bims-mitper Biomed News
on Mitochondrial Permeabilization
Issue of 2022‒10‒16
twelve papers selected by
Bradley Irizarry
Thomas Jefferson University


  1. Cells. 2022 Sep 28. pii: 3043. [Epub ahead of print]11(19):
      Innate immune mechanisms initiate immune responses via pattern-recognition receptors (PRRs). Cyclic GMP-AMP synthase (cGAS), a member of the PRRs, senses diverse pathogenic or endogenous DNA and activates innate immune signaling pathways, including the expression of stimulator of interferon genes (STING), type I interferon, and other inflammatory cytokines, which, in turn, instructs the adaptive immune response development. This groundbreaking discovery has rapidly advanced research on host defense, cancer biology, and autoimmune disorders. Since cGAS/STING has enormous potential in eliciting an innate immune response, understanding its functional regulation is critical. As the most widespread and efficient regulatory mode of the cGAS-STING pathway, post-translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are generally considered a regulatory mechanism for protein destruction or renewal. In this review, we discuss cGAS-STING signaling transduction and its mechanism in related diseases and focus on the current different regulatory modalities of PTMs in the control of the cGAS-STING-triggered innate immune and inflammatory responses.
    Keywords:  cGAS-STING; dsDNA sensing; innate immunity; post-translational modification; type I interferons
    DOI:  https://doi.org/10.3390/cells11193043
  2. Immunology. 2022 Oct 10.
      The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an essential component of the innate immune system and is central to the identification of abnormal DNA leakage caused by ionizing radiation (IR) damage. Cell-intrinsic cGAS-STING initiation has been revealed to have tremendous potential for facilitating interferon synthesis and T cell priming. Targeting the cGAS-STING axis has been proposed as a strategy to improve radiosensitivity or enhance immunosurveillance. However, due to the complex biology of the irradiated tumor microenvironment and the extensive involvement of the cGAS-STING pathway in various physiological and pathological processes, many defects in this strategy limit the therapeutic effect. Here, we outline the molecular mechanisms by which IR activates the cGAS-STING pathway and analyze the dichotomous roles of the cGAS-STING pathway in modulating cancer immunity after radiotherapy (RT). Then, based on the crosstalk between the cGAS-STING pathway and other signaling events induced by IR, such as necroptosis, autophagy, and other cellular effects, we discuss the immunomodulatory actions of the broad cGAS-STING signaling network in RT and their potential therapeutic applications. Finally, recent advances in combination therapeutic strategies targeting cGAS-STING in RT are explored. This article is protected by copyright. All rights reserved.
    Keywords:  antitumor immunity; cGAS-STING; ionizing radiation; tumor microenvironment; type I interferon
    DOI:  https://doi.org/10.1111/imm.13592
  3. Int J Mol Sci. 2022 Sep 27. pii: 11391. [Epub ahead of print]23(19):
      Mitochondria are the only organelles, along with the nucleus, that have their own DNA. Mitochondrial DNA (mtDNA) is a double-stranded circular molecule of ~16.5 kbp that can exist in multiple copies within the organelle. Both strands are translated and encode for 22 tRNAs, 2 rRNAs, and 13 proteins. mtDNA molecules are anchored to the inner mitochondrial membrane and, in association with proteins, form a structure called nucleoid, which exerts a structural and protective function. Indeed, mitochondria have evolved mechanisms necessary to protect their DNA from chemical and physical lesions such as DNA repair pathways similar to those present in the nucleus. However, there are mitochondria-specific mechanisms such as rapid mtDNA turnover, fission, fusion, and mitophagy. Nevertheless, mtDNA mutations may be abundant in somatic tissue due mainly to the proximity of the mtDNA to the oxidative phosphorylation (OXPHOS) system and, consequently, to the reactive oxygen species (ROS) formed during ATP production. In this review, we summarise the most common types of mtDNA lesions and mitochondria repair mechanisms. The second part of the review focuses on the physiological role of mtDNA damage in ageing and the effect of mtDNA mutations in neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Considering the central role of mitochondria in maintaining cellular homeostasis, the analysis of mitochondrial function is a central point for developing personalised medicine.
