bims-moremu Biomed News
on Molecular regulators of muscle mass
Issue of 2021‒03‒28
fifty papers selected by
Anna Vainshtein
Craft Science Inc.

  1. FASEB J. 2021 Apr;35(4): e21444
      Skeletal muscle is the largest organ of the body, the development of skeletal muscle is very important for the health of the animal body. Prolyl hydroxylases (PHDs) are the classical regulator of the hypoxia inducible factor (HIF) signal pathway, many researchers found that PHDs are involved in the muscle fiber type transformation, muscle regeneration, and myocyte differentiation. However, whether PHDs can impact the protein turnover of skeletal muscle is poorly understood. In this study, we constructed denervated muscle atrophy mouse model and found PHD3 was highly expressed in the atrophic muscles and there was a significant correlation between the expression level of PHD3 and skeletal muscle weight which was distinct from PHD1 and PHD2. Then, the similar results were getting from the different weight muscles of normal mice. To further verify the relationship between PHD3 and skeletal muscle protein turnover, we established a PHD3 interference model by injecting PHD3 sgRNA virus into tibialis anterior muscle (TA) muscle of MCK-Cre-cas9 mice and transfecting PHD3 shRNA lentivirus into primary satellite cells. It was found that the Knock-out of PHD3 in vivo led to a significant increase in muscle weight and muscle fiber area (P < .05). Besides, the activity of protein synthesis signal pathway increased significantly, while the protein degradation pathway was inhibited evidently (P < .05). In vitro, the results of 5-ethynyl-2'-deoxyuridine (EdU) and tetramethylrhodamine ethyl ester (TMRE) fluorescence detection showed that PHD3 interference could lead to a decrease in cell proliferation and an increase of cell apoptosis. After the differentiation of satellite cells, the production of puromycin in the interference group was higher than that in the control group, and the content of 3-methylhistidine in the interference group was lower than that in the control group (P < .05) which is consistent with the change of protein turnover signal pathway in the cell. Mechanistically, there is an interaction between PHD3, NF-κB, and IKBα which was detected by immunoprecipitation. With the interfering of PHD3, the expression of the inflammatory signal pathway also significantly decreased (P < .05). These results suggest that PHD3 may affect protein turnover in muscle tissue by mediating inflammatory signal pathway. Finally, we knocked out PHD3 in denervated muscle atrophy mice and LPS-induced myotubes atrophy model. Then, we found that the decrease of PHD3 protein level could alleviate the muscle weight and muscle fiber reduction induced by denervation in mice. Meanwhile, the protein level of the inflammatory signal pathway and the content of 3-methylhistidine in denervated atrophic muscle were also significantly reduced (P < .05). In vitro, PHD3 knock-out could alleviate the decrease of myotube diameter induced by LPS, and the expression of protein synthesis pathway was also significantly increased (P < .05). On the contrary, the expression level of protein degradation and inflammatory signal pathway was significantly decreased (P < .05). Through these series of studies, we found that the increased expression of PHD3 in denervated muscle might be an important regulator in inducing muscle atrophy, and this process is likely to be mediated by the inflammatory NF-κB signal pathway.
    Keywords:  Inflammation; NF-kB; PHD3; protein turnover; skeletal muscle
  2. Nat Metab. 2021 Mar;3(3): 394-409
      Both obesity and sarcopenia are frequently associated in ageing, and together may promote the progression of related conditions such as diabetes and frailty. However, little is known about the pathophysiological mechanisms underpinning this association. Here we show that systemic alanine metabolism is linked to glycaemic control. We find that expression of alanine aminotransferases is increased in the liver in mice with obesity and diabetes, as well as in humans with type 2 diabetes. Hepatocyte-selective silencing of both alanine aminotransferase enzymes in mice with obesity and diabetes retards hyperglycaemia and reverses skeletal muscle atrophy through restoration of skeletal muscle protein synthesis. Mechanistically, liver alanine catabolism driven by chronic glucocorticoid and glucagon signalling promotes hyperglycaemia and skeletal muscle wasting. We further provide evidence for amino acid-induced metabolic cross-talk between the liver and skeletal muscle in ex vivo experiments. Taken together, we reveal a metabolic inter-tissue cross-talk that links skeletal muscle atrophy and hyperglycaemia in type 2 diabetes.
  3. In Vitro Cell Dev Biol Anim. 2021 Mar 21.
      Although originally discovered inducing important biological functions in the nervous system, repulsive guidance molecule a (RGMa) has now been identified as a player in many other processes and diseases, including in myogenesis. RGMa is known to be expressed in skeletal muscle cells, from somites to the adult. Functional in vitro studies have revealed that RGMa overexpression could promote skeletal muscle cell hypertrophy and hyperplasia, as higher efficiency in cell fusion was observed. Here, we extend the potential role of RGMa during C2C12 cell differentiation in vitro. Our results showed that RGMa administrated as a recombinant protein during late stages of C2C12 myogenic differentiation could induce myoblast cell fusion and the downregulation of different myogenic markers, while its administration at early stages induced the expression of myogenic markers with no detectable morphological effects. We also found that RGMa effects on skeletal muscle hyperplasia are performed via neogenin receptor, possibly as part of a complex with other proteins. Additionally, we observed that RGMa-neogenin is not playing a role as an inhibitor of the BMP signalling in skeletal muscle cells. This work contributes to placing RGMa as a component of the mechanisms that determine skeletal cell fusion via neogenin receptor.
    Keywords:  Axon guidance; BMP signalling; C2C12; Myoblast fusion; Neogenin receptor
  4. Nutr Metab (Lond). 2021 Mar 25. 18(1): 33
      Many chronic disease patients experience a concurrent loss of lean muscle mass. Skeletal muscle is a dynamic tissue maintained by continuous protein turnover and progenitor cell activity. Muscle stem cells, or satellite cells, differentiate (by a process called myogenesis) and fuse to repair and regenerate muscle. During myogenesis, satellite cells undergo extensive metabolic alterations; therefore, pathologies characterized by metabolic derangements have the potential to impair myogenesis, and consequently exacerbate skeletal muscle wasting. How disease-associated metabolic disruptions in satellite cells might be contributing to wasting is an important question that is largely neglected. With this review we highlight the impact of various metabolic disruptions in disease on myogenesis and skeletal muscle regeneration. We also discuss metabolic therapies with the potential to improve myogenesis, skeletal muscle regeneration, and ultimately muscle mass.
    Keywords:  Atrophy; Degeneration; Metabolism; Muscle wasting; Myoblasts; Satellite cells
  5. FASEB J. 2021 Apr;35(4): e21426
      Mitochondrial remodeling through fusion and fission is crucial for progenitor cell differentiation but its role in myogenesis is poorly understood. Here, we characterized the function of mitofusin 2 (Mfn2), a mitochondrial outer membrane protein critical for mitochondrial fusion, in muscle progenitor cells (myoblasts). Mfn2 expression is upregulated during myoblast differentiation in vitro and muscle regeneration in vivo. Targeted deletion of Mfn2 gene in myoblasts (Mfn2MKO ) increases oxygen-consumption rates (OCR) associated with the maximal respiration and spare respiratory capacity, and increased levels of reactive oxygen species (ROS). Skeletal muscles of Mfn2MKO mice exhibit robust mitochondrial swelling with normal mitochondrial DNA content. Additionally, mitochondria isolated from Mfn2MKO muscles have reduced OCR at basal state and for complex I respiration, associated with decreased levels of complex I proteins NDUFB8 (NADH ubiquinone oxidoreductase subunit B8) and NDUFS3 (NADH ubiquinone oxidoreductase subunit S3). However, Mfn2MKO has no obvious effects on myoblast differentiation, muscle development and function, and muscle regeneration. These results demonstrate a novel role of Mfn2 in regulating mitochondrial complex I protein abundance and respiratory functions in myogenic progenitors and myofibers.
    Keywords:  Mfn2; mitochondrion; myogenesis; myogenic progenitor cells; oxidative respiration
  6. Food Chem. 2021 Mar 07. pii: S0308-8146(21)00469-6. [Epub ahead of print]353 129463
      Codium fragile (CF) is a type of green algae consumed as kimchi in Asia. UPLC-QTOF-MS/MS analysis showed that CF contain lysophosphatidyl choline, canthaxanthin, retinoic acid, α-tocopherol, and unsaturated fatty acids, which reportedly improve skeletal muscle health. However, the effect of CF on skeletal muscle mass and function remains to be elucidated. In mice fed with CF extracts, exercise endurance and muscle weight increased. CF extracts enhanced protein synthesis and myogenic differentiation through the mTORC1 pathway. CF extracts also promoted oxidative muscle fiber formation and mitochondrial biogenesis through the PGC-1α-related signaling pathway. Upregulation of PGC-1α by CF extracts was abolished by EX527 SIRT1 inhibitor treatment. Changed signaling molecules in the CF extracts were partially regulated by canthaxanthin, a new compound in CF extracts, suggesting that canthaxanthin contribute synergistically to the effect of CF extracts. Therefore, CF is a potential food source for sport nutrition or prevention of sarcopenia.
    Keywords:  Codium fragile; ERRγ; Exercise endurance; Muscle weight; PGC-1α; Protein synthesis; SIRT1
  7. Cell Mol Life Sci. 2021 Mar 22.
      The remodeling of the mitochondrial network is a critical process in maintaining cellular homeostasis and is intimately related to mitochondrial function. The interplay between the formation of new mitochondria (biogenesis) and the removal of damaged mitochondria (mitophagy) provide a means for the repopulation of the mitochondrial network. Additionally, mitochondrial fission and fusion serve as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been characterised in multiple tissue- and cell-types, and under various conditions. In skeletal muscle, the robust remodeling of the mitochondrial network is observed, particularly after injury where large portions of the tissue/cell structures are damaged. The significance of mitochondrial remodeling in regulating skeletal muscle regeneration has been widely studied, with alterations in mitochondrial remodeling processes leading to incomplete regeneration and impaired skeletal muscle function. Needless to say, important questions related to mitochondrial remodeling and skeletal muscle regeneration still remain unanswered and require further investigation. Therefore, this review will discuss the known molecular mechanisms of mitochondrial network remodeling, as well as integrate these mechanisms and discuss their relevance in myogenesis and regenerating skeletal muscle.
