bims-mitmed Biomed News
on Mitochondrial medicine
Issue of 2023‒04‒02
thirty-six papers selected by
Dario Brunetti
Fondazione IRCCS Istituto Neurologico


  1. Int J Mol Sci. 2023 Mar 21. pii: 5951. [Epub ahead of print]24(6):
      Coenzyme A (CoA) is a vital and ubiquitous cofactor required in a vast number of enzymatic reactions and cellular processes. To date, four rare human inborn errors of CoA biosynthesis have been described. These disorders have distinct symptoms, although all stem from variants in genes that encode enzymes involved in the same metabolic process. The first and last enzymes catalyzing the CoA biosynthetic pathway are associated with two neurological conditions, namely pantothenate kinase-associated neurodegeneration (PKAN) and COASY protein-associated neurodegeneration (CoPAN), which belong to the heterogeneous group of neurodegenerations with brain iron accumulation (NBIA), while the second and third enzymes are linked to a rapidly fatal dilated cardiomyopathy. There is still limited information about the pathogenesis of these diseases, and the knowledge gaps need to be resolved in order to develop potential therapeutic approaches. This review aims to provide a summary of CoA metabolism and functions, and a comprehensive overview of what is currently known about disorders associated with its biosynthesis, including available preclinical models, proposed pathomechanisms, and potential therapeutic approaches.
    Keywords:  COASY; NBIA; PANK2; PPCDC; PPCS; cardiomyopathy; coenzyme A; iron accumulation; neurodegeneration
    DOI:  https://doi.org/10.3390/ijms24065951
  2. FASEB J. 2023 May;37(5): e22890
      Amyloid-β (Aβ) peptide is accumulated in the mitochondria and has been shown to play a central role in the development of Alzheimer's disease (AD). It has been shown that exposure of neurons to aggregated Aβ can result in damaged mitochondria and dysregulated mitophagy, indicating that changes in the Aβ content of mitochondria may affect the levels of mitophagy and interfere with the progression of AD. However, the direct influence of mitochondrial Aβ on mitophagy has not been elucidated. In the present study, the effect of the mitochondria-specific Aβ was assessed following a direct change of Aβ content in the mitochondria. We directly change mitochondrial Aβ by transfecting cells with mitochondria-associated plasmids, including the mitochondrial outer membrane protein translocase 22 (TOMM22) and 40 (TOMM40) or presequence protease (PreP) overexpression plasmids. The changes in the levels of mitophagy were assessed by TEM, Western blot, mito-Keima construct, organelle tracker, and probe JC-1 assay. We demonstrated that increased mitochondrial Aβ content enhance mitophagy levels; overexpression of PreP could reverse the mitochondrial Aβ-induced mitophagy levels in vivo and in vitro by reversing the levels of reactive oxygen species (ROS) and the mitochondrial membrane potential. The data provide novel insight into the role of mitochondria-specific Aβ in the progression of AD pathophysiology.
    Keywords:  Alzheimer's disease (AD); amyloid-β peptide (Aβ); mitochondrial outer membrane protein translocase 22 (TOMM22); mitochondrial outer membrane protein translocase 40 (TOMM40); mitophagy; presequence protease (PreP)
    DOI:  https://doi.org/10.1096/fj.202200216RRRR
  3. Cell Rep. 2023 Mar 31. pii: S2211-1247(23)00343-1. [Epub ahead of print]42(4): 112332
      The metabolic plasticity of mitochondria ensures cell development, differentiation, and survival. The peptidase OMA1 regulates mitochondrial morphology via OPA1 and stress signaling via DELE1 and orchestrates tumorigenesis and cell survival in a cell- and tissue-specific manner. Here, we use unbiased systems-based approaches to show that OMA1-dependent cell survival depends on metabolic cues. A metabolism-focused CRISPR screen combined with an integrated analysis of human gene expression data found that OMA1 protects against DNA damage. Nucleotide deficiencies induced by chemotherapeutic agents promote p53-dependent apoptosis of cells lacking OMA1. The protective effect of OMA1 does not depend on OMA1 activation or OMA1-mediated OPA1 and DELE1 processing. OMA1-deficient cells show reduced glycolysis and accumulate oxidative phosphorylation (OXPHOS) proteins upon DNA damage. OXPHOS inhibition restores glycolysis and confers resistance against DNA damage. Thus, OMA1 dictates the balance between cell death and survival through the control of glucose metabolism, shedding light on its role in cancerogenesis.
