bims-mitran Biomed News
on Mitochondrial Translation
Issue of 2021‒07‒04
sixteen papers selected by
Andreas Kohler



  1. Sci Adv. 2021 Jul;pii: eabf8631. [Epub ahead of print]7(27):
      We report a role for the mitochondrial single-stranded DNA binding protein (mtSSB) in regulating mitochondrial DNA (mtDNA) replication initiation in mammalian mitochondria. Transcription from the light-strand promoter (LSP) is required both for gene expression and for generating the RNA primers needed for initiation of mtDNA synthesis. In the absence of mtSSB, transcription from LSP is strongly up-regulated, but no replication primers are formed. Using deep sequencing in a mouse knockout model and biochemical reconstitution experiments with pure proteins, we find that mtSSB is necessary to restrict transcription initiation to optimize RNA primer formation at both origins of mtDNA replication. Last, we show that human pathological versions of mtSSB causing severe mitochondrial disease cannot efficiently support primer formation and initiation of mtDNA replication.
    DOI:  https://doi.org/10.1126/sciadv.abf8631
  2. Plant Cell Physiol. 2021 Jun 29. pii: pcab097. [Epub ahead of print]
      A mitochondrion is a semiautonomous organelle that provides energy for life activities and balances plant growth and stress responses. Abscisic acid (ABA) regulates multiple physiological processes, including seed maturation, seed dormancy, stomatal closure, and various abiotic stress responses. However, the relationship between mitochondrial activity and the ABA response is unclear. In this study, an Arabidopsis mutant, ssb1-1, was isolated because of its hypersensitivity toward ABA. Assessment results showed that ABA negatively regulates the expression of Arabidopsis SSB1. Mutations in ABA insensitive 4 (ABI4) and ABI5, genes of key transcription factors involved in ABA-dependent seed dormancy, attenuated the ABA sensitivity of ssb1-1 during germination, suggesting that Arabidopsis SSB1 may act as a regulator in ABA response. Inhibition of endogenous ABA biosynthesis reversed the NaCl-sensitive phenotype of the ssb1-1 mutant, indicating that enhanced ABA biosynthesis is critical for the salinity stress response of ssb1-1. Moreover, compared to that of the wild type, ssb1-1 accumulated more ROS and exhibited increased sensitivity to the application of exogenous H2O2 during seed germination. SSB1 is also required for mitochondrial RNA splicing, as indicated by the result showing that SSB1 loss of function led to decreased splicing efficiency of nad1 intron1 and nad2 intron1. Taken together, our data reported here provide insights into a novel role of Arabidopsis SSB1 in ABA signaling and mitochondrial RNA splicing.
    Keywords:  ABA response; Arabidopsis thaliana; RNA splicing; SSB1; mitochondria
    DOI:  https://doi.org/10.1093/pcp/pcab097
  3. Int J Mol Sci. 2021 Jun 21. pii: 6634. [Epub ahead of print]22(12):
      Mitochondrial dysfunction is known to contribute to mitochondrial diseases, as well as to a variety of aging-based pathologies. Mitochondria have their own genomes (mitochondrial DNA (mtDNA)) and the abnormalities, such as point mutations, deletions, and copy number variations, are involved in mitochondrial dysfunction. In recent years, several epidemiological studies and animal experiments have supported the Developmental Origin of Health and Disease (DOHaD) theory, which states that the environment during fetal life influences the predisposition to disease and the risk of morbidity in adulthood. Mitochondria play a central role in energy production, as well as in various cellular functions, such as apoptosis, lipid metabolism, and calcium metabolism. In terms of the DOHaD theory, mtDNA copy number may be a mediator of health and disease. This paper summarizes the results of recent epidemiological studies on the relationship between environmental factors and mtDNA copy number during pregnancy from the perspective of DOHaD theory. The results of these studies suggest a hypothesis that mtDNA copy number may reflect environmental influences during fetal life and possibly serve as a surrogate marker of health risks in adulthood.
