bims-mitper Biomed News
on Mitochondrial Permeabilization
Issue of 2022‒11‒13
thirteen papers selected by
Bradley Irizarry
Thomas Jefferson University


  1. Apoptosis. 2022 Nov 07.
      Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
    Keywords:  Apoptosis; BCL-2 protein family; BH3-mimetic drugs; BH3-only proteins; Pro-apoptotic BCL-2 family members; Pro-survival BCL-2 proteins
    DOI:  https://doi.org/10.1007/s10495-022-01780-7
  2. Int J Mol Sci. 2022 Oct 22. pii: 12732. [Epub ahead of print]23(21):
      Changes in mitochondrial membrane permeability are closely associated with mitochondria-mediated apoptosis. Antimicrobial peptides (AMPs), which have been found to enter cells to exert physiological effects, cause damage to the mitochondria. This paper reviews the molecular mechanisms of AMP-mediated apoptosis by changing the permeability of the mitochondrial membrane through three pathways: the outer mitochondrial membrane (OMM), inner mitochondrial membrane (IMM), and mitochondrial permeability transition pore (MPTP). The roles of AMPs in inducing changes in membrane permeability and apoptosis are also discussed. Combined with recent research results, the possible application prospects of AMPs are proposed to provide a theoretical reference for the development of AMPs as therapeutic agents for human diseases.
    Keywords:  AMPs; apoptosis; mitochondrial inner membrane permeability (MIMP); mitochondrial outer membrane permeability (MOMP); mitochondrial permeability transition (MPT)
    DOI:  https://doi.org/10.3390/ijms232112732
  3. Front Cell Dev Biol. 2022 ;10 1010232
      Mitochondria are cell organelles that play pivotal roles in maintaining cell survival, cellular metabolic homeostasis, and cell death. Mitochondria are highly dynamic entities which undergo fusion and fission, and have been shown to be very motile in vivo in neurons and in vitro in multiple cell lines. Fusion and fission are essential for maintaining mitochondrial homeostasis through control of morphology, content exchange, inheritance of mitochondria, maintenance of mitochondrial DNA, and removal of damaged mitochondria by autophagy. Mitochondrial motility occurs through mechanical and molecular mechanisms which translocate mitochondria to sites of high energy demand. Motility also plays an important role in intracellular signaling. Here, we review key features that mediate mitochondrial dynamics and explore methods to advance the study of mitochondrial motility as well as mitochondrial dynamics-related diseases and mitochondrial-targeted therapeutics.
    Keywords:  disease; fission; fusion; live-cell imaging; mitochondria; mitochondrial DNA; motility; therapeutics
    DOI:  https://doi.org/10.3389/fcell.2022.1010232
  4. Endocr Relat Cancer. 2022 Nov 01. pii: ERC-22-0229. [Epub ahead of print]
      It has long been recognised that cancer cells critically depend on reprogrammed patterns of metabolism that can enable robust and abnormally high levels of cell proliferation. As mitochondria form hubs of cellular metabolic activity, it is reasonable to propose that pathways within these organelles can form targets that can be manipulated to compromise the ability of cancer cells to cause disease. However, mitochondria are highly multi-functional and the full range of mechanistic inter-connections are still being unraveled to enable the full potential of targeting mitochondria in cancer therapeutics. Here, we aim to highlight the potential of modulating mitochondrial dynamics to target key metabolic or apoptotic pathways in cancer cells. Distinct roles have been demonstrated for mitochondrial fission and fusion in different cancer contexts. Targeting of factors mediating mitochondrial dynamics may be directly related to impairment of oxidative phosphorylation, which is essential to sustain cancer cell growth and can also alter sensitivity to chemotherapeutic compounds. This area is still lacking a unified model although further investigation will more comprehensively map the underlying molecular mechanisms to enable better rational therapeutic strategies based on these pathways.