    Keywords:  CP: Metabolism; DNA damage; OMA1; OXPHOS; glucose metabolism; mitochondria; nucleotides; p53
    DOI:  https://doi.org/10.1016/j.celrep.2023.112332
  4. Int J Mol Sci. 2023 Mar 17. pii: 5785. [Epub ahead of print]24(6):
      Mitochondria, the membrane-bound cell organelles that supply most of the energy needed for cell function, are highly regulated, dynamic organelles bearing the ability to alter both form and functionality rapidly to maintain normal physiological events and challenge stress to the cell. This amazingly vibrant movement and distribution of mitochondria within cells is controlled by the highly coordinated interplay between mitochondrial dynamic processes and fission and fusion events, as well as mitochondrial quality-control processes, mainly mitochondrial autophagy (also known as mitophagy). Fusion connects and unites neighboring depolarized mitochondria to derive a healthy and distinct mitochondrion. In contrast, fission segregates damaged mitochondria from intact and healthy counterparts and is followed by selective clearance of the damaged mitochondria via mitochondrial specific autophagy, i.e., mitophagy. Hence, the mitochondrial processes encompass all coordinated events of fusion, fission, mitophagy, and biogenesis for sustaining mitochondrial homeostasis. Accumulated evidence strongly suggests that mitochondrial impairment has already emerged as a core player in the pathogenesis, progression, and development of various human diseases, including cardiovascular ailments, the leading causes of death globally, which take an estimated 17.9 million lives each year. The crucial factor governing the fission process is the recruitment of dynamin-related protein 1 (Drp1), a GTPase that regulates mitochondrial fission, from the cytosol to the outer mitochondrial membrane in a guanosine triphosphate (GTP)-dependent manner, where it is oligomerized and self-assembles into spiral structures. In this review, we first aim to describe the structural elements, functionality, and regulatory mechanisms of the key mitochondrial fission protein, Drp1, and other mitochondrial fission adaptor proteins, including mitochondrial fission 1 (Fis1), mitochondrial fission factor (Mff), mitochondrial dynamics 49 (Mid49), and mitochondrial dynamics 51 (Mid51). The core area of the review focuses on the recent advances in understanding the role of the Drp1-mediated mitochondrial fission adaptor protein interactome to unravel the missing links of mitochondrial fission events. Lastly, we discuss the promising mitochondria-targeted therapeutic approaches that involve fission, as well as current evidence on Drp1-mediated fission protein interactions and their critical roles in the pathogeneses of cardiovascular diseases (CVDs).
    Keywords:  cardiovascular diseases (CVDs); dynamin-related protein 1 (Drp1); fission; fusion; mitochondrial dynamics; mitochondrial dynamics 49 (Mid49); mitochondrial dynamics 51 (Mid51); mitochondrial fission 1 (Fis1); mitochondrial fission factor (Mff); mitochondrial fission proteins; mitophagy; protein structure; protein–protein interactions (PPIs)
    DOI:  https://doi.org/10.3390/ijms24065785
  5. Int J Mol Sci. 2023 Mar 18. pii: 5798. [Epub ahead of print]24(6):
      Mitochondria are critical organelles that form networks within our cells, generate energy dynamically, contribute to diverse cell and organ function, and produce a variety of critical signaling molecules, such as cortisol. This intracellular microbiome can differ between cells, tissues, and organs. Mitochondria can change with disease, age, and in response to the environment. Single nucleotide variants in the circular genomes of human mitochondrial DNA are associated with many different life-threatening diseases. Mitochondrial DNA base editing tools have established novel disease models and represent a new possibility toward personalized gene therapies for the treatment of mtDNA-based disorders.