    Keywords:  DOHaD; environmental stress; mitochondrial DNA copy number; pregnancy; risk management
    DOI:  https://doi.org/10.3390/ijms22126634
  4. Curr Biol. 2021 Jun 23. pii: S0960-9822(21)00821-6. [Epub ahead of print]
      The mitochondrion is an ancient endosymbiotic organelle that performs many essential functions in eukaryotic cells.1-3 Mitochondrial impairment often results in physiological defects or diseases.2-8 Since most mitochondrial genes have been copied into the nuclear genome during evolution,9 the regulatory and interaction mechanisms between the mitochondrial and nuclear genomes are very complex. Multiple mechanisms, including antioxidant, DNA repair, mitophagy, and mitochondrial biogenesis pathways, have been shown to monitor the quality and quantity of mitochondria.10-12 Nonetheless, it remains unclear if these pathways can be further modified to enhance mitochondrial stability. Previously, experimental evolution has been used to adapt cells to novel growth conditions. By analyzing the resulting evolved populations, insights have been gained into the underlying molecular mechanisms.13 Here, we experimentally evolved yeast cells under conditions that selected for efficient respiration while continuously assaulting the mitochondrial genome (mtDNA) with ethidium bromide (EtBr). We found that the ability to maintain functional mtDNA was enhanced in most of the evolved lines when challenged with mtDNA-damaging reagents. We identified mutations of the mitochondrial NADH dehydrogenase NDE1 in most of the evolved lines, but other pathways are also involved. Finally, we show that cells displaying enhanced mtDNA retention also exhibit a prolonged replicative lifespan. Our work reveals potential evolutionary trajectories by which cells can maintain functional mitochondria in response to mtDNA stress, as well as the physiological implications of such adaptations.
    Keywords:  experimental evolution; mitochondrial DNA; mitochondrial quality control; replicative lifespan; yeast genomics
    DOI:  https://doi.org/10.1016/j.cub.2021.06.026
  5. Life (Basel). 2021 Jun 29. pii: 633. [Epub ahead of print]11(7):
      Mitochondrial DNA (mtDNA) is predominately uniparentally transmitted. This results in organisms with a single type of mtDNA (homoplasmy), but two or more mtDNA haplotypes have been observed in low frequency in several species (heteroplasmy). In this review, we aim to highlight several aspects of heteroplasmy regarding its origin and its significance on mtDNA function and evolution, which has been progressively recognized in the last several years. Heteroplasmic organisms commonly occur through somatic mutations during an individual's lifetime. They also occur due to leakage of paternal mtDNA, which rarely happens during fertilization. Alternatively, heteroplasmy can be potentially inherited maternally if an egg is already heteroplasmic. Recent advances in sequencing techniques have increased the ability to detect and quantify heteroplasmy and have revealed that mitochondrial DNA copies in the nucleus (NUMTs) can imitate true heteroplasmy. Heteroplasmy can have significant evolutionary consequences on the survival of mtDNA from the accumulation of deleterious mutations and for its coevolution with the nuclear genome. Particularly in humans, heteroplasmy plays an important role in the emergence of mitochondrial diseases and determines the success of the mitochondrial replacement therapy, a recent method that has been developed to cure mitochondrial diseases.
    Keywords:  NUMTs; heteroplasmy; mtDNA; paternal leakage; selection
    DOI:  https://doi.org/10.3390/life11070633
  6. Int J Mol Sci. 2021 Jun 29. pii: 7030. [Epub ahead of print]22(13):
      Mitochondria are regarded as the metabolic centers of cells and are integral in many other cell processes, including the immune response. Each mitochondrion contains numerous copies of mitochondrial DNA (mtDNA), a small, circular, and bacterial-like DNA. In response to cellular damage or stress, mtDNA can be released from the mitochondrion and trigger immune and inflammatory responses. mtDNA release into the cytosol or bloodstream can occur as a response to hypoxia, sepsis, traumatic injury, excitatory cytotoxicity, or drastic mitochondrial membrane potential changes, some of which are hallmarks of neurodegenerative and mood disorders. Released mtDNA can mediate inflammatory responses observed in many neurological and mood disorders by driving the expression of inflammatory cytokines and the interferon response system. The current understanding of the role of mtDNA release in affective mood disorders and neurodegenerative diseases will be discussed.