    Keywords:  Biogenesis; Fission; Fusion; Mitochondria; Mitophagy; Regeneration; Skeletal muscle; Skeletal muscle stem cells
  8. FASEB J. 2021 Apr;35(4): e21453
      Epigenetic regulation of skeletal muscle adaptation to exercise is a recent topic for which there is limited information. This study investigated whether exercise training activates histone turnover in the skeletal muscle fibers of mice. Experiments using a tetracycline-inducible H2B-GFP expression model demonstrated that 4 weeks of running training, but not 2 weeks of training, significantly promoted the incorporation of H2B-GFP into nucleosomes and the dissociation of histone H3.3 at both transcriptionally upregulated and nonresponsive loci. Muscle-specific PGC-1α-b-overexpressing mice crossed with H2B-GFP mice showed a slight increase in H2B-GFP incorporation at transcriptionally active loci, but not in the dissociation of H3.3 from nucleosomes. Gene expression responses to a single bout of running were significantly enhanced in 4-week trained mice when compared with those in 2-week trained mice. The most drastic increase in the gene response was found in the expression of Hspa1a and Hspa1b, in which the magnitude of upregulation in response to running was significantly enhanced from 8-fold in 2 week trained mice to 97- and 121-fold in 4 week trained mice, respectively. It was also found that the HSP70 level increased during the training period. In a myonuclear immunohistochemical analysis of chromatin remodelers, we further found that the level of SPT16, an H2A-H2B-specific chaperone, was upregulated after running training. These results revealed that 4 weeks of running training activated histone turnover in skeletal muscle fibers. They also suggested that histone turnover led to loosening of the nucleosomes and enhanced gene responses to exercise.
    Keywords:  H2B-GFP; exercise training; histone modification; myonucleus; skeletal muscle
  9. J Physiol Biochem. 2021 Mar 25.
      To identify factors that influence post-exercise muscle glycogen repletion, we compared the glycogen recovery after level running with downhill running, an experimental model of impaired post-exercise glycogen recovery. Male Institute of Cancer Research (ICR) mice performed endurance level running (no inclination) or downhill running (-5° inclination) on a treadmill. In Experiment 1, to determine whether these two types of exercise resulted in different post-exercise glycogen repletion patterns, tissues were harvested immediately post-exercise or 2 days post-exercise. Compared to the control (sedentary) group, level running induced significant glycogen supercompensation in the soleus muscle at 2 days post-exercise (p = 0.002). Downhill running did not induce glycogen supercompensation. In Experiment 2, mice were orally administered glucose 1 day post-exercise; this induced glycogen supercompensation in soleus and plantaris muscle only in the level running group (soleus: p = 0.005, plantaris: p = 0.003). There were significant positive main effects of level running compared to downhill running on the plasma insulin (p = 0.017) and C-peptide concentration (p = 0.011). There was no difference in the glucose transporter 4 level or the phosphorylated states of proteins related to insulin signaling and metabolism in skeletal muscle. The level running group showed significantly higher hexokinase 2 (HK2) protein content in both soleus (p = 0.046) and plantaris muscles (p =0.044) at 1 day after exercise compared to the downhill running group. Our findings suggest that post-exercise skeletal muscle glycogen repletion might be partly influenced by plasma insulin and skeletal muscle HK2 protein levels.
    Keywords:  Downhill; Glycogen repletion; Glycogen supercompensation; Hexokinase 2; Insulin; Skeletal muscle
  10. Mol Ther Nucleic Acids. 2021 Jun 04. 24 200-211
      Emerging studies have indicated that long non-coding RNAs (lncRNAs) play important roles in skeletal muscle growth and development. Nevertheless, it remains challenging to understand the function and regulatory mechanisms of these lncRNAs in muscle biology and associated diseases. Here, we identify a novel lncRNA, Mir22hg, that is significantly upregulated during myoblast differentiation and is highly expressed in skeletal muscle. We validated that Mir22hg promotes myoblast differentiation in vitro. Mechanistically, Mir22hg gives rise to mature microRNA (miR)-22-3p, which inhibits its target gene, histone deacetylase 4 (HDAC4), thereby increasing the downstream myocyte enhancer factor 2C (MEF2C) and ultimately promoting myoblast differentiation. Furthermore, in vivo, we documented that Mir22hg knockdown delays repair and regeneration following skeletal muscle injury and further causes a significant decrease in weight following repair of an injured tibialis anterior muscle. Additionally, Mir22hg gives rise to miR-22-3p to restrict HDAC4 expression, thereby promoting the differentiation and regeneration of skeletal muscle. Given the conservation of Mir22hg between mice and humans, Mir22hg might constitute a promising new therapeutic target for skeletal muscle injury, skeletal muscle atrophy, as well as other skeletal muscle diseases.
    Keywords:  HDAC4; MEF2C; lncRNA; miR-22-3p; muscle disease; myogenesis
  11. J Cell Physiol. 2021 Mar 21.
      Skeletal muscle development is a complex biological process involving multiple key genes, signaling pathways and noncoding RNAs, including microRNAs and circular RNAs (circRNAs). However, the regulatory relationship among them is so complicated that it has not yet been fully elucidated. In this study, we found that miR-7 inhibited C2C12 cell proliferation and differentiation by targeting transcription factor 12 (TCF12). circHIPK3 acted as a competing endogenous RNA, and its overexpression effectively reversed the regulation of miR-7 on C2C12 cell proliferation and differentiation by increasing TCF12 expression. Taken together, our findings provide evidence that circHIPK3 regulates skeletal muscle development through the miR-7/TCF12 pathway. This study provides a scientific basis for further research on skeletal muscle development at the circRNA level.
    Keywords:  TCF12; circHIPK3; miR-7; myoblast proliferation and differentiation; skeletal muscle development
  12. Physiol Rep. 2021 Mar;9(6): e14797
      AIM: Exercise is able to increase both muscle protein synthesis and mitochondrial biogenesis. However, acidosis, which can occur in pathological states as well as during high-intensity exercise, can decrease mitochondrial function, whilst its impact on muscle protein synthesis is disputed. Thus, the aim of this study was to determine the effect of a mild physiological decrease in pH, by administration of ammonium chloride, on myofibrillar and mitochondrial protein synthesis, as well as associated molecular signaling events.METHODS: Male Wistar rats were given either a placebo or ammonium chloride prior to a short interval training session. Rats were killed before exercise, immediately after exercise, or 3 h after exercise.
    RESULTS: Myofibrillar (p = 0.036) fractional protein synthesis rates was increased immediately after exercise in the soleus muscle of the placebo group, but this effect was absent in the ammonium chloride group. However, in the gastrocnemius muscle NH4 Cl increased myofibrillar (p = 0.044) and mitochondrial protein synthesis (0 h after exercise p = 0.01; 3 h after exercise p = 0.003). This was accompanied by some small differences in protein phosphorylation and mRNA expression.
    CONCLUSION: This study found ammonium chloride administration immediately prior to a single session of exercise in rats had differing effects on mitochondrial and myofibrillar protein synthesis rates in soleus (type I) and gastrocnemius (type II) muscle in rats.
    Keywords:  acidosis; exercise; mitochondria; protein synthesis; skeletal muscle
  13. J Mol Cell Biol. 2021 Mar 05. pii: mjab012. [Epub ahead of print]
      Muscle regeneration after damage or during myopathies requires a fine cooperation between myoblast proliferation and myogenic differentiation. A growing body of evidence suggests that microRNAs play critical roles in myocyte proliferation and differentiation transcriptionally. However, the molecular mechanisms underlying the orchestration are not fully understood. Here, we showed that miR-130b is able to repress myoblast proliferation and promote myogenic differentiation via targeting Sp1 transcription factor. Importantly, overexpression of miR-130b is capable of improving the recovery of damaged muscle in a freeze injury model. Moreover, miR-130b expression is declined in the muscle of muscular dystrophy patients. Thus, these results indicated that miR-130b may play a role in skeletal muscle regeneration and myopathy progression. Together, our findings suggest that the miR-130b/Sp1 axis may serve as a potential therapeutic target for the treatment of patients with muscle damage or severe myopathies.
    Keywords:  Sp1; differentiation; miR-130b; muscle regeneration; proliferation
  14. Front Physiol. 2021 ;12 604210
      Glutathione is an important antioxidant that regulates cellular redox status and is disordered in many disease states. Glutaredoxin 2 (Grx2) is a glutathione-dependent oxidoreductase that plays a pivotal role in redox control by catalyzing reversible protein deglutathionylation. As oxidized glutathione (GSSG) can stimulate mitochondrial fusion, we hypothesized that Grx2 may contribute to the maintenance of mitochondrial dynamics and ultrastructure. Here, we demonstrate that Grx2 deletion results in decreased GSH:GSSG, with a marked increase of GSSG in primary muscle cells isolated from C57BL/6 Grx2-/- mice. The altered glutathione redox was accompanied by increased mitochondrial length, consistent with a more fused mitochondrial reticulum. Electron microscopy of Grx2-/- skeletal muscle fibers revealed decreased mitochondrial surface area, profoundly disordered ultrastructure, and the appearance of multi-lamellar structures. Immunoblot analysis revealed that autophagic flux was augmented in Grx2-/- muscle as demonstrated by an increase in the ratio of LC3II/I expression. These molecular changes resulted in impaired complex I respiration and complex IV activity, a smaller diameter of tibialis anterior muscle, and decreased body weight in Grx2 deficient mice. Together, these are the first results to show that Grx2 regulates skeletal muscle mitochondrial structure, and autophagy.