    Keywords:  DdCBE; TALED; base editing; heteroplasmy; mitochondria; mitochondrial DNA
    DOI:  https://doi.org/10.3390/ijms24065798
  6. Acta Pharm Sin B. 2023 Mar;13(3): 1028-1035
      Mitochondrial diseases are a group of inherited or acquired metabolic disorders caused by mitochondrial dysfunction which may affect almost all the organs in the body and present at any age. However, no satisfactory therapeutic strategies have been available for mitochondrial diseases so far. Mitochondrial transplantation is a burgeoning approach for treatment of mitochondrial diseases by recovery of dysfunctional mitochondria in defective cells using isolated functional mitochondria. Many models of mitochondrial transplantation in cells, animals, and patients have proved effective via various routes of mitochondrial delivery. This review presents different techniques used in mitochondrial isolation and delivery, mechanisms of mitochondrial internalization and consequences of mitochondrial transplantation, along with challenges for clinical application. Despite some unknowns and challenges, mitochondrial transplantation would provide an innovative approach for mitochondrial medicine.
    Keywords:  Ethical issue; Mitochondria; Mitochondrial delivery; Mitochondrial disease; Mitochondrial isolation; Mitochondrial storage; Mitochondrial transplantation; Mitochondrial transplantation rejection
    DOI:  https://doi.org/10.1016/j.apsb.2022.10.008
  7. Curr Issues Mol Biol. 2023 Feb 22. 45(3): 1794-1809
      Mitochondria are involved in many vital functions in living cells, including the synthesis of ATP by oxidative phosphorylation (OXPHOS) and regulation of nuclear gene expression through retrograde signaling. Leigh syndrome is a heterogeneous neurological disorder resulting from an isolated complex I deficiency that causes damage to mitochondrial energy production. The pathogenic mitochondrial DNA (mtDNA) variant m.13513G>A has been associated with Leigh syndrome. The present study investigated the effects of this mtDNA variant on the OXPHOS system and cell retrograde signaling. Transmitochondrial cytoplasmic hybrid (cybrid) cell lines harboring 50% and 70% of the m.13513G>A variant were generated and tested along with wild-type (WT) cells. The functionality of the OXPHOS system was evaluated by spectrophotometric assessment of enzyme activity and high-resolution respirometry. Nuclear gene expression was investigated by RNA sequencing and droplet digital PCR. Increasing levels of heteroplasmy were associated with reduced OXPHOS system complex I, IV, and I + III activities, and high-resolution respirometry also showed a complex I defect. Profound changes in transcription levels of nuclear genes were observed in the cell lines harboring the pathogenic mtDNA variant, indicating the physiological processes associated with defective mitochondria.
    Keywords:  Leigh syndrome; OXPHOS system; RNA sequencing; mitochondrial diseases; retrograde signaling
    DOI:  https://doi.org/10.3390/cimb45030115
  8. FEBS J. 2023 Apr 01.
      We previously developed a stress-induced premature senescence (SIPS) model in which normal human fibroblast MRC-5 cells were treated with either the proteasome inhibitor MG132 or the vacuolar-type ATPase (V-ATPase) inhibitor bafilomycin A1 (BAFA1). To clarify the involvement of mitochondrial function in our SIPS model, MRC-5 cells were treated with MG132 or BAFA1 along with an inhibitor targeting either the electron transport chain (ETC) complex I or complex III, or with a mitochondrial uncoupler. SIPS induced by MG132 or BAFA1 was significantly attenuated by short-term co-treatment with the complex III inhibitor, antimycin A (AA), but not the complex I inhibitor, rotenone, or the mitochondrial uncoupler, carbonyl cyanide 3-chlorophenylhydrazone (CCCP). By co-treatment with AA, mitochondrial and intracellular reactive oxygen species (ROS) levels, accumulation of protein aggregates, and mitochondrial unfolded protein responses (UPRmt ) were remarkably suppressed. Furthermore, AA co-treatment suppressed the hyperpolarization of the mitochondrial membrane and the induction of mitophagy observed in MG132-treated cells, and enhanced mitochondrial biogenesis. These findings provide evidence that the temporal inhibition of mitochondrial respiration exerts protective effects against the progression of premature senescence caused by impaired proteostasis.