    Keywords:  inflammation; mitochondria; mitochondrial DNA (mtDNA); neurodegenerative disease; neuropsychiatric disorder; reactive oxygen species (ROS)
    DOI:  https://doi.org/10.3390/ijms22137030
  7. Mol Cell. 2021 Jul 01. pii: S1097-2765(21)00402-0. [Epub ahead of print]81(13): 2808-2822.e10
      The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic DNA and induces interferon-stimulated genes (ISGs) to activate the innate immune system. Here, we report the unexpected discovery that cGAS also senses dysfunctional protein production. Purified ribosomes interact directly with cGAS and stimulate its DNA-dependent activity in vitro. Disruption of the ribosome-associated protein quality control (RQC) pathway, which detects and resolves ribosome collision during translation, results in cGAS-dependent ISG expression and causes re-localization of cGAS from the nucleus to the cytosol. Indeed, cGAS preferentially binds collided ribosomes in vitro, and orthogonal perturbations that result in elevated levels of collided ribosomes and RQC activation cause sub-cellular re-localization of cGAS and ribosome binding in vivo as well. Thus, translation stress potently increases DNA-dependent cGAS activation. These findings have implications for the inflammatory response to viral infection and tumorigenesis, both of which substantially reprogram cellular protein synthesis.
    Keywords:  ASCC3; IRF3; STING; ZNF598; cGAS; innate immunity; interferon signalling; mRNA translation; ribosome collision; ribosome-associated protein quality control
    DOI:  https://doi.org/10.1016/j.molcel.2021.05.018
  8. Sci Rep. 2021 Jun 29. 11(1): 13467
      By interacting with the mRNA 5' cap, the translation initiation factor eIF4E plays a critical role in selecting mRNAs for protein synthesis in eukaryotic cells. Caf20 is a member of the family of proteins found across eukaryotes termed 4E-BPs, which compete with eIF4G for interaction with eIF4E. Caf20 independently interacts with ribosomes. Thus, Caf20 modulates the mRNA selection process via poorly understood mechanisms. Here we performed unbiased mutagenesis across Caf20 to characterise which regions of Caf20 are important for interaction with eIF4E and with ribosomes. Caf20 binding to eIF4E is entirely dependent on a canonical motif shared with other 4E-BPs. However, binding to ribosomes is weakened by mutations throughout the protein, suggesting an extended binding interface that partially overlaps with the eIF4E-interaction region. By using chemical crosslinking, we identify a potential ribosome interaction region on the ribosome surface that spans both small and large subunits and is close to a known interaction site of eIF3. The function of ribosome binding by Caf20 remains unclear.
    DOI:  https://doi.org/10.1038/s41598-021-92931-4
  9. Comput Struct Biotechnol J. 2021 ;19 3319-3329
      Mitochondria, as the energy factory of cells, participate in metabolism processes and play a critical role in the maintenance of human life activities. Mitochondria belong to semi-automatic organelles, which have their own genome different from nuclear genome. Mitochondrial DNA (mtDNA) mutations can cause a series of diseases and threaten human health. However, an effective approach to edit mitochondrial DNA, though long-desired, is lacking. In recent years, gene editing technologies, represented by restriction endonucleases (RE) technology, zinc finger nuclease (ZFN) technology, transcription activator-like effector nuclease (TALEN) technology, CRISPR system and pAgo-based system have been comprehensively explored, but the application of these technologies in mitochondrial gene editing is still to be explored and optimized. The present study highlights the progress and limitations of current mitochondrial gene editing technologies and approaches, and provides insights for development of novel strategies for future attempts.
    Keywords:  Gene editing; Mitochondria; mtDNA
    DOI:  https://doi.org/10.1016/j.csbj.2021.06.003
  10. Int J Mol Sci. 2021 Jun 07. pii: 6160. [Epub ahead of print]22(11):
      Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent reil double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any reil-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.