    DOI:  https://doi.org/10.1530/ERC-22-0229
  5. Biochem Biophys Res Commun. 2022 Oct 31. pii: S0006-291X(22)01509-1. [Epub ahead of print]636(Pt 2): 24-30
      Although radiotherapy (RT) increases the extra centrosomes of cancer cells compared to normal cells, centrosome clustering of cancer cells with amplified centrosomes ensures bipolar mitosis for cell proliferation in response to RT. Recent evidence suggests that centrosome clustering is a tumor-selective target for improving RT in breast cancer cells. However, whether centrosome de-clustering is involved in the activation of innate immunity in response to RT remains unknown. In this study, we showed that centrosome de-clustering of irradiated cancer cells modulates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-mediated innate immunity in monocytes and macrophages after co-culture. Centrosome de-clustering intensifies mitotic abnormalities and cytosolic dsDNA in breast cancer cells in response to irradiation. Unexpectedly, centrosome de-clustering did not modulate the cGAS-STING signaling pathway in irradiated breast cancer cells. Importantly, centrosome de-clustering activated the cGAS-STING signaling pathway in human monocytes and mouse macrophages after co-culture with irradiated breast cancer cells. Thus, our data provide the first evidence that centrosome de-clustering of irradiated breast cancer cells induces innate immunity in tumor-associated immune cells.
    Keywords:  Breast cancer; Centrosome clustering; Innate immunity; Radiotherapy; cGAS-STING pathway
    DOI:  https://doi.org/10.1016/j.bbrc.2022.10.092
  6. J Cell Biol. 2023 Jan 02. pii: e202201137. [Epub ahead of print]222(1):
      Mechanisms that safeguard mitochondrial DNA (mtDNA) limit the accumulation of mutations linked to mitochondrial and age-related diseases. Yet, pathways that repair double-strand breaks (DSBs) in animal mitochondria are poorly understood. By performing a candidate screen for mtDNA repair proteins, we identify that REC-an MCM helicase that drives meiotic recombination in the nucleus-also localizes to mitochondria in Drosophila. We show that REC repairs mtDNA DSBs by homologous recombination in somatic and germline tissues. Moreover, REC prevents age-associated mtDNA mutations. We further show that MCM8, the human ortholog of REC, also localizes to mitochondria and limits the accumulation of mtDNA mutations. This study provides mechanistic insight into animal mtDNA recombination and demonstrates its importance in safeguarding mtDNA during ageing and evolution.
    DOI:  https://doi.org/10.1083/jcb.202201137
  7. J Muscle Res Cell Motil. 2022 Nov 09.
      To observe whether downhill running can lead to DNA damage in skeletal muscle cells and changes in mitochondrial membrane permeability and to explore whether the DNA damage caused by downhill running can lead to changes in mitochondrial membrane permeability by regulating the components of the endoplasmic reticulum mitochondrial coupling structure (MAM). A total of 48 male adult Sprague-Dawley rats were randomly divided into a control group (C, n = 8) and a motor group (E, n = 40). Rats in Group E were further divided into 0 h (E0), 12 h (E12), 24 h (E24), 48 h (E48) and 72 h (E72) after prescribed exercise, with 8 rats in each group. At each time point, flounder muscle was collected under general anaesthesia. The DNA oxidative damage marker 8-hydroxydeoxyguanosine (8-OHdG) was detected by immunofluorescence. The expression levels of the DNA damage-related protein p53 in the nucleus and the EI24 protein and reep1 protein in whole cells were detected by Western blot. The colocalization coefficients of the endoplasmic reticulum protein EI24 and the mitochondrial protein Vdac2 were determined by immunofluorescence double staining, and the concentration of Ca2+ in skeletal muscle mitochondria was detected by a fluorescent probe. Finally, the opening of the mitochondrial membrane permeability transition pore (mPTP) was detected by immunofluorescence. Twelve hours after downhill running, the mitochondrial membrane permeability of the mPTP opened the most (P < 0.05), the content of 8-OHdG in skeletal muscle peaked (P < 0.05), and the levels of the regulatory protein p53, mitochondrial Ca2+, and the EI24 and reep1 proteins peaked (P < 0.01). Moreover, the colocalization coefficients of EI24 and Vdac2 and the Mandes coefficients of the two proteins increased first and then recovered 72 h after exercise (P < 0.05). (1) Downhill running can lead to DNA damage in skeletal muscle cells, overload of mitochondrial Ca2+ and large opening of membrane permeability transformation pores. (2) The DNA damage caused by downhill running may result in p53 promoting the transcriptional activation of reep1 and EI24, enhancing the interaction between EI24 and Vdac2, and then leading to an increase in Ca2+ in skeletal muscle mitochondria and the opening of membrane permeability transition pores.