    Keywords:  MG132; mitochondria; oxidative phosphorylation; proteostasis; senescence; unfolded protein response
    DOI:  https://doi.org/10.1111/febs.16785
  9. Curr Biol. 2023 Mar 27. pii: S0960-9822(23)00177-X. [Epub ahead of print]33(6): R219-R221
      Striated intracytoplasmic membranes in alphaproteobacteria are often reminiscent of millefoglie pastries. A new study reveals a protein complex homologous to that responsible for mitochondrial cristae formation drives intracytoplasmic membrane formation, thereby establishing bacterial ancestry for the biogenesis of mitochondrial cristae.
    DOI:  https://doi.org/10.1016/j.cub.2023.02.037
  10. Ageing Res Rev. 2023 Mar 25. pii: S1568-1637(23)00076-4. [Epub ahead of print]87 101917
      The skin is the largest organ of the human body and the first line of defense against environmental hazards. Many factors, including internal factors such as natural aging and external factors such as ultraviolet radiation and air pollution, can lead to skin aging. Mitochondria provide sufficient energy to maintain the high-speed turnover capacity of the skin, so the quality control of mitochondria plays an indispensable role in this process. Mitochondrial dynamics, mitochondrial biogenesis and mitophagy are the key steps in mitochondrial quality surveillance. They are coordinated to maintain mitochondrial homeostasis and restore damaged mitochondrial function. All of the mitochondrial quality control processes are related to skin aging caused by various factors. Therefore, fine-tuning regulation of the above process is of great significance to the skin aging problem that needs to be solved urgently. This article mainly reviews the physiological and environmental factors causing skin aging, the effects of mitochondrial dynamics, mitochondrial biogenesis and mitophagy on skin aging, as well as their specific regulatory mechanisms. Finally, mitochondrial biomarkers for diagnosis of skin aging, and therapeutic approaches of skin aging via mitochondrial quality control were illustrated.
    Keywords:  Mitochondrial biogenesis; Mitochondrial dynamics; Mitophagy; Skin aging; Therapeutic
    DOI:  https://doi.org/10.1016/j.arr.2023.101917
  11. bioRxiv. 2023 Mar 16. pii: 2023.03.15.532838. [Epub ahead of print]
      Acetylated microtubules play key roles in the regulation of mitochondria dynamics. It has however remained unknown if the machinery controlling mitochondria dynamics functionally interacts with the alpha-tubulin acetylation cycle. Mitofusin-2 (MFN2), a large GTPase residing in the mitochondrial outer membrane and mutated in Charcot-Marie-Tooth type 2 disease (CMT2A), is a regulator of mitochondrial fusion, transport and tethering with the endoplasmic reticulum. The role of MFN2 in regulating mitochondrial transport has however remained elusive. Here we show that mitochondrial contacts with microtubules are sites of alpha-tubulin acetylation, which occurs through the MFN2-mediated recruitment of alpha-tubulin acetyltransferase 1 (ATAT1). We discover that this activity is critical for MFN2-dependent regulation of mitochondria transport, and that axonal degeneration caused by CMT2A MFN2 associated mutations, R94W and T105M, may depend on the inability to release ATAT1 at sites of mitochondrial contacts with microtubules. Our findings reveal a function for mitochondria in regulating acetylated alpha-tubulin and suggest that disruption of the tubulin acetylation cycle play a pathogenic role in the onset of MFN2-dependent CMT2A.