    Keywords:  autophagy; disulfide relay system; glutaredoxin 2; glutathione; mitochondria; mitochondrial dynamics
  15. Vitam Horm. 2021 ;pii: S0083-6729(21)00012-1. [Epub ahead of print]116 295-311
      Regeneration of skeletal muscle is a finely tuned process which is depending on muscle stem cells, a population of stem cells in skeletal muscle which is also termed satellite cells. Muscle stem cells are a prerequisite for regeneration of skeletal muscle. Of note, the muscle stem cell population is heterogeneous and subpopulations can be identified depending on gene expression or phenotypic traits. However, all muscle stem cells express the transcription factor Pax7 and their functionality is tightly controlled by intrinsic signaling pathways and extrinsic signals. The latter ones include signals form the stem cell niche as well as circulating factors such as growth factors and hormones. Among them are Wnt proteins, growth factors like IGF-1 or FGF-2 and hormones such as thyroid hormones and the anti-aging hormone Klotho. A highly orchestrated interplay between those factors and muscle stem cells is important for their full functionality and ultimately regeneration of skeletal muscle as outlined here.
    Keywords:  Klotho; Muscle stem cell; Myogenesis; Regeneration; Satellite cell; Skeletal muscle; Stem cell; Thyroid hormone; Wnt
  16. Eur J Appl Physiol. 2021 Mar 20.
      PURPOSE: To investigate in vivo the adaptations of satellite cell induced by exercise performed in acute or chronic hypoxic conditions and their contribution to muscle remodeling and hypertrophy.METHODS: Search terms related to exercise, hypoxia and satellite cells were entered on Embase, PubMed and Scopus. Studies were selected for their relevance in terms of regulation of satellite cells by in vivo exercise and muscle contraction in hypoxic conditions.
    RESULTS: Satellite cell activation and proliferation seem to be enabled after acute hypoxic exercise via regulations induced by myogenic regulatory factors. Several studies reported also a role of the inflammatory pathway nuclear factor-kappa B and angiogenic factors such as vascular endothelial growth factor, both known to upregulate myogenesis. By stimulating angiogenesis, repeated exercise performed in acute hypoxia might contribute to satellite cell activation. Contrary to such exercise conditions, chronic exposure to hypoxia downregulates myogenesis despite the maintenance of physical activity. This impaired myogenesis might be induced by excessive oxidative stress and proteolysis.
    CONCLUSION: In vivo studies suggest that, in comparison to exercise or hypoxia alone, exercise performed in a hypoxic environment, may improve or impair muscle remodeling induced by contractile activity depending upon the duration of hypoxia. Satellite cells seem to be major actors in these dichotomous adaptations. Further research on the role of angiogenesis, types of contraction and autophagy is needed for a better understanding of their respective role in hypoxic exercise-induced modulations of satellite cell activity in human.
    Keywords:  Angiogenesis; Autophagy; Hypertrophy; Hypoxia; Inflammation; Satellite cell; Skeletal muscle
  17. J Cell Mol Med. 2021 Mar 10.
      Obesity is associated with biological dysfunction in skeletal muscle. As a condition of obesity accompanied by muscle mass loss and physical dysfunction, sarcopenic obesity (SO) has become a novel public health problem. Human fibroblast growth factor 19 (FGF19) plays a therapeutic role in metabolic diseases. However, the protective effects of FGF19 on skeletal muscle in obesity and SO are still not completely understood. Our results showed that FGF19 administration improved muscle loss and grip strength in young and aged mice fed a high-fat diet (HFD). Increases in muscle atrophy markers (FOXO-3, Atrogin-1, MuRF-1) were abrogated by FGF19 in palmitic acid (PA)-treated C2C12 myotubes and in the skeletal muscle of HFD-fed mice. FGF19 not only reduced HFD-induced body weight gain, excessive lipid accumulation and hyperlipidaemia but also promoted energy expenditure (PGC-1α, UCP-1, PPAR-γ) in brown adipose tissue (BAT). FGF19 treatment restored PA- and HFD-induced hyperglycaemia, impaired glucose tolerance and insulin resistance (IRS-1, GLUT-4) and mitigated the PA- and HFD-induced decrease in FNDC-5/irisin expression. However, these beneficial effects of FGF19 on skeletal muscle were abolished by inhibiting AMPK, SIRT-1 and PGC-1α expression. Taken together, this study suggests that FGF19 protects skeletal muscle against obesity-induced muscle atrophy, metabolic derangement and abnormal irisin secretion partially through the AMPK/SIRT-1/PGC-α signalling pathway, which might be a potential therapeutic target for obesity and SO.
    Keywords:  FGF19; insulin resistance; irisin; lipid accumulation; muscle atrophy; obesity; sarcopenic obesity
  18. EMBO Mol Med. 2021 Mar 10. e13328
      DMD is a rare disorder characterized by progressive muscle degeneration and premature death. Therapy development is delayed by difficulties to monitor efficacy non-invasively in clinical trials. In this study, we used RNA-sequencing to describe the pathophysiological changes in skeletal muscle of 3 dystrophic mouse models. We show how dystrophic changes in muscle are reflected in blood by analyzing paired muscle and blood samples. Analysis of repeated blood measurements followed the dystrophic signature at five equally spaced time points over a period of seven months. Treatment with two antisense drugs harboring different levels of dystrophin recovery identified genes associated with safety and efficacy. Evaluation of the blood gene expression in a cohort of DMD patients enabled the comparison between preclinical models and patients, and the identification of genes associated with physical performance, treatment with corticosteroids and body measures. The presented results provide evidence that blood RNA-sequencing can serve as a tool to evaluate disease progression in dystrophic mice and patients, as well as to monitor response to (dystrophin-restoring) therapies in preclinical drug development and in clinical trials.
    Keywords:  Duchenne muscular dystrophy; RNA-seq; biomarkers; dystrophinopathies
  19. Front Physiol. 2021 ;12 647743
      Hypoxanthine (Hx), an intermediate metabolite of the purine metabolism pathway which is dramatically increased in blood and skeletal muscle during muscle contraction and metabolism, is characterized as a marker of exercise exhaustion. However, the physiological effects of Hx on skeletal muscle remain unknown. Herein, we demonstrate that chronic treatment with Hx through dietary supplementation resulted in skeletal muscle fatigue and impaired the exercise performance of mice without affecting their growth and skeletal muscle development. Hx increased the uncoupling protein 2 (UCP2) expression in the skeletal muscle, which led to decreased energy substrate storage and enhanced glycolysis. These effects could also be verified in acute treatment with Hx through intraperitoneal injection. In addition, muscular specifically knockout of UCP2 through intra-muscle tissue injection of adenovirus-associated virus reversed the effects of Hx. In conclusion, we identified a novel role of Hx in the skeletal muscular fatigue mediated by UCP2-dependent mitochondrial uncoupling. This finding may shed light on the pathological mechanism of clinical muscle dysfunctions due to abnormal metabolism, such as muscle fatigue and weakness.
    Keywords:  ATP; UCP2; exercise; fatigue; hypoxanthine; skeletal muscle
  20. J Appl Physiol (1985). 2021 Mar 25.
      Icing is still one of the most common treatments to acute skeletal muscle damage in sports medicine. However, previous studies using rodents reported the detrimental effect of icing on muscle regeneration following injury. This study aimed to elucidate the critical factors governing the impairment of muscle regeneration by icing with a murine model of eccentric contraction-induced muscle damage by electrical stimulation. Because of icing after muscle injury, the infiltration of polynuclear and mononuclear cells into necrotic muscle fibers was retarded and attenuated, leading to the persistent presence of necrotic cellular debris. These phenomena coincided with the delayed emergence and sustained accumulation of Pax7+ myogenic cells within the regenerating area. Additionally, due to icing, delayed and/or sustained infiltration of M1 macrophages was noted in accordance with the perturbed expression patterns of inflammation-related factors, including tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10). The key myogenic regulatory factors (i.e., MyoD and myogenin) involved in the activation/proliferation and differentiation of myogenic precursor cells were not altered by icing during the regenerative process. A detailed analysis of regenerating myofibers by size distribution at day 14 after muscle damage showed that the ratio of small regenerating fibers to total regenerating fibers was higher in icing-treated animals than in untreated animals. These findings suggest that icing following muscle damage blunts the efficiency of muscle regeneration by perturbing the removal of necrotic myofibers and phenotypic dynamics of macrophages rather than affecting myogenic factors.
    Keywords:  cryotherapy; exercise-induced muscle damage; inflammation; macrophage phenotype; skeletal muscle regeneration
  21. Diabetologia. 2021 Mar 26.
      AIMS/HYPOTHESIS: We sought to determine putative relationships among improved mitochondrial respiration, insulin sensitivity and altered skeletal muscle lipids and metabolite signature in response to combined aerobic and resistance training in women with obesity.METHODS: This study reports a secondary analysis of a randomised controlled trial including additional measures of mitochondrial respiration, skeletal muscle lipidomics, metabolomics and protein content. Women with obesity were randomised into 12 weeks of combined aerobic and resistance exercise training (n = 20) or control (n = 15) groups. Pre- and post-intervention testing included peak oxygen consumption, whole-body insulin sensitivity (intravenous glucose tolerance test), skeletal muscle mitochondrial respiration (high-resolution respirometry), lipidomics and metabolomics (mass spectrometry) and lipid content (magnetic resonance imaging and spectroscopy). Proteins involved in glucose transport (i.e. GLUT4) and lipid turnover (i.e. sphingomyelin synthase 1 and 2) were assessed by western blotting.
