter and in upregulating CREB target genes related to muscle growth were consistent. These 3D-QSAR models provide tools for predicting the activity of chemicals which might be illegally used in livestock or humans to stimulate skeletal muscle growth.
    Keywords:  3D-QSAR models; CRE-luciferase reporter; CoMFA; CoMSIA; Myotube gene expression; β(2)AR agonists
  23. J Biol Chem. 2021 Sep 30. pii: S0021-9258(21)01069-3. [Epub ahead of print] 101266
      Functional delivery of mRNA has high clinical potential. Previous studies established that mRNAs can be delivered to cells in vitro and in vivo via RNA-loaded lipid nanoparticles (LNPs). Here we describe an alternative approach using exosomes, the only biologically normal nanovesicle. In contrast to LNPs, which elicited pronounced cellular toxicity, exosomes had no adverse effects in vitro or in vivo at any dose tested. Moreover, mRNA-loaded exosomes were characterized by efficient mRNA encapsulation (∼90%), high mRNA content, consistent size, and a polydispersity index under 0.2. Using an mRNA encoding the red light-emitting luciferase Antares2, we observed that mRNA-loaded exosomes were superior to mRNA-loaded LNPs at delivering functional mRNA into human cells in vitro. Injection of Antares2 mRNA-loaded exosomes also led to strong light emission following injection into the vitreous fluid of the eye or into the tissue of skeletal muscle in mice. Furthermore, we show that repeated injection of Antares2 mRNA-loaded exosomes drove sustained luciferase expression across six injections spanning at least 10 weeks, without evidence of signal attenuation or adverse injection site responses. Consistent with these findings, we observed that exosomes loaded with mRNAs encoding immunogenic forms of the SARS-CoV-2 Spike and Nucleocapsid proteins induced long-lasting cellular and humoral responses to both. Taken together, these results demonstrate that exosomes can be used to deliver functional mRNA to and into cells in vivo.
    Keywords:  COVID19; T-cell; antibody; cationic lipid; exosome; extracellular vesicles; lipofection; mRNA; nucleocapsid; spike
  24. Clin Nutr ESPEN. 2021 Oct;pii: S2405-4577(21)00272-2. [Epub ahead of print]45 503-506
      BACKGROUND & AIMS: Muscle atrophy is a public health issue and inflammation is a major cause of muscle atrophy. While docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), which are typical ω-3 polyunsaturated fatty acids, are reported to have anti-inflammatory effects on endotoxin-induced inflammatory responses, their effects on inflammatory muscle atrophy have not been clarified. In this study, we aimed to investigate the effects of DHA and EPA on inflammatory muscle atrophy.METHODS: DHA or EPA was added to C2C12 myotubes at a concentration of 25, 50, or 100 μM, and 1 h later, lipopolysaccharide (LPS) was added at a concentration of 1 μg/mL. Two hours after the first LPS addition, mRNA expression of atrogin-1 and Murf-1 in C2C12 myotubes was measured. The second LPS addition was performed 24 h after the first LPS addition, and myotube diameter, myofibrillar protein, and cell viability were measured. One-way ANOVA and Tukey's multiple comparison test were used for statistical processing of the results, and the significance level was set to less than 5 %.
    RESULTS: The LPS-added group significantly decreased the myotube diameter and the myofibrillar protein content compared to the control group. The myotube diameter was significantly higher in the 25 μM, 50 μM DHA and 25 μM EPA-added groups compared to the LPS group. In the 25 μM DHA and EPA-added groups, the myofibrillar protein content was significantly higher than that in the LPS group. The mRNA expression levels of atrogin-1 and murf-1 were significantly suppressed in the 25 μM DHA and EPA-added groups compared to the LPS group. The cell viability did not change by the addition of LPS, DHA, and EPA.
    CONCLUSIONS: The addition of DHA or EPA suppressed the decrease in myotube diameter and myofibrillar protein content and suppressed the increase in atrogin-1 and murf-1 induced by LPS. This study showed the preventive effect of DHA and EPA on endotoxin-induced muscle atrophy.