    Keywords:  DNA damage; Downhill running; MAM; Mitochondrial membrane permeability transition pore; Skeletal muscle
    DOI:  https://doi.org/10.1007/s10974-022-09634-0
  8. Contact (Thousand Oaks). 2022 Jan-Dec;5:5 25152564221096217
      Membrane contact sites (MCS) are critical for cellular functions of eukaryotes, as they enable communication and exchange between organelles. Research over the last decade unravelled the function and composition of MCS between a variety of organelles including mitochondria, ER, plasma membrane, lysosomes, lipid droplets, peroxisome and endosome, to name a few. In fact, MCS are found between any pair of organelles studied to date, with common functions including lipid exchange, calcium signalling and organelle positioning in the cell. Work in the past year has started addressing the composition and function of nuclear-mitochondrial MCS. Tether components mediating these contacts in yeast have been identified via comprehensive phenotypic screens, which also revealed a possible link between this contact and phosphatidylcholine metabolism. In human cells, and in the protozoan parasites causing malaria, proximity between these organelles is proposed to promote cell survival via a mitochondrial retrograde response. These pioneering studies should inspire the field to explore what cellular processes depend on the exchange between the nucleus and the mitochondrion, given that they play such central roles in cell biology.
    Keywords:  membrane contact sites; mitochondrion (mitochondria); nucleus; parasite
    DOI:  https://doi.org/10.1177/25152564221096217
  9. Front Oncol. 2022 ;12 1000677
      MDM2 is the principal inhibitor of p53, and MDM2 inhibitors can disrupt the physical interaction between MDM2 and p53. The half-life of p53 is very short in normal cells and tissues, and an uncontrolled increase in p53 levels has potential harmful effects. It has been shown that p53 is frequently mutated in most cancers; however, p53 mutations are rare in retinoblastoma. Therefore, therapeutic strategies aimed at increasing the expression levels of wild-type p53 are attractive. In this minireview, we discuss the potential use of nutlin-3, the prototype small molecule inhibitor that disrupts the MDM2-p53 interaction, for the treatment of retinoblastoma. Although p53 has pleiotropic biological effects, the functions of p53 depend on its sub-cellular localization. In the nucleus, p53 induces the transcription of a vast array of genes, while in mitochondria, p53 regulates mitochondrial metabolism. This review also discusses the relative contribution of p53-mediated gene transcription and mitochondrial perturbation for retinoblastoma treatment.
    Keywords:  MDM2 inhibitors; Nutlin-3; mitochondrial metabolism; p53; retina; retinoblastoma
    DOI:  https://doi.org/10.3389/fonc.2022.1000677
  10. Enzymes. 2022 ;pii: S1874-6047(22)00001-4. [Epub ahead of print]51 1-5
      DNA is under a variety of assaults. As a result, different damages accumulate on DNA. These include base changes, single-strand breaks and double-strand breaks. In this volume and also briefly in the following volume, we discuss DNA damage and double-strand breaks. In particular, we focus on double-strand breaks. We discuss types of double-strand breaks as well as methods to detect them. We also discuss how DNA breaks are formed.