    Keywords:  Alzheimer’s disease; DNA damage; DNA repair pathways; Parkinson’s disease; mitochondria; neurodegenerative diseases
    DOI:  https://doi.org/10.3390/ijms231911391
  4. Cells. 2022 Oct 10. pii: 3174. [Epub ahead of print]11(19):
      The multifunctional protein, voltage-dependent anion channel 1 (VDAC1), is located on the mitochondrial outer membrane. It is a pivotal protein that maintains mitochondrial function to power cellular bioactivities via energy generation. VDAC1 is involved in regulating energy production, mitochondrial oxidase stress, Ca2+ transportation, substance metabolism, apoptosis, mitochondrial autophagy (mitophagy), and many other functions. VDAC1 malfunction is associated with mitochondrial disorders that affect inflammatory responses, resulting in an up-regulation of the body's defensive response to stress stimulation. Overresponses to inflammation may cause chronic diseases. Mitochondrial DNA (mtDNA) acts as a danger signal that can further trigger native immune system activities after its secretion. VDAC1 mediates the release of mtDNA into the cytoplasm to enhance cytokine levels by activating immune responses. VDAC1 regulates mitochondrial Ca2+ transportation, lipid metabolism and mitophagy, which are involved in inflammation-related disease pathogenesis. Many scientists have suggested approaches to deal with inflammation overresponse issues via specific targeting therapies. Due to the broad functionality of VDAC1, it may become a useful target for therapy in inflammation-related diseases. The mechanisms of VDAC1 and its role in inflammation require further exploration. We comprehensively and systematically summarized the role of VDAC1 in the inflammatory response, and hope that our research will lead to novel therapeutic strategies that target VDAC1 in order to treat inflammation-related disorders.
    Keywords:  Ca2+; VDAC1; inflammation; metabolism; mitochondria; mitophagy
    DOI:  https://doi.org/10.3390/cells11193174
  5. J Inflamm Res. 2022 ;15 5707-5720
      Introduction: Chronic endometritis is a common disease in women of childbearing age and can cause pelvic inflammatory disease. The cGAS-STING pathway plays an important role in many inflammatory diseases.Purpose: The aim of this study was to investigate the relationship between the cGAS-STING pathway and endometritis.
    Methods: We collected endometrium samples from patients with endometritis to detect changes in the cGAS-STING pathway. In vitro, human endometrial stromal cells (HESC) were stimulated with lipopolysaccharide (LPS), and a mouse STING gene-knockout model was established by CRISPR/cas9 for STING to further explore the mechanism underlying its effects in endometritis. We used Western blotting (WB) and immunohistochemical staining to detect the variations in protein levels and real-time PCR to study the variations in gene expression.
    Results: We observed the activation of the cGAS-STING pathway and an increase in the expression of cytokine-encoding genes, including IL-8, IL-6, IL-1β, and IFN-β1, in endometrial tissues of patients with endometritis. Stimulation of HESCs using LPS demonstrated increase in the expression of proteins involved the cGAS-STING pathway and the gene expression of inflammatory cytokines. STING-knockdown experiments demonstrated a decrease in the gene expression levels of inflammatory cytokines. Moreover, we also identified the translocation of IRF3 and STING after LPS stimulation. Regarding mitochondrial function, LPS led to an increase in reactive oxygen species levels and a reduction in mitochondrial membrane potential. However, we observed that the mitochondrial DNA (mtDNA) leaked into the cytoplasm, upregulating the levels of proteins involved in the cGAS-STING pathway upon LPS stimulation. Furthermore, our results showed that LPS induced hyperemia, inflammatory factor production, and expression of Pho-TBK1 in wild-type mice compared with the levels in control mice, and STING gene-knockdown alleviated these effects.
    Conclusion: LPS induces mitochondrial dysfunction in endometrial stromal cells, resulting in mtDNA leakage and promoting endometritis by stimulating the cGAS-STING pathway.
    Keywords:  cGAS-STING; endometritis; inflammatory factors; lipopolysaccharide; mitochondrial DNA; mitochondrial dysfunction
    DOI:  https://doi.org/10.2147/JIR.S374318
  6. Life Sci Alliance. 2023 Jan;pii: e202101305. [Epub ahead of print]6(1):
      In vertebrates, mitochondrial outer membrane fusion is mediated by two mitofusin paralogs, Mfn1 and Mfn2, conserved dynamin superfamily proteins. Here, we characterize a variant of mitofusin reported in patients with CMT2A where a serine is replaced with a proline (Mfn2-S350P and the equivalent in Mfn1, S329P). This serine is in a hinge domain (Hinge 2) that connects the globular GTPase domain to the adjacent extended helical bundle. We find that expression of this variant results in prolific and stable mitochondrial tethering that also blocks mitochondrial fusion by endogenous wild-type mitofusin. The formation of mitochondrial perinuclear clusters by this CMT2A variant requires normal GTPase domain function and formation of a mitofusin complex across two membranes. We propose that conformational dynamics mediated by Hinge 2 and regulated by GTP hydrolysis are disrupted by the substitution of proline at S329/S350 and this prevents progression from tethering to membrane fusion. Thus, our data are consistent with a model for mitofusin-mediated membrane fusion where Hinge 2 supports a power stroke to progress from the tethering complex to membrane fusion.