    Keywords:  DHA; EPA; LPS; Muscle atrophy
  25. Front Cell Dev Biol. 2021 ;9 720096
      Background: Cancer cachexia is a severe metabolic disorder characterized by progressive weight loss along with a dramatic loss in skeletal muscle and adipose tissue. Like cancer, cachexia progresses in stages starting with pre-cachexia to cachexia and finally to refractory cachexia. In the refractory stage, patients are no longer responsive to therapy and management of weight loss is no longer possible. It is therefore critical to detect cachexia as early as possible. In this study we applied a metabolomics approach to search for early biomarkers of cachexia. Methods: Multi-platform metabolomics analyses were applied to the murine Colon-26 (C26) model of cachexia. Tumor bearing mice (n = 5) were sacrificed every other day over the 14-day time course and control mice (n = 5) were sacrificed every fourth day starting at day 2. Linear regression modeling of the data yielded metabolic trajectories that were compared with the trajectories of body weight and skeletal muscle loss to look for early biomarkers of cachexia. Results: Weight loss in the tumor-bearing mice became significant at day 9 as did the loss of tibialis muscle. The loss of muscle in the gastrocnemius and quadriceps was significant at day 7. Reductions in amino acids were among the earliest metabolic biomarkers of cachexia. The earliest change was in methionine at day 4. Significant alterations in acylcarnitines and lipoproteins were also detected several days prior to weight loss. Conclusion: The results of this study demonstrate that metabolic alterations appear well in advance of observable weight loss. The earliest and most significant alterations were found in amino acids and lipoproteins. Validation of these results in other models of cachexia and in clinical studies will pave the way for a clinical diagnostic panel for the early detection of cachexia. Such a panel would provide a tremendous advance in cachectic patient management and in the design of clinical trials for new therapeutic interventions.
    Keywords:  biomarkers; cancer cachexia; early detection; metabolomics; muscle wasting; pre-cachexia
  26. Elife. 2021 Oct 04. pii: e65672. [Epub ahead of print]10
      Non-centrosomal microtubule organizing centers (MTOC) are pivotal for the function of multiple cell types, but the processes initiating their formation are unknown. Here, we find that the transcription factor myogenin is required in murine myoblasts for the localization of MTOC proteins to the nuclear envelope. Moreover, myogenin is sufficient in fibroblasts for nuclear envelope MTOC (NE-MTOC) formation and centrosome attenuation. Bioinformatics combined with loss- and gain-of-function experiments identified induction of AKAP6 expression as one central mechanism for myogenin-mediated NE-MTOC formation. Promoter studies indicate that myogenin preferentially induces the transcription of muscle- and NE-MTOC-specific isoforms of Akap6 and Syne1, which encodes nesprin-1α, the NE-MTOC anchor protein in muscle cells. Overexpression of AKAP6β and nesprin-1α was sufficient to recruit endogenous MTOC proteins to the nuclear envelope of myoblasts in the absence of myogenin. Taken together, our results illuminate how mammals transcriptionally control the switch from a centrosomal MTOC to an NE-MTOC and identify AKAP6 as a novel NE-MTOC component in muscle cells.
    Keywords:  cell biology; developmental biology; human; mouse
  27. Hum Mol Genet. 2021 Oct 04. pii: ddab290. [Epub ahead of print]
      Amyotrophic lateral sclerosis (ALS)-linked mutations in fused in sarcoma (FUS) lead to the formation of cytoplasmic aggregates in neurons. They are believed play a critical role in the pathogenesis of FUS-associated ALS. Therefore, the clearance and degradation of cytoplasmic FUS aggregates in neurons may be considered a therapeutic strategy for ALS. However, the molecular pathogenic mechanisms behind FUS-associated ALS remain poorly understood. Here, we report GSK-3β as a potential modulator of FUS-induced toxicity. We demonstrated that RNAi-mediated knockdown of Drosophila ortholog Shaggy in FUS-expressing flies suppresses defective phenotypes, including retinal degeneration, motor defects, motor neuron degeneration, and mitochondrial dysfunction. Furthermore, we found that cytoplasmic FUS aggregates were significantly reduced by Shaggy knockdown. In addition, we found that the levels of FUS proteins were significantly reduced by co-overexpression of Slimb, a F-box protein, in FUS-expressing flies, indicating that Slimb is critical for the suppressive effect of Shaggy/GSK-3β inhibition on FUS-induced toxicity in Drosophila. These findings revealed a novel mechanism of neuronal protective effect through SCFSlimb-mediated FUS degradation via GSK-3β inhibition, and provided in vivo evidence of the potential for modulating FUS-induced ALS progression using GSK-3β inhibitors.