    Keywords:  Clustered damage; DNA damage; Detection of double-strand breaks; Direct and indirect effect; Double-strand breaks; Single-strand breaks
    DOI:  https://doi.org/10.1016/bs.enz.2022.08.001
  11. Front Cell Neurosci. 2022 ;16 1031153
      The selective degradation of mitochondria through mitophagy is a crucial process for maintaining mitochondrial function and cellular health. Mitophagy is a specialized form of selective autophagy that uses unique machinery to recognize and target damaged mitochondria for mitophagosome- and lysosome-dependent degradation. This process is particularly important in cells with high metabolic activity like neurons, and the accumulation of defective mitochondria is a common feature among neurodegenerative disorders. Here, we describe essential steps involved in the induction and progression of mitophagy, and then highlight the various mechanisms that specifically contribute to defective mitophagy in highly prevalent neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis.
    Keywords:  Alzheimer’s disease; Huntington’s disease; Parkinson’s disease; amyotrophic lateral sclerosis; mitochondria; mitochondrial dysfunction; mitophagy; neurodegeneration
    DOI:  https://doi.org/10.3389/fncel.2022.1031153
  12. Antioxidants (Basel). 2022 Nov 04. pii: 2184. [Epub ahead of print]11(11):
      Recent studies have related mitochondrial impairment with peritoneal membrane damage during peritoneal dialysis (PD) therapy. Here, we assessed the involvement of mitochondrial dysfunction in the inflammatory response in human mesothelial cells, a hallmark in the pathogenesis of PD-related peritoneal membrane damage. Our ex vivo studies showed that IL-1β causes a drop in the mitochondrial membrane potential in cells from peritoneal effluent. Moreover, when mitochondrial damage was induced by inhibitors of mitochondrial function, a low-grade inflammatory response was generated. Interestingly, mitochondrial damage sensitized mesothelial cells, causing a significant increase in the inflammatory response induced by cytokines, in which ROS generation and NF-κB activation appear to be involved, since inflammation was counteracted by both mitoTEMPO (mitochondrial ROS scavenger) and BAY-117085 (NF-κB inhibitor). Furthermore, the natural anti-inflammatory antioxidant resveratrol significantly attenuated the inflammatory response, by reversing the decline in mitochondrial membrane potential and decreasing the expression of IL-8, COX-2 and PGE2 caused by IL-1β. These findings suggest that IL-1β regulates mitochondrial function in mesothelial cells and that mitochondrial dysfunction could induce an inflammatory scenario that sensitizes these cells, causing significant amplification of the inflammatory response induced by cytokines. Resveratrol may represent a promising strategy in controlling the mesothelial inflammatory response to PD.
    Keywords:  inflammation; mesothelial cells; mitochondria; oxidative stress; peritoneal dialysis; resveratrol
    DOI:  https://doi.org/10.3390/antiox11112184
  13. Immunity. 2022 Nov 08. pii: S1074-7613(22)00555-6. [Epub ahead of print]55(11): 1993-2005
      The lipid nanoparticle (LNP)-encapsulated, nucleoside-modified mRNA platform has been used to generate safe and effective vaccines in record time against COVID-19. Here, we review the current understanding of the manner whereby mRNA vaccines induce innate immune activation and how this contributes to protective immunity. We discuss innate immune sensing of mRNA vaccines at the cellular and intracellular levels and consider the contribution of both the mRNA and the LNP components to their immunogenicity. A key message that is emerging from recent observations is that the LNP carrier acts as a powerful adjuvant for this novel vaccine platform. In this context, we highlight important gaps in understanding and discuss how new insight into the mechanisms underlying the effectiveness of mRNA-LNP vaccines may enable tailoring mRNA and carrier molecules to develop vaccines with greater effectiveness and milder adverse events in the future.
    Keywords:  SARSCoV- 2 vaccine; T cell; adjuvant; dendritic cell; germinal center; innate immunity; ionizable lipid; lipid nanoparticle; mRNA vaccine; neutralizing antibody; nucleoside modification
    DOI:  https://doi.org/10.1016/j.immuni.2022.10.014