    DOI:  https://doi.org/10.26508/lsa.202101305
  7. Cells. 2022 Sep 29. pii: 3053. [Epub ahead of print]11(19):
      Mitochondrial disruption leads to the release of cytochrome c to activate caspase-9 and the downstream caspase cascade for the execution of apoptosis. However, cell death can proceed efficiently in the absence of caspase-9 following mitochondrial disruption, suggesting the existence of caspase-9-independent cell death mechanisms. Through a genome-wide siRNA library screening, we identified a network of genes that mediate caspase-9-independent cell death, through ROS production and Alox5-dependent membrane lipid peroxidation. Erk1-dependent phosphorylation of Alox5 is critical for targeting Alox5 to the nuclear membrane to mediate lipid peroxidation, resulting in nuclear translocation of cytolytic molecules to induce DNA damage and cell death. Consistently, double knockouts of caspase-9 and Alox5 in mice, but not deletion of either gene alone, led to significant T cell expansion with inhibited cell death, indicating that caspase-9- and Alox5-dependent pathways function in parallel to regulate T cell death in vivo. This unbiased whole-genome screening reveals an Erk1-Alox5-mediated pathway that promotes membrane lipid peroxidation and nuclear translocation of cytolytic molecules, leading to the execution of cell death in parallel to the caspase-9 signaling cascade.
    Keywords:  Alox5; Erk1; ROS; caspase-9-independent cell death; lipid peroxidation
    DOI:  https://doi.org/10.3390/cells11193053
  8. Genome Biol. 2022 Oct 12. 23(1): 211
      We present two methods for enhancing the efficiency of mitochondrial DNA (mtDNA) editing in mice with DddA-derived cytosine base editors (DdCBEs). First, we fused DdCBEs to a nuclear export signal (DdCBE-NES) to avoid off-target C-to-T conversions in the nuclear genome and improve editing efficiency in mtDNA. Second, mtDNA-targeted TALENs (mitoTALENs) are co-injected into mouse embryos to cleave unedited mtDNA. We generated a mouse model with the m.G12918A mutation in the MT-ND5 gene, associated with mitochondrial genetic disorders in humans. The mutant mice show hunched appearances, damaged mitochondria in kidney and brown adipose tissues, and hippocampal atrophy, resulting in premature death.
    Keywords:  DdCBE; Mitochondrial DNA editing; NES; mitoTALEN; mtDNA
    DOI:  https://doi.org/10.1186/s13059-022-02782-z
  9. Trends Immunol. 2022 Oct 11. pii: S1471-4906(22)00205-8. [Epub ahead of print]
      Activated microglia foster a neurotoxic, inflammatory environment in the mammalian central nervous system (CNS) that drives the pathology of neurodegenerative diseases including Parkinson's disease (PD). Moreover, mitochondrial fission promotes microglial inflammatory responses in vitro. Given that the NLRP3 inflammasome and mitochondria are central regulators of both inflammation and PD, we explore potential functions for the NLRP3 inflammasome and mitochondrial dynamics in PD. Specifically, we propose that inducible microglial mitochondrial fission can promote NLRP3-dependent neuroinflammation in hereditary and idiopathic PD. Further in-depth exploration of this topic can prompt valuable discoveries of the underlying molecular mechanisms of PD neuroinflammation, identify novel candidate anti-inflammatory therapeutics for PD, and ideally provide better outcomes for PD patients.