    RESULTS: The original randomised controlled trial showed that exercise training increased insulin sensitivity (median [IQR]; 3.4 [2.0-4.6] to 3.6 [2.4-6.2] x10-5 pmol l-1 min-1), peak oxygen consumption (mean ± SD; 24.9 ± 2.4 to 27.6 ± 3.4 ml kg-1 min-1), and decreased body weight (84.1 ± 8.7 to 83.3 ± 9.7 kg), with an increase in weight (pre intervention, 87.8± 10.9 to post intervention 88.8 ± 11.0 kg) in the control group (interaction p < 0.05). The current study shows an increase in mitochondrial respiration and content in response to exercise training (interaction p < 0.05). The metabolite and lipid signature at baseline were significantly associated with mitochondrial respiratory capacity (p < 0.05) but were not associated with whole-body insulin sensitivity or GLUT4 protein content. Exercise training significantly altered the skeletal muscle lipid profile, increasing specific diacylglycerol(32:2) and ceramide(d18:1/24:0) levels, without changes in other intermediates or total content of diacylglycerol and ceramide. The total content of cardiolipin, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) increased with exercise training with a decrease in the PC:PE ratios containing 22:5 and 20:4 fatty acids. These changes were associated with content-driven increases in mitochondrial respiration (p < 0.05), but not with the increase in whole-body insulin sensitivity or GLUT4 protein content. Exercise training increased sphingomyelin synthase 1 (p < 0.05), with no change in plasma-membrane-located sphingomyelin synthase 2.
    CONCLUSIONS/INTERPRETATION: The major findings of our study were that exercise training altered specific intramuscular lipid intermediates, associated with content-driven increases in mitochondrial respiration but not whole-body insulin sensitivity. This highlights the benefits of exercise training and presents putative target pathways for preventing lipotoxicity in skeletal muscle, which is typically associated with the development of type 2 diabetes.
    Keywords:  Acylcarnitines; Aerobic and resistance training; Cardiolipins; Cardiorespiratory fitness; Ectopic fat; Mitochondrial biogenesis; Obesity; Phospholipid hydrolysis; Sphingomyelin; Triacylglycerol
  22. FEBS J. 2021 Mar 23.
      From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption, and physical force. Here, we summarize the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
    Keywords:  calcium; energy; exercise; force; growth; hypertrophy; muscle
  23. J Clin Invest. 2021 Mar 23. pii: 145700. [Epub ahead of print]
      Troponin C (TnC) is a critical regulator of skeletal muscle contraction: it binds Ca2+ to activate muscle contraction. Surprisingly, the gene encoding fast skeletal TnC (TNNC2) has not yet been implicated in muscle disease. Here, we report two families with pathogenic variants in TNNC2. Patients present with a distinct, dominantly inherited congenital muscle disease. Molecular dynamics simulations suggest that the pathomechanisms by which the variants cause muscle disease include disruption of the binding sites for Ca2+ and for troponin I. In line with these findings, physiological studies in myofibers isolated from patients' biopsies revealed a markedly reduced force response of the sarcomeres to [Ca2+]. This pathomechanism was further confirmed in experiments in which contractile dysfunction was evoked by replacing TnC in myofibers from healthy control subjects with recombinant, mutant TnC. Conversely, the contractile dysfunction of myofibers from patients was repaired by replacing endogenous, mutant TnC with recombinant, healthy TnC. Finally, we tested the therapeutic potential of the fast skeletal muscle troponin activator tirasemtiv in patients' myofibers and showed that the contractile dysfunction was repaired. Thus, our data reveal that pathogenic variants in TNNC2 cause congenital muscle disease, and they provide therapeutic angles to repair muscle contractility.
    Keywords:  Calcium signaling; Genetic diseases; Genetics; Muscle Biology; Neuromuscular disease
  24. PLoS One. 2021 ;16(3): e0248721
      We have examined the effects of intravenous (IV) delivery of rAAVrh74.MHCK7.GALGT2 in the golden retriever muscular dystrophy (GRMD) model of Duchenne Muscular Dystrophy (DMD). After baseline testing, GRMD dogs were treated at 3 months of age and reassessed at 6 months. This 3-6 month age range is a period of rapid disease progression, thus offering a relatively short window to establish treatment efficacy. Measures analyzed included muscle AAV transduction, GALGT2 transgene expression, GALGT2-induced glycosylation, muscle pathology, and muscle function. A total of five dogs were treated, 4 at 2x1014vg/kg and one at 6x1014vgkg. The 2x1014vg/kg dose led to transduction of regions of the heart with 1-3 vector genomes (vg) per nucleus, while most skeletal muscles were transduced with 0.25-0.5vg/nucleus. GALGT2-induced glycosylation paralleled levels of myofiber vg transduction, with about 90% of cardiomyocytes having increased glycosylation versus 20-35% of all myofibers across the skeletal muscles tested. Conclusions from phenotypic testing were limited by the small number of dogs. Treated dogs had less pronounced fibrosis and overall lesion severity when compared to control groups, but surprisingly no significant changes in limb muscle function measures. GALGT2-treated skeletal muscle and heart had elevated levels of utrophin protein expression and GALGT2-induced expression of glycosylated α dystroglycan, providing further evidence of a treatment effect. Serum chemistry, hematology, and cardiac function measures were largely unchanged by treatment. Cumulatively, these data show that short-term intravenous treatment of GRMD dogs with rAAVrh74.MHCK7.GALGT2 at high doses can induce muscle glycosylation and utrophin expression and may be safe over a short 3-month interval, but that such treatments had only modest effects on muscle pathology and did not significantly improve muscle strength.
  25. Front Physiol. 2021 ;12 625287
      Fibroblast growth factor 21 (FGF21) is an atypical member of the FGF family, which functions as a powerful endocrine and paracrine regulator of glucose and lipid metabolism. In addition to liver and adipose tissue, recent studies have shown that FGF21 can also be produced in skeletal muscle. As the most abundant tissue in the human body, skeletal muscle has become increasingly recognized as a major site of metabolic activity and an important modulator of systemic metabolic homeostasis. The function and mechanism of action of muscle-derived FGF21 have recently gained attention due to the findings of considerably increased expression and secretion of FGF21 from skeletal muscle under certain pathological conditions. Recent reports regarding the ectopic expression of FGF21 from skeletal muscle and its potential effects on the musculoskeletal system unfolds a new chapter in the story of FGF21. In this review, we summarize the current knowledge base of muscle-derived FGF21 and the possible functions of FGF21 on homeostasis of the musculoskeletal system with a focus on skeletal muscle and bone.
    Keywords:  Osteoporosis; bone; expression; fibroblast growth factor 21; muscular dystrophy; myokine; skeletal muscle
  26. Eur J Histochem. 2021 Mar 24. 65(2):
      During aging, skeletal muscle is affected by sarcopenia, a progressive decline in muscle mass, strength and endurance that leads to loss of function and disability. Cell nucleus dysfunction is a possible factor contributing to sarcopenia because aging-associated alterations in mRNA and rRNA transcription/maturation machinery have been shown in several cell types including muscle cells. In this study, the distribution and density of key molecular factors involved in RNA pathways namely, nuclear actin (a motor protein and regulator of RNA transcription), 5-methyl cytosine (an epigenetic regulator of gene transcription), and ribonuclease A (an RNA degrading enzyme) were compared in different nuclear compartments of late adult and old mice myonuclei by means of ultrastructural immunocytochemistry. In all nuclear compartments, an age-related decrease of nuclear actin suggested altered chromatin structuring and impaired nucleus-to-cytoplasm transport of both mRNA and ribosomal subunits, while a decrease of 5-methyl cytosine and ribonuclease A in the nucleoli of old mice indicated an age-dependent loss of rRNA genes. These findings provide novel experimental evidence that, in the aging skeletal muscle, nuclear RNA pathways undergo impairment, likely hindering protein synthesis and contributing to the onset and progression of sarcopenia.
  27. Comp Biochem Physiol B Biochem Mol Biol. 2021 Mar 20. pii: S1096-4959(21)00035-X. [Epub ahead of print]255 110596
      Oxidative phosphorylation is compromised in hypoxia, but many organisms live and exercise in low oxygen environments. Hypoxia-driven adaptations at the mitochondrial level are common and may enhance energetic efficiency or minimize deleterious reactive oxygen species (ROS) generation. Mitochondria from various hypoxia-tolerant animals exhibit robust functional changes following in vivo hypoxia and we hypothesized that similar plasticity would occur in naked mole-rat skeletal muscle. To test this, we exposed adult subordinate naked mole-rats to normoxia (21% O2) or acute (4 h, 7% O2) or chronic hypoxia (4-6 weeks, 11% O2) and then isolated skeletal muscle mitochondria. Using high-resolution respirometry and a fluorescent indicator of ROS production, we then probed for changes in: i) lipid- (palmitoylcarnitine-malate), ii) carbohydrate- (pyruvate-malate), and iii) succinate-fueled metabolism, and also iv) complex IV electron transfer capacity, and v) H2O2 production. Compared to normoxic values, a) lipid-fueled uncoupled respiration was reduced ~15% during acute and chronic hypoxia, b) complex I-II capacity and the rate of ROS efflux were both unaffected, and c) complex II and IV uncoupled respiration were supressed ~16% following acute hypoxia. Notably, complex II-linked H2O2 efflux was 33% lower after acute hypoxia, which may reduce deleterious ROS bursts during reoxygenation. These mild changes in lipid- and carbohydrate-fueled respiratory capacity may reflect the need for this animal to exercise regularly in highly variable and intermittently hypoxic environments in which more robust plasticity may be energetically expensive.