    Keywords:  functional heterogeneity; paralog subfunctionalization; remodeling; ribosomal code; ribosome biogenesis; ribosome-associated proteins; stress-specialized ribosomes; substoichiometry
    DOI:  https://doi.org/10.3390/ijms22116160
  11. Cell Rep. 2021 Jun 29. pii: S2211-1247(21)00676-8. [Epub ahead of print]35(13): 109300
      The path of ribosomes on mRNAs can be impeded by various obstacles. One such example is halting of ribosome movement by microRNAs, but the exact mechanism and physiological role remain unclear. Here, we find that ribosome stalling caused by the Argonaute-microRNA-SGS3 complex regulates production of secondary small interfering RNAs (siRNAs) in plants. We show that the double-stranded RNA-binding protein SGS3 interacts directly with the 3' end of the microRNA in an Argonaute protein, resulting in ribosome stalling. Importantly, microRNA-mediated ribosome stalling correlates positively with efficient production of secondary siRNAs from target mRNAs. Our results illustrate a role of paused ribosomes in regulation of small RNA function that may have broad biological implications across the plant kingdom.
    Keywords:  RNA interference; RNA silencing; miRNA; phasiRNA; ribosome; ribosome profiling; siRNA; tasiRNA; translation; translation elongation
    DOI:  https://doi.org/10.1016/j.celrep.2021.109300
  12. Biol Open. 2021 Jun 15. pii: bio058553. [Epub ahead of print]10(6):
      Mitochondrial DNA (mtDNA) encodes gene products that are essential for oxidative phosphorylation. They organize as higher order nucleoid structures (mtNucleoids) that were shown to be critical for the maintenance of mtDNA stability and integrity. While mtNucleoid structures are associated with cellular health, how they change in situ under physiological maturation and aging requires further investigation. In this study, we investigated the mtNucleoid assembly at an ultrastructural level in situ using the TFAM-Apex2 Drosophila model. We found that smaller and more compact TFAM-nucleoids are populated in the mitochondria of indirect flight muscle of aged flies. Furthermore, mtDNA transcription and replication were cross-regulated in the mtTFB2-knockdown flies as in the mtRNAPol-knockdown flies that resulted in reductions in mtDNA copy numbers and nucleoid-associated TFAM. Overall, our study reveals that the modulation of TFAM-nucleoid structure under physiological aging, which is critically regulated by mtDNA content.
    Keywords:  Mitochondrial DNA; Mitochondrial RNA polymerase (mtRNAPol); Mitochondrial nucleoid; Mitochondrial transcription factor B2 (mtTFB2); Transcription factor A (TFAM)
    DOI:  https://doi.org/10.1242/bio.058553
  13. Int J Mol Sci. 2021 Jun 04. pii: 6066. [Epub ahead of print]22(11):
      Over a thousand nucleus-encoded mitochondrial proteins are imported from the cytoplasm; however, mitochondrial (mt) DNA encodes for a small number of critical proteins and the entire suite of mt:tRNAs responsible for translating these proteins. Mitochondrial RNase P (mtRNase P) is a three-protein complex responsible for cleaving and processing the 5'-end of mt:tRNAs. Mutations in any of the three proteins can cause mitochondrial disease, as well as mutations in mitochondrial DNA. Great strides have been made in understanding the enzymology of mtRNase P; however, how the loss of each protein causes mitochondrial dysfunction and abnormal mt:tRNA processing in vivo has not been examined in detail. Here, we used Drosophila genetics to selectively remove each member of the complex in order to assess their specific contributions to mt:tRNA cleavage. Using this powerful model, we find differential effects on cleavage depending on which complex member is lost and which mt:tRNA is being processed. These data revealed in vivo subtleties of mtRNase P function that could improve understanding of human diseases.