    Keywords:  NLRP3; Parkinson's; inflammasome; inflammation; neurodegeneration; neuroinflammation
    DOI:  https://doi.org/10.1016/j.it.2022.09.010
  10. Cells. 2022 Sep 23. pii: 2969. [Epub ahead of print]11(19):
      Circulating cell-free mitochondrial DNA (cf-mtDNA) has been found in the plasma of severely ill COVID-19 patients and is now known as a strong predictor of mortality. However, the underlying mechanism of mtDNA release is unexplored. Here, we show a novel mechanism of SARS-CoV-2-mediated pro-inflammatory/pro-apoptotic mtDNA release and a rational therapeutic stem cell-based approach to mitigate these effects. We systematically screened the effects of 29 SARS-CoV-2 proteins on mitochondrial damage and cell death and found that NSP4 and ORF9b caused extensive mitochondrial structural changes, outer membrane macropore formation, and the release of inner membrane vesicles loaded with mtDNA. The macropore-forming ability of NSP4 was mediated through its interaction with BCL2 antagonist/killer (BAK), whereas ORF9b was found to inhibit the anti-apoptotic member of the BCL2 family protein myeloid cell leukemia-1 (MCL1) and induce inner membrane vesicle formation containing mtDNA. Knockdown of BAK and/or overexpression of MCL1 significantly reversed SARS-CoV-2-mediated mitochondrial damage. Therapeutically, we engineered human mesenchymal stem cells (MSCs) with a simultaneous knockdown of BAK and overexpression of MCL1 (MSCshBAK+MCL1) and named these cells IMAT-MSCs (intercellular mitochondrial transfer-assisted therapeutic MSCs). Upon co-culture with SARS-CoV-2-infected or NSP4/ORF9b-transduced airway epithelial cells, IMAT-MSCs displayed functional intercellular mitochondrial transfer (IMT) via tunneling nanotubes (TNTs). The mitochondrial donation by IMAT-MSCs attenuated the pro-inflammatory and pro-apoptotic mtDNA release from co-cultured epithelial cells. Our findings thus provide a new mechanistic basis for SARS-CoV-2-induced cell death and a novel therapeutic approach to engineering MSCs for the treatment of COVID-19.
    Keywords:  BCL2 antagonist/killer; NSP4; ORF9b; SARS-CoV-2; intercellular mitochondrial transfer; mitochondrial DNA; myeloid cell leukemia-1; tunneling nanotubes
    DOI:  https://doi.org/10.3390/cells11192969
  11. Int J Mol Sci. 2022 Sep 26. pii: 11323. [Epub ahead of print]23(19):
      Repair of DNA damage induced by ionizing radiation plays an important role in the cell response to ionizing radiation. Radiation-induced DNA damage also activates the p53 system, which determines the fate of cells. The kinetics of repair, which is affected by the cell itself and the complexity of DNA damage, influences the cell response and fate via affecting the p53 system. To mechanistically study the influences of the cell response to different LET radiations, we introduce a new repair module and a p53 system model with NASIC, a Monte Carlo track structure code. The factors determining the kinetics of the double-strand break (DSB) repair are modeled, including the chromosome environment and complexity of DSB. The kinetics of DSB repair is modeled considering the resection-dependent and resection-independent compartments. The p53 system is modeled by simulating the interactions among genes and proteins. With this model, the cell responses to low- and high-LET irradiation are simulated, respectively. It is found that the kinetics of DSB repair greatly affects the cell fate and later biological effects. A large number of DSBs and a slow repair process lead to severe biological consequences. High-LET radiation induces more complex DSBs, which can be repaired by slow processes, subsequently resulting in a longer cycle arrest and, furthermore, apoptosis and more secreting of TGFβ. The Monte Carlo track structure simulation with a more realistic repair module and the p53 system model developed in this study can expand the functions of the NASIC code in simulating mechanical radiobiological effects.
    Keywords:  DNA repair; Monte Carlo; ionizing radiation; p53; track structure
    DOI:  https://doi.org/10.3390/ijms231911323
  12. Bio Protoc. 2022 Sep 05. pii: e4498. [Epub ahead of print]12(17):
      Mitochondrial dysfunction is associated with perturbations in the cellular oxidative status, changes in energy production and metabolic rate, and the onset of pathological processes. Classic methods of assessing mitochondrial dysfunction rely on indirect measures, such as evaluating mitochondrial DNA copy numbers, or direct but more costly and skilled techniques, such as electron microscopy. The protocol presented here was recently implemented to evaluate mitochondrial dysfunction in response to insecticide exposure in Drosophila melanogaster larvae, and it relies on the use of a previously established MitoTimer mutant strain. MitoTimer is a genetically engineered mitochondrial protein that shows green fluorescence when newly synthetized, irreversibly turning into red as mitochondria age. The protocol described here allows for the easy and direct assessment of shifts in mitochondrial turnover, with tissue-specific accuracy. This protocol can be adapted to assess changes in mitochondrial turnover in response to drugs, rearing conditions, and/or mutations in larva, pupa, or adult fruit flies.
    Keywords:   Dissection ; Drosophila ; Fluorescence microscopy ; Insecticide ; Mitochondria ; Mitochondrial turnover ; Oxidative stress ; Tissue imaging
    DOI:  https://doi.org/10.21769/BioProtoc.4498