    Keywords:  Electron transport system; High resolution respirometry; Oxidative phosphorylation; Reactive oxygen species; Succinate
  28. Diabetes Metab J. 2021 Mar 25.
      Background: Autophagy maintains muscle mass and healthy skeletal muscles. Several recent studies have associated sugar-sweetened beverage (SSB) consumption with diseases. We investigated whether muscle dysfunction due to obesity could be restored by SSB restriction (SR) alone or in combination with exercise (EX) training.Methods: Obese mice were subjected to SR combined with treadmill EX. Intraperitoneal glucose tolerance test, grip strength test, hanging time test, and body composition analysis were performed. Triglyceride (TG) and total cholesterol (TC) serum concentrations and TG concentrations in quadriceps muscles were analyzed. Western blot and reverse transcription-quantitative polymerase chain reaction helped analyze autophagy-related protein and mRNA expression, respectively.
    Results: SR alone had no significant effect on fasting blood glucose levels, glucose tolerance, and muscle function. However, it had effect on serum TC, serum TG, and BCL2 interacting protein 3 expression. SR+EX improved glucose tolerance and muscle function and increased serum TC utilization than SR alone. SR+EX reduced P62 levels, increased glucose transporter type 4 and peroxisome proliferator-activated receptor γ coactivator-1α protein expression, and improved grip strength relative to the high-fat and high-sucrose liquid (HFHS) group, and this was not observed in the HFHS+EX group.
    Conclusion: SR induced mitophagy-related protein expression in quadriceps, without affecting muscle function. And, the combination of SR and EX activated mitophagy-related proteins and improved muscle function.
    Keywords:  Autophagy; Diet, high-fat; Muscle, skeletal; Obesity; Sucrose; Sugar-sweetened beverages
  29. Sci Rep. 2021 Mar 23. 11(1): 6589
      The aim of this systematic review was to perform qualitative and quantitative analysis on the toxic effects of chloroquine (CQ) and hydroxychloroquine (HCQ) on skeletal muscles. We designed the study according to PRISMA guidelines. Studies for qualitative and quantitative analyses were selected according to the following inclusion criteria: English language; size of sample (> 5 patients), adult (> age of 18) patients, treated with CQ/HCQ for inflammatory diseases, and presenting and not presenting with toxic effects on skeletal muscles. We collected data published from 1990 to April 2020 using PubMed, Cochrane Library, EMBASE, and SciELO. Risk of bias for observational studies was assessed regarding the ROBIN-I scale. Studies with less than five patients (case reports) were selected for an additional qualitative analysis. We used the software Comprehensive Meta-Analysis at the confidence level of 0.05. We identified 23 studies for qualitative analysis (17 case-reports), and five studies were eligible for quantitative analysis. From case reports, 21 patients presented muscle weakness and confirmatory biopsy for CQ/HCQ induced myopathy. From observational studies, 37 patients out of 1,367 patients from five studies presented muscle weakness related to the use of CQ/HCQ, and 252 patients presented elevated levels of muscle enzymes (aldolase, creatine phosphokinase, and lactate dehydrogenase). Four studies presented data on 34 patients with confirmatory biopsy for drug-induced myopathy. No study presented randomized samples. The chronic use of CQ/HCQ may be a risk for drug-induced myopathy. There is substantiated need for proper randomized trials and controlled prospective studies needed to assess the clinical and subclinical stages of CQ/HCQ -induced muscle myopathy.
  30. PLoS One. 2021 ;16(3): e0240278
      Testosterone is considered a potent anabolic agent in skeletal muscle with a well-established role in adolescent growth and development in males. However, the role of testosterone in the regulation of skeletal muscle mass and function throughout the lifespan has yet to be fully established. While some studies suggest that testosterone is important for the maintenance of skeletal muscle mass, an understanding of the role this hormone plays in young, adult, and old males with normal and low serum testosterone levels is lacking. We investigated the role testosterone plays in the maintenance of muscle mass by examining the effect of orchiectomy-induced testosterone depletion in C57Bl6 male mice at ages ranging from early postnatal through old age (1.5-, 5-, 12-, and 24-month old mice). Following 28 days of testosterone depletion, we assessed mass and fiber cross-sectional-area (CSA) of the tibialis anterior, gastrocnemius, and quadriceps muscles. In addition, we measured global rates of protein synthesis and degradation using the SuNSET method, western blots, and enzyme activity assays. Twenty-eight days of testosterone depletion resulted in reduced muscle mass in the two youngest cohorts, but had no effect in the two oldest cohorts. Mean CSA decreased only in the youngest cohort and only in the tibialis anterior muscle. Testosterone depletion resulted in a general increase in proteasome activity at all ages. No change in protein synthesis was detected at the terminal time point. These data suggest that within physiological serum concentrations, testosterone may not be critical for the maintenance of muscle mass in mature male mice; however, in young mice testosterone is crucial for normal growth.
  31. Cell Biol Int. 2021 Mar 25.
      During myoblast differentiation, mitochondria undergo numerous changes that are necessary for the progression of the myogenic program. Notably, we previously showed that alteration in mitochondrial activity were able to control the expression of keys regulator of cell cycle withdrawal and terminal differentiation. Here, we assessed whether inhibition of one of the respiratory complexes was a key factor in the regulation of myogenic differentiation in C2C12 cells, and was associated with alteration in ROS production. C2C12 cells were treated from proliferation to differentiation with specific inhibitors of mitochondrial complexes at concentration that were inhibiting respiration but not altering cell morphology. Proliferation was significantly repressed with inhibition of complexes I, II and III, or mitochondrial protein synthesis (using CHL treatment), while complex IV inhibition did not alter myoblast proliferation compared to control cells. Moreover, inhibition of complex I and II altered cell cycle regulators, with p21 protein expression upregulated since proliferation and p27 protein expression reduced at differentiation. Myotubes formation and myogenin expression were blunted with complex I and II inhibitors while MyoD protein expression was maintained suggesting an alteration in its transcriptional activity. Finally, a decrease in overall ROS production was observed with continuous inhibition of mitochondrial complexes I to IV. In summary, our data provide evidence that complexes I and II may be the primary regulators of C2C12 myogenic differentiation. This occurs through specific regulation of myogenic rather than cell cycle regulators expression, and ROS production at mitochondrial rather than cell level. This article is protected by copyright. All rights reserved.
    Keywords:  ROS; mitochondria; myogenic differentiation; respiratory complexes
  32. Exp Gerontol. 2021 Mar 19. pii: S0531-5565(21)00094-2. [Epub ahead of print]149 111319
      Sarcopenia is an age-related disease that has gradually become a serious health problem for elderly individuals. It not only greatly increases the risk of falls, weakness, and disability but also reduces the ability of patients to take care of themselves. Sarcopenia can directly affect the quality of life and disease prognosis of elderly individuals. However, drug interventions for this disease are lacking. Melatonin is a biological hormone produced by the body that has good free radical scavenging effects, antioxidant effects and other effects. It was originally used as a sleep aid and is now being used for an increasing number of new indications. Its effect on sarcopenia has also begun to attract attention. It is currently known that it can protect the mitochondria of skeletal muscle cells, maintain the number of muscle fibres, partially reverse the pathological changes of ageing muscle tissue, and increase muscle strength in patients with sarcopenia. A large number of microRNAs are expressed during cell ageing, that in turn provides a biological background to age-related diseases, like sarcopenia. Increasing studies have found an interaction between melatonin and miRNAs, suggesting that melatonin can be used in the treatment of sarcopenia. The increased expression of inflammation-associated miRNA-483 in elderly patients may be the basis for the age-dependent decrease in melatonin secretion,that may play a role in the morbidity of sarcopenia. Melatonin is closely related to sarcopenia. It has a wide range of effects on sarcopenia and has good application prospects for the prevention and treatment of sarcopenia.
    Keywords:  Ageing; Melatonin; Sarcopenia; Skeletal muscle cell
  33. Life Sci. 2021 Mar 23. pii: S0024-3205(21)00337-4. [Epub ahead of print] 119352
      AIMS: The autophagy-lysosomal system plays a crucial role in maintaining muscle proteostasis. Excessive stimulation of the autophagic machinery is a major contributor to muscle atrophy induced by tendon transection. Hyperthermia is known to attenuate muscle protein loss during disuse conditions; however, little is known regarding the response of the autophagy pathway to heat stress following tenotomy-induced muscle atrophy. The purpose of this study was to evaluate whether heat stress would have a beneficial impact on the activation of autophagy in tenotomized soleus and plantaris muscles.MAIN METHODS: Male Wistar rats were divided into control, control plus heat stress, tenotomy, and tenotomy plus heat stress groups. The effects of tenotomy were evaluated at 8 and 14 days with heat treatment applied using thermal blankets (30 min. day-1, at 40.5-41.5 °C, for 7 days).
    KEY FINDINGS: Heat stress could normalize tenotomy-induced muscle loss and over-activation of autophagy-lysosomal signaling; this effect was evidently observed in soleus muscle tenotomized for 14 days. The autophagy-related proteins LC3B-II and LC3B-II/I tended to decrease, and lysosomal cathepsin L protein expression was significantly suppressed. While p62/SQSTM1 was not altered in response to intermittent heat exposure in tenotomized soleus muscle at day 14. Phosphorylation of the 4E-BP1 protein was significantly increased in tenotomized plantaris muscle; whereas heat stress had no impact on phosphorylation of Akt and FoxO3a proteins in both tenotomized muscles examined.
    SIGNIFICANCE: Our results provide evidence that heat stress associated attenuation of tenotomy-induced muscle atrophy is mediated through limiting over-activation of the autophagy-lysosomal pathway in oxidative and glycolytic muscles.