  28. Aging Cell. 2021 Oct 06. e13487
      The association between blood-based estimates of mitochondrial DNA parameters, mitochondrial DNA copy number (mtDNA-CN) and heteroplasmy load, with skeletal muscle bioenergetic capacity was evaluated in 230 participants of the Baltimore Longitudinal Study of Aging (mean age:74.7 years, 53% women). Participants in the study sample had concurrent data on muscle oxidative capacity (τPCr ) assessed by 31 P magnetic resonance spectroscopy, and mitochondrial DNA parameters estimated from whole-genome sequencing data. In multivariable linear regression models, adjusted for age, sex, extent of phosphocreatine (PCr) depletion, autosomal sequencing coverage, white blood cell total, and differential count, as well as platelet count, mtDNA-CN and heteroplasmy load were not significantly associated with τPCr (both p > 0.05). However, in models evaluating whether the association between mtDNA-CN and τPCr varied by heteroplasmy load, there was a significant interaction between mtDNA-CN and heteroplasmy load (p = 0.037). In stratified analysis, higher mtDNA-CN was significantly associated with lower τPCr among participants with high heteroplasmy load (n = 84, β (SE) = -0.236 (0.115), p-value = 0.044), but not in those with low heteroplasmy load (n = 146, β (SE) = 0.046 (0.119), p-value = 0.702). Taken together, mtDNA-CN and heteroplasmy load provide information on muscle bioenergetics. Thus, mitochondrial DNA parameters may be considered proxy measures of mitochondrial function that can be used in large epidemiological studies, especially when comparing subgroups.
    Keywords:  aging; mitochondrial DNA; skeletal muscle
  29. Mol Neurobiol. 2021 Oct 04.
      Neuromuscular adaptations are essential for improving athletic performance. However, little is known about the effect of different endurance training protocols and their subsequent detraining on the gene expression of critical factors for neuromuscular synaptic transmission. Therefore, this study investigated the effects of endurance training (high-intensity interval training [HIIT], continuous [cEND], mixed interval [Mix], and all protocols combined [Comb]) and detraining on performance and gene expression (GE) of the alpha-1a, synaptotagmin II (Syt-II), synaptobrevin II (Vamp2), and acetylcholinesterase (AChE) in the gastrocnemius and soleus of Wistar rats. Eighty rodents were randomly divided into control, HIIT, cEND, Mix, Comb, and detraining groups. The rodents trained for 6 weeks (5 × /week), followed by 2 weeks of detraining. Performance improved in all training groups and decreased following detraining (p < 0.05), except HIIT. In the gastrocnemius, alpha-1a GE was upregulated in the Mix. Syt-II and AChE GE were upregulated in HIIT, Mix, and Comb. Vamp2 GE was upregulated in all groups. In the soleus, alpha-1a GE was upregulated in HIIT, Mix, and Comb. Syt-II and Vamp2 GE were upregulated in all groups. AChE GE was upregulated in cEND, Mix, and Comb. Detraining downregulated mostly the gene expression in the skeletal muscles. We conclude that training intensity appears to be a key factor for the upregulation of molecules involved in neuromuscular synaptic transmission. Such changes occur to be involved in improving running performance. On the other hand, detraining negatively affects synaptic transmission and performance.
    Keywords:  Detraining; Exocytosis; Gene expression; Impulse transduction; Neuromuscular junction