    Keywords:  Drosophila; mitochondria; mtDNA; mtRNase P; tRNA
    DOI:  https://doi.org/10.3390/ijms22116066
  14. Int J Mol Sci. 2021 Jun 23. pii: 6733. [Epub ahead of print]22(13):
      Diabetes mellitus and related disorders significantly contribute to morbidity and mortality worldwide. Despite the advances in the current therapeutic methods, further development of anti-diabetic therapies is necessary. Mitochondrial dysfunction is known to be implicated in diabetes development. Moreover, specific types of mitochondrial diabetes have been discovered, such as MIDD (maternally inherited diabetes and deafness) and DAD (diabetes and Deafness). Hereditary mitochondrial disorders are caused by certain mutations in the mitochondrial DNA (mtDNA), which encodes for a substantial part of mitochondrial proteins and mitochondrial tRNA necessary for mitochondrial protein synthesis. Study of mtDNA mutations is challenging because the pathogenic phenotype associated with such mutations depends on the level of its heteroplasmy (proportion of mtDNA copies carrying the mutation) and can be tissue-specific. Nevertheless, modern sequencing methods have allowed describing and characterizing a number of mtDNA mutations associated with human disorders, and the list is constantly growing. In this review, we provide a list of mtDNA mutations associated with diabetes and related disorders and discuss the mechanisms of their involvement in the pathology development.
    Keywords:  MIDD; diabetes; mitochondria; mtDNA mutations; oxidative stress
    DOI:  https://doi.org/10.3390/ijms22136733
  15. J Agric Food Chem. 2021 Jun 30.
      Acrylamide, a well-documented neurotoxicant, is commonly found as a byproduct of the Maillard reaction in carbohydrate-rich foods. Numerous studies have indicated that acrylamide-induced apoptosis accompanied by mitochondrial dysfunction contributes to its neurotoxicity. However, the mechanisms of how acrylamide causes mitochondrial impairment is not well understood. In this study, we observed destroyed redox balance, accumulated mitochondrial reactive oxygen species (ROS), damaged mitochondrial structures, and activated apoptosis in astrocytes following acrylamide treatment. Furthermore, acrylamide decreased the expression of mitochondrial biogenesis- and dynamics-related genes, including PGC-1α, TFAM, Mfn2, and Opa1, and altered the expression of mitochondrial DNA (mtDNA)-encoded mitochondrial respiratory chain complexes, along with the inhibited mitochondrial respiration. Pretreatment with a mitochondrial ROS scavenger mitoquinone dramatically restored the expressions of PGC-1α, TFAM, Mfn2, and Opa1; protected the mitochondrial structure; and decreased acrylamide-induced apoptosis. Further in vivo experiments confirmed that acrylamide decreased the expressions of PGC-1α, TFAM, Mfn2, and Opa1 in rat brain tissues. These results revealed that acrylamide triggered the mitochondrial ROS accumulation to interfere with mitochondrial biogenesis and dynamics, causing mtDNA damage and finally resulting in mitochondrial dysfunction and apoptosis.
    Keywords:  acrylamide; mitochondrial ROS; mitochondrial biogenesis; mitochondrial dynamics; neurotoxicity
    DOI:  https://doi.org/10.1021/acs.jafc.1c02569
  16. Trends Biochem Sci. 2021 Jun 24. pii: S0968-0004(21)00112-2. [Epub ahead of print]
      Ribonucleoprotein (RNP) assembly typically begins during transcription when folding of the newly synthesized RNA is coupled with the recruitment of RNA-binding proteins (RBPs). Upon binding, the proteins induce structural rearrangements in the RNA that are crucial for the next steps of assembly. Focusing primarily on bacterial ribosome assembly, we discuss recent work showing that early RNA-protein interactions are more dynamic than previously supposed, and remain so, until sufficient proteins are recruited to each transcript to consolidate an entire domain of the RNP. We also review studies showing that stable assembly of an RNP competes against modification and processing of the RNA. Finally, we discuss how transcription sets the timeline for competing and cooperative RNA-RBP interactions that determine the fate of the nascent RNA. How this dance is coordinated is the focus of this review.
    Keywords:  RNA folding; RNA–protein interactions; cotranscriptional folding; ribosome assembly; single-molecule fluorescence
    DOI:  https://doi.org/10.1016/j.tibs.2021.05.009