    Keywords:  4E-BP1; Cathepsin; FoxO3a; LC3B; Lysosome; Muscle wasting; Sequestosome
  34. Int J Sports Med. 2021 Mar 26.
      The active participation of skeletal muscles is a unique characteristic of exertional heat stroke. Nevertheless, the only well-documented link between skeletal muscle activities and exertional heat stroke pathophysiology is the extensive muscle damage (e. g., rhabdomyolysis) and subsequent leakage of intramuscular content into the circulation of exertional heat stroke victims. Here, we will present and discuss rarely explored roles of skeletal muscles in the context of exertional heat stroke pathophysiology and recovery. This includes an overview of heat production that contributes to severe hyperthermia and the synthesis and secretion of bioactive molecules, such as cytokines, chemokines and acute phase proteins. These molecules can alter the overall inflammatory status from pro- to anti-inflammatory, affecting other organ systems and influencing recovery. The activation of innate immunity can determine whether a victim is ready to return to physical activity or experiences a prolonged convalescence. We also provide a brief discussion on whether heat acclimation can shift skeletal muscle secretory phenotype to prevent or aid recovery from exertional heat stroke. We conclude that skeletal muscles should be considered as a key organ system in exertional heat stroke pathophysiology.
  35. Electromagn Biol Med. 2021 Mar 25. 1-8
      Repetitive peripheral magnetic stimulation (rPMS) is a non-invasive stimulator that can induce strong muscle contraction in selective regions. This study aimed to measure acute changes in skeletal muscle thickness induced by rPMS following a low-intensity exercise. Fifteen healthy young men performed an isometric knee extensor exercise at 30% of maximum strength consisting of three sets of 10 contractions on their dominant leg. rPMS was then applied on the vastus lateralis (VL) at the maximum intensity of the rPMS device. Muscle thicknesses of the rectus femoris (RF) and VL were measured using an ultrasound device and were compared among baseline, post-exercise, and post-rPMS. There were significant increases in muscle thickness of both the RF and VL post-exercise compared with baseline values (RF: baseline; 24.7 ± 2.4, post-exercise; 25.3 ± 2.4 mm, p = .034, VL: baseline; 27.0 ± 2.8, post-exercise; 27.4 ± 2.8 mm, p = .006). Compared with post-exercise, there was a significant increase post-rPMS in only the VL (VL: post-rPMS; 28.3 ± 2.9 mm, p = .002). These findings suggest that low-intensity isometric exercise can induce acute increases in muscle thickness (muscle swelling) in synergist muscles, and rPMS following exercise can induce further acute muscle swelling via repetitive muscle contraction.
    Keywords:  Non-invasive peripheral stimulation; acute muscle swelling; knee extensor; low-intensity exercise; peripheral magnetic stimulation
  36. Sci Rep. 2021 Mar 23. 11(1): 6668
      Developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome, the most severe end of neonatal diabetes mellitus, is caused by mutation in the ATP-sensitive potassium (KATP) channel. In addition to diabetes, DEND patients present muscle weakness as one of the symptoms, and although the muscle weakness is considered to originate in the brain, the pathological effects of mutated KATP channels in skeletal muscle remain elusive. Here, we describe the local effects of the KATP channel on muscle by expressing the mutation present in the KATP channels of the DEND syndrome in the murine skeletal muscle cell line C2C12 in combination with computer simulation. The present study revealed that the DEND mutation can lead to a hyperpolarized state of the muscle cell membrane, and molecular dynamics simulations based on a recently reported high-resolution structure provide an explanation as to why the mutation reduces ATP sensitivity and reveal the changes in the local interactions between ATP molecules and the channel.
  37. Cytokine. 2021 Mar 23. pii: S1043-4666(21)00074-0. [Epub ahead of print]142 155494
      Interleukin-6 (IL-6) is associated with pathological cardiac hypertrophy and can be dramatically increased in serum after an acute strenuous exercise session. However, IL-6 is also associated with the increased production and release of anti-inflammatory cytokines and the inhibition of tumor necrosis factor-alpha (TNF-α) after chronic moderate exercise. To elucidate the relevance of IL-6 in inflammatory and hypertrophic signaling in the heart in response to an acute strenuous exercise session, we combined transcriptome analysis using the BXD mice database and exercised IL-6 knockout mice (IL-6KO). Bioinformatic analysis demonstrated that low or high-levels of Il6 mRNA in the heart did not change the inflammation- and hypertrophy-related genes in BXD mice strains. On the other hand, bioinformatic analysis revealed a strong positive correlation between Il6 gene expression in skeletal muscle with inflammation-related genes in cardiac tissue in several BXD mouse strains, suggesting that skeletal muscle-derived IL-6 could alter the heart's intracellular signals, particularly the inflammatory signaling. As expected, an acute strenuous exercise session increased IL-6 levels in wild-type, but not in IL-6KO mice. Despite not showing morphofunctional differences in the heart at rest, the IL-6KO group presented a reduction in physical performance and attenuated IL-6, TNF-α, and IL-1beta kinetics in serum, as well as lower p38MAPK phosphorylation, Ampkalpha expression, and higher Acta1 and Tnf gene expressions in the left ventricle in the basal condition. In response to strenuous exercise, IL-6 ablation was linked to a reduction in the pro-inflammatory response and higher activation of classical physiological cardiac hypertrophy proteins.
    Keywords:  Akt/mTOR pathway; Bioinformatics; Cytokines; Echocardiogram; Inflammation
  38. FEBS J. 2021 Mar 22.
      The stem-cell niche is a specialized micro-environment for stem cells in an adult tissue. The niche provides cues for the maintenance and regulation of stem-cell activities and thus presents a target for potential rejuvenating strategies. García-Prat et al. found that in the heterogeneous population of quiescent stem cells of skeletal muscles a fraction of cells responsible for regeneration and having genuine "stemness" properties deteriorates only in extremely old age. An essential tool used in this analysis of stem cell-niche interactions is the computational tool, NicheHotSpotter, which proved to be instrumental for identifying niche and cell signalling factors that contribute to the maintenance of the pool of genuine quiescent stem cells. NicheHotSpotter predicts candidate factors by analysing signalling interactome and gene regulatory network data in combination with expression profiles. The effect of the niche environment on stem cells is modeled as a mean field of niche cues that induce sustained activation or inhibition of signalling pathways. In this way, NicheHotSpotter has been successful in delineating novel strategies to enhance stemness, which may rejuvenate skeletal muscle cells at the extreme old age.
    Keywords:  aging; computational modelling; limb muscle; stem cells; tissue regeneration
  39. Theranostics. 2021 ;11(9): 4381-4402
      Rationale: Nicotinamide adenine dinucleotide+ (NAD+)-boosting therapy has emerged as a promising strategy to treat various health disorders, while the underlying molecular mechanisms are not fully understood. Here, we investigated the involvement of fibronectin type III domain containing 5 (Fndc5) or irisin, which is a novel exercise-linked hormone, in the development and progression of nonalcoholic fatty liver disease (NAFLD). Methods: NAD+-boosting therapy was achieved by administrating of nicotinamide riboside (NR) in human and mice. The Fndc5/irisin levels in tissues and blood were measured in NR-treated mice or human volunteers. The therapeutic action of NR against NAFLD pathologies induced by high-fat diet (HFD) or methionine/choline-deficient diet (MCD) were compared between wild-type (WT) and Fndc5-/- mice. Recombinant Fndc5/irisin was infused to NALFD mice via osmotic minipump to test the therapeutic action of Fndc5/irisin. Various biomedical experiments were conducted in vivo and in vitro to know the molecular mechanisms underlying the stimulation of Fndc5/irisin by NR treatment. Results: NR treatment elevated plasma level of Fndc5/irisin in mice and human volunteers. NR treatment also increased Fndc5 expression in skeletal muscle, adipose and liver tissues in mice. In HFD-induced NAFLD mice model, NR displayed remarkable therapeutic effects on body weight gain, hepatic steatosis, steatohepatitis, insulin resistance, mitochondrial dysfunction, apoptosis and fibrosis; however, these actions of NR were compromised in Fndc5-/- mice. Chronic infusion of recombinant Fndc5/irisin alleviated the NAFLD pathological phenotypes in MCD-induced NAFLD mice model. Mechanistically, NR reduced the lipid stress-triggered ubiquitination of Fndc5, which increased Fndc5 protein stability and thus enhanced Fndc5 protein level. Using shRNA-mediated knockdown screening, we found that NAD+-dependent deacetylase SIRT2, rather than other sirtuins, interacts with Fndc5 to decrease Fndc5 acetylation, which reduces Fndc5 ubiquitination and stabilize it. Treatment of AGK2, a selective inhibitor of SIRT2, blocked the therapeutic action of NR against NAFLD pathologies and NR-induced Fndc5 deubiquitination/deacetylation. At last, we identified that the lysine sites K127/131 and K185/187/189 of Fndc5 may contribute to the SIRT2-dependent deacetylation and deubiquitination of Fndc5. Conclusions: The findings from this research for the first time demonstrate that NAD+-boosting therapy reverses NAFLD by regulating SIRT2-deppendent Fndc5 deacetylation and deubiquitination, which results in a stimulation of Fndc5/irisin, a novel exerkine. These results suggest that Fndc5/irisin may be a potential nexus between physical exercise and NAD+-boosting therapy in metabolic pathophysiology.
    Keywords:  Fndc5; NAD+; SIRT2; irisin; nonalcoholic fatty liver disease; physical exercise
  40. Appl Physiol Nutr Metab. 2021 Mar 25.
      One exercise session can elevate insulin-stimulated glucose uptake (GU) by skeletal muscle, but it is uncertain if this effect is accompanied by altered membrane cholesterol content, which is reportedly inversely related to insulin-stimulated GU. Muscles from sedentary (SED) or exercised 3hours post-exercise (3hPEX) rats were evaluated for: GU, membrane cholesterol, and phosphorylation of cholesterol regulatory proteins (pHMCGRSer872 and pABCA1Ser2054). Insulin-stimulated GU for 3hPEX exceeded SED. Membrane cholesterol, pHMCGRSer872 and pABCA1Ser2054 did not differ between groups. Novelty: Alterations in membrane cholesterol and phosphorylation of proteins that regulate muscle cholesterol are not essential for elevated insulin-stimulated GU in skeletal muscle after acute exercise.
  41. J Physiol. 2021 Mar 21.
      KEY POINTS: Critical illness myopathy (CIM) is a frequently observed negative consequence of modern critical care. Chronic JAK/STAT activation impairs muscle size and function and is prominent following mechanical ventilation. We identify pSTAT-3 activation in Tibialis anterior of CIM patients, before examining the potential benefits of JAK1/2 inhibition in an experimental model of CIM, where muscle mass and function are impaired. CIM activates complement cascade and increased monocyte infiltration in the soleus muscle, which was ameliorated by JAK1/2 inhibition, leading to reduced muscle degeneration and improved muscle force. Here we demonstrate that JAK1/2 inhibition augments CIM muscle function through regulation of the complement cascade.ABSTRACT: Critical illness myopathy (CIM) is frequently observed in response to modern critical care with negative consequences for patient quality of life, morbidity, mortality, and health care costs. JAK/STAT activation is observed in limb muscles following controlled mechanical ventilation (CMV). Chronic JAK/STAT activation promotes loss of muscle mass and function. Thus, we hypothesised that JAK1/2 inhibition would improve muscle outcomes for critical illness myopathy (CIM). Following 12 days intensive care unit (ICU) conditions, pSTAT-3 levels increased in Tibialis anterior muscle of CIM patients (p = 0.0489). The potential of JAK1/2 inhibition was assessed in an experimental model of CIM, where soleus muscle size and force are impaired. JAK1/2 inhibition restores soleus force (p < 0.0001). CIM activated muscle complement cascade, which was ameliorated by JAK1/2 inhibition (p < 0.05, respectively). Soleus macrophage number corresponded with complement activity, leading to reduced muscle degeneration and augmented muscle function (p < 0.05). Thus, JAK/STAT inhibition improves soleus function by modulating the complement cascade and muscle monocyte infiltration. Collectively, we demonstrate that JAK/STAT inhibition augments muscle function in CIM. This article is protected by copyright. All rights reserved.
    Keywords:  JAK/STAT; clinical illness myopathy; complement cascade; macrophage; mechanical ventilation
  42. Nutrition. 2021 Feb 08. pii: S0899-9007(21)00051-4. [Epub ahead of print]87-88 111189
      OBJECTIVES: Nicotinamide adenine dinucleotide (NAD+), an essential cofactor for mitochondrial function, declines with aging, which may lead to impaired physical performance. Nicotinamide riboside (NR), a NAD+ precursor, restores cellular NAD+ levels. The aim of this study was to examine the effects of short-term NR supplementation on physical performance in middle-aged mice and the effects on mouse and human muscle stem cells.METHODS: We treated 15-mo-old male C57BL/6J mice with NR at 300 mg•kg•d-1 (NR3), 600 mg•kg•d-1 (NR6), or placebo (PLB), n = 8 per group, and assessed changes in physical performance, muscle histology, and NAD+ content after 4 wk of treatment.
    RESULTS: NR increased total NAD+ in muscle tissue (NR3 P = 0.01; NR6 P = 0.004, both versus PLB), enhanced treadmill endurance and open-field activity, and prevented decline in grip strength. Histologic analysis revealed NR-treated mice exhibited enlarged slow-twitch fibers (NR6 versus PLB P = 0.014; NR3 P = 0.16) and a trend toward more slow fibers (NR3 P = 0.14; NR6 P = 0.22). We next carried out experiments to characterize NR effects on mitochondrial activity and cellular energetics in vitro. We observed that NR boosted basal and maximal cellular aerobic and anaerobic respiration in both mouse and human myoblasts and human myotubes. Additionally, NR treatment improved the differentiating capacity of myoblasts and increased myotube size and fusion index upon stimulation of these progenitors to form multinucleated myotubes.
    CONCLUSION: These findings support a role for NR in improving cellular energetics and functional capacity in mice, which support the translation of this work into clinical settings as a strategy for improving and/or maintaining health span during aging.
    Keywords:  Aging; Functional capacity; Mitochondria; Muscle; Niacin; Vitamin B(3)
  43. Cell. 2021 Mar 19. pii: S0092-8674(21)00236-1. [Epub ahead of print]
      Sarcomeres are force-generating and load-bearing devices of muscles. A precise molecular picture of how sarcomeres are built underpins understanding their role in health and disease. Here, we determine the molecular architecture of native vertebrate skeletal sarcomeres by electron cryo-tomography. Our reconstruction reveals molecular details of the three-dimensional organization and interaction of actin and myosin in the A-band, I-band, and Z-disc and demonstrates that α-actinin cross-links antiparallel actin filaments by forming doublets with 6-nm spacing. Structures of myosin, tropomyosin, and actin at ~10 Å further reveal two conformations of the "double-head" myosin, where the flexible orientation of the lever arm and light chains enable myosin not only to interact with the same actin filament, but also to split between two actin filaments. Our results provide unexpected insights into the fundamental organization of vertebrate skeletal muscle and serve as a strong foundation for future investigations of muscle diseases.
    Keywords:  Z-disc; actin; electron tomography; muscle; myosin; sarcomere; structure; tropomyosin
  44. J Appl Physiol (1985). 2021 Mar 25.
      Leucine supplementation attenuates the loss of skeletal muscle mass and function in older adults during bed rest. We sought to determine if leucine could also preserve and/or restore mitochondrial function and muscle oxidative capacity during periods of disuse and rehabilitation. Healthy older adults (69.1 ± 1.1 years) consumed a structured diet with supplemental leucine (LEU: 0.06 g/ kg body weight/ meal; n=8) or alanine (CON: 0.06 g/ kg body weight/meal; n=8) during 7 days of bed rest and 5 days of inpatient rehabilitation. A 75 g oral glucose tolerance test was performed at baseline (PreBR), after bed rest (PostBR) and rehabilitation (PostRehab) and used to calculate an indicator of insulin sensitivity, metabolic clearance rate. (MCR). Tissue samples from the m. vastus lateralis were collected PreBR, PostBR, and PostRehab to assess mitochondrial respiratory capacity and protein markers of the oxidative phosphorylation and a marker of the antioxidant defense systems. During bed rest, leucine tended to preserve insulin sensitivity (Change in MCR, CON vs. LEU: -3.5 ± 0.82 vs LEU: -0.98 ± 0.88, p=0.054), but had no effect on mitochondrial respiratory capacity (Change in State 3+succinate CON vs. LEU -8.7 ± 6.1 vs. 7.3 ± 4.1 pmol O2/sec/mg tissue, p=0.10) Following rehabilitation, leucine increased ATP-linked respiration (CON vs. LEU: -8.9 ± 6.2 vs. 15.5± 4.4 pmol O2/sec/mg tissue, p=0.0042). While the expression of mitochondrial respiratory and antioxidant proteins was not impacted, leucine supplementation preserved specific pathways of mitochondrial respiration, insulin sensitivity and a marker of oxidative stress during bed rest and rehabilitation.
    Keywords:  aging; bed rest; dietary supplementation; nutrition
  45. Biomed Pharmacother. 2021 May;pii: S0753-3322(21)00200-6. [Epub ahead of print]137 111415
      Aging alters body composition to induce sarcopenia, particularly in women, but the mechanism remains unclear. We hypothesized that silk peptide(SP) intake could prevent an age-related decrease in muscle mass and strength in middle-aged female rats and explored the action mechanism. After the acute intake of SP and defatted soybean peptides, serum concentrations of amino acids were measured in ten middle-aged rats in each group. Forty 12-month-old female Sprague-Dawley rats were fed a high-fat and high-carbohydrate diet for 12 weeks including 0.5 g casein/kg body weight(BW)/day(Aged), 0.15 g SP plus 0.35 g casein/kg BW/day(Low-SP), 0.5 g SP/kg BW/day(High-SP), or 40 mg metformin plus 0.5 g casein/kg BW/day(Metformin). Ten rats aged 7-week old(Young) had the same treatment as the Aged-group. The body composition, grip strength, glucose metabolism, intestinal tissue morphology, and gut microbiota were also determined. After an acute consumption, total amino acids were more quickly absorbed and maintained at higher levels in SP than soybean peptides. Lean body mass(LBM) and grip strength were lower in the Aged-group than the Young and Low-SP groups, and the High-SP regimen increased these parameters as much as the Young-group. Serum concentrations and mRNA expression of TNF-α in the gastrocnemius and quadriceps muscles were higher in the Aged-group than the Young-group, whereas SP intake reduced their serum levels and skeletal muscles. Glucose and insulin tolerance indicated that insulin resistance was elevated in the Aged-group compared to the Young-group, while Low-SP and High-SP alleviated them as much as the Young-group. High-SP increased serum propionate and butyrate concentrations compared to the Aged-group. SP intake increased the relative abundance of Bacteroides and Prevotella and decreased Blautia and Clostridium in the feces. In conclusion, SP intake protects against a decrease in lean body mass and grip strength in middle-aged female rats. The protection was partly related to maintaining higher serum concentrations of total amino acids after SP consumption and decreasing inflammation and insulin resistance through gut microbiota modulation.
    Keywords:  Butyrate; Grip strength; Gut microbiota; Sarcopenia; Skeletal muscles
  46. Geroscience. 2021 Mar 24.
      Motor unit (MU) expansion enables rescue of denervated muscle fibres helping to ameliorate age-related muscle atrophy, with evidence to suggest master athletes are more successful at this remodelling. Electrophysiological data has suggested MUs located superficially are larger than those located deeper within young muscle. However, the effects of ageing and exercise on MU heterogeneity across deep and superficial aspects of vastus lateralis (VL) remain unclear. Intramuscular electromyography was used to record individual MU potentials (MUPs) and near fibre MUPs (NFMs) from deep and superficial regions of the VL during 25% maximum voluntary contractions, in 83 males (15 young (Y), 17 young athletes (YA), 22 old (O) and 29 master athletes (MA)). MUP size and complexity were assessed using area and number of turns, respectively. Multilevel mixed effects linear regression models were performed to investigate the effects of depth in each group. MUP area was greater in deep compared with superficial MUs in Y (p<0.001) and O (p=0.012) but not in YA (p=0.071) or MA (p=0.653). MUP amplitude and NF MUP area were greater, and MUPs were more complex in deep MUPs from Y, YA and O (all p<0.05) but did not differ across depth in MA (all p>0.07). These data suggest MU characteristics differ according to depth within the VL which may be influenced by both ageing and exercise. A more homogenous distribution of MUP size and complexity across muscle depths in older athletes may be a result of a greater degree of age-related MU adaptations.
    Keywords:  Electromyography; Master athlete; Motor unit; Sarcopenia
  47. FASEB J. 2021 Apr;35(4): e21553
      The role of mitofusin 2 (Mfn2) in the regulation of skeletal muscle (SM) mitochondria-sarcoplasmic (SR) juxtaposition, mitochondrial morphology, mitochondrial cristae density (MCD), and SM quality has not been studied in humans. In in vitro studies, whether Mfn2 increases or decreases mitochondria-SR juxtaposition remains controversial. Transmission electron microscopy (TEM) images are commonly used to measure the organelle juxtaposition, but the measurements are performed "by-hand," thus potentially leading to between-rater differences. The purposes of this study were to: (1) examine the repeatability and reproducibility of mitochondrial-SR juxtaposition measurement from TEM images of human SM between three raters with different experience and (2) compare the mitochondrial-SR juxtaposition, mitochondrial morphology, MCD (stereological-method), and SM quality (cross-sectional area [CSA] and the maximum voluntary contraction [MVC]) between subjects with high abundance (Mfn2-HA; n = 6) and low abundance (Mfn2-LA; n = 6) of Mfn2 protein. The mitochondria-SR juxtaposition had moderate repeatability and reproducibility, with the most experienced raters showing the best values. There were no differences between Mfn2-HA and Mfn2-LA groups in mitochondrial size, distance from mitochondria to SR, CSA, or MVC. Nevertheless, the Mfn2-LA group showed lower mitochondria-SR interaction, MCD, and VO2max . In conclusion, mitochondrial-SR juxtaposition measurement depends on the experience of the rater, and Mfn2 protein seems to play a role in the metabolic control of human men SM, by regulating the mitochondria-SR interaction.
    Keywords:  MICOS complex; mitochondria dynamics; organelle communication; repeatability; reproducibility; transmission electron microscopy
  48. J Physiol. 2021 Mar 22.
      KEY POINTS: Muscle spindle afferents are slowly adapting low threshold mechanoreceptors that report muscle length and movement information critical for motor control and proprioception. The rapidly adapting cation channel PIEZO2 has been identified as necessary for muscle spindle afferent stretch sensitivity, but the properties of this channel suggest additional molecular elements are necessary for mediating the complex slowly adapting response of muscle spindle afferents. We report that glutamate increases muscle spindle afferent static sensitivity in an ex vivo mouse muscle nerve preparation, while blocking glutamate packaging into vesicles by the sole vesicular glutamate transporter, VGLUT1, either pharmacologically or by transgenic knock out of one allele of VGLUT1 decreases muscle spindle afferent static but not dynamic sensitivity. Our results confirm that vesicle-released glutamate is an important contributor to maintained muscle spindle afferent excitability and may suggest a therapeutic target for normalizing muscle spindle afferent function.ABSTRACT: Muscle spindle afferents are slowly adapting low threshold mechanoreceptors which have both dynamic and static sensitivity to muscle stretch. The exact mechanism by which these neurons translate muscle movement into action potentials is not well understood, although the PIEZO2 mechanically sensitive cation channel is essential for stretch sensitivity. PIEZO2 is rapidly adapting, suggesting the requirement for additional molecular elements to maintain firing during stretch. Spindle afferent sensory endings contain glutamate-filled synaptic-like vesicles which are released in a stretch and calcium dependent manner. Previous work has shown that glutamate can increase and a phospholipase-D coupled metabotropic glutamate antagonist can abolish firing during static stretch. Here we test the hypothesis that vesicle-released glutamate is necessary for maintaining muscle spindle afferent excitability during static but not dynamic stretch. To test this hypothesis, we used a mouse muscle-nerve ex vivo preparation to measure identified muscle spindle afferent responses to stretch and vibration. In C57BL/6 adult mice, bath applied glutamate significantly increased the firing rate during the plateau phase of stretch, but not during the dynamic phase of stretch. Blocking the packaging of glutamate into vesicles by the sole vesicular glutamate transporter, VGLUT1, either with xanthurenic acid or by using a transgenic mouse with only one copy of the VGLUT1 gene (VGLUT1+/- ) decreased muscle spindle afferent firing during sustained stretch, but not during vibration. Our results suggest a model of mechanotransduction where calcium entering the PIEZO2 channel can cause the release of glutamate from synaptic-like vesicles which then helps to maintain afferent depolarization and firing. This article is protected by copyright. All rights reserved.
  49. iScience. 2021 Mar 19. 24(3): 102217
      Systemic metabolic homeostasis is regulated by inter-organ metabolic cycles involving multiple organs. Obesity impairs inter-organ metabolic cycles, resulting in metabolic diseases. The systemic landscape of dysregulated inter-organ metabolic cycles in obesity has yet to be explored. Here, we measured the transcriptome, proteome, and metabolome in the liver and skeletal muscle and the metabolome in blood of fasted wild-type and leptin-deficient obese (ob/ob) mice, identifying components with differential abundance and differential regulation in ob/ob mice. By constructing and evaluating the trans-omic network controlling the differences in metabolic reactions between fasted wild-type and ob/ob mice, we provided potential mechanisms of the obesity-associated dysfunctions of metabolic cycles between liver and skeletal muscle involving glucose-alanine, glucose-lactate, and ketone bodies. Our study revealed obesity-associated systemic pathological mechanisms of dysfunction of inter-organ metabolic cycles.
    Keywords:  Biological Sciences; Endocrinology; Metabolomics; Omics; Proteomics; Systems Biology; Transcriptomic
  50. J Cachexia Sarcopenia Muscle. 2021 Mar 24.
      BACKGROUND: Malnutrition and muscle wasting are common features frequently observed in pancreatic ductal adenocarcinoma (PDAC) patients with cancer cachexia. They are associated with reduced survival and quality of life. Nutrition therapy is an important part of multimodal cancer care in PDAC. However, due to the complexity of nutrition assessment, only 30-60% of patients with nutritional risks receive nutritional treatment at present. It is important to identify biomarkers that may be used to improve management of PDAC-associated malnutrition. Serum insulin-like growth factor binding protein 2 (IGFBP2) has emerged as a potential serum biomarker in a variety of tumours. However, its association with malnutrition and muscle wasting in PDAC is unclear.METHODS: We evaluated the tumour IGFBP2 expression and serum IGFBP2 level in 98 PDAC patients using immunohistochemistry and enzyme-linked immunosorbent assay and analysed the correlation between them. Furthermore, we explored the relationship between IGFBP2 of both tumour and serum and nutritional status (Patient-Generated Subjective Global Assessment and skeletal muscle index). Pan02 IGFBP2 stable transfection cell lines, Pan02 PLV-IGFBP2 cells, and PLKO-IGFBP2 cells were injected subcutaneously into the flank of C57BL/6 mouse. Serum IGFBP2 levels, food intake, and body weight of these mice were measured. The degree of muscle atrophy is characterized by haematoxylin and eosin, Oil Red O, and Masson's trichrome staining. The mRNA and protein expression of several essential muscle-related signal proteins such as atrogin-1 and muscle RING finger 1 was measured.
    RESULTS: Among 98 patients, we found that tumour IGFBP2 expression is related to plasma IGFBP2 levels (rs  = 0.562, P < 0.001), and they significantly increased among patients with Patient-Generated Subjective Global Assessment ≥9 and correlated with overall survival. Moreover, serum IGFBP2 level is negatively correlated with skeletal muscle index (rs  = -0.600, P < 0.001) and Hounsfield units (rs  = -0.532, P < 0.001). In mice injected with Pan02 PLV-IGFBP2 cell, circulating IGFBP2 was elevated while body weight and food intake were decreased when compared with Pan02 PLV-Control group. These mice also exhibited significantly aggravated muscle fibre atrophy, lipid deposition, and increased collagen tissue, and the expression of mRNA and protein of atrogin-1 and muscle RING finger 1 in the gastrocnemius muscle is increased. Conversely, these symptoms were alleviated in the PLKO-IGFBP2 group.
    CONCLUSIONS: In the current study, there is a significant correlation between serum IGFBP2 levels, malnutrition, and muscle atrophy in PDAC. Our results suggested that serum IGFBP2 level might be a promising biomarker and intervention targets for PDAC-associated severe malnutrition and muscle wasting.
    Keywords:  Biomarker; Cachexia; IGFBP2; Malnutrition; Muscle wasting; PDAC