    DOI:  https://doi.org/10.1101/2023.03.15.532838
  12. Antioxidants (Basel). 2023 Feb 28. pii: 598. [Epub ahead of print]12(3):
      The mitochondrial protease Lonp1 is a multifunctional enzyme that regulates crucial mitochondrial functions, including the degradation of oxidized proteins, folding of imported proteins and maintenance the correct number of copies of mitochondrial DNA. A series of recent studies has put Lonp1 at the center of the stage in the homeostasis of cardiomyocytes and muscle skeletal cells. During heart development, Lonp1 allows the metabolic shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation. Knock out of Lonp1 arrests heart development and determines cardiomyocyte apoptosis. In adults, Lonp1 acts as a cardioprotective protein, as its upregulation mitigates cardiac injury by preventing the oxidative damage of proteins and lipids, and by preserving mitochondrial redox balance. In skeletal muscle, Lonp1 is crucial for cell development, as it mediates the activation of PINK1/Parkin pathway needed for proper myoblast differentiation. Skeletal muscle-specific ablation of Lonp1 in mice causes reduced muscle fiber size and strength due to the accumulation of mitochondrial-retained protein in muscle. Lonp1 expression and activity decline with age in different tissues, including skeletal muscle, and are associated with a functional decline and structural impairment of muscle fibers. Aerobic exercise increases unfolded protein response markers including Lonp1 in the skeletal muscle of aged animals and is associated with muscle functional recovery. Finally, mutations of Lonp1 cause a syndrome named CODAS (Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies) characterized by the impaired development of multiple organs and tissues, including myocytes. CODAS patients show hypotonia and ptosis, indicative of skeletal muscle reduced performance. Overall, this body of observations points Lonp1 as a crucial regulator of mitochondrial functions in the heart and in skeletal muscle.
    Keywords:  Lon protease; UPRmt; heart dysfunction; sarcopenia
    DOI:  https://doi.org/10.3390/antiox12030598
  13. Life Sci Alliance. 2023 Jun;pii: e202301914. [Epub ahead of print]6(6):
      Mutations in SLC25A46 underlie a wide spectrum of neurodegenerative diseases associated with alterations in mitochondrial morphology. We established an SLC25A46 knock-out cell line in human fibroblasts and studied the pathogenicity of three variants (p.T142I, p.R257Q, and p.E335D). Mitochondria were fragmented in the knock-out cell line and hyperfused in all pathogenic variants. The loss of SLC25A46 led to abnormalities in the mitochondrial cristae ultrastructure that were not rescued by the expression of the variants. SLC25A46 was present in discrete puncta at mitochondrial branch points and tips of mitochondrial tubules, co-localizing with DRP1 and OPA1. Virtually, all fission/fusion events were demarcated by a SLC25A46 focus. SLC25A46 co-immunoprecipitated with the fusion machinery, and loss of function altered the oligomerization state of OPA1 and MFN2. Proximity interaction mapping identified components of the ER membrane, lipid transfer proteins, and mitochondrial outer membrane proteins, indicating that it is present at interorganellar contact sites. SLC25A46 loss of function led to altered mitochondrial lipid composition, suggesting that it may facilitate interorganellar lipid flux or play a role in membrane remodeling associated with mitochondrial fusion and fission.
    DOI:  https://doi.org/10.26508/lsa.202301914
  14. Front Cell Dev Biol. 2023 ;11 1153174
      Metabolic syndrome (MetS) is a complex pathological condition that involves disrupted carbohydrate, protein, and fat metabolism in the human body, and is a major risk factor for several chronic diseases, including diabetes, cardiovascular disease, and cerebrovascular disease. While the exact pathogenesis of metabolic syndrome is not yet fully understood, there is increasing evidence linking mitochondrial dysfunction, which is closely related to the mitochondrial genome and mitochondrial dynamics, to the development of this condition. Recent advancements in genetic sequencing technologies have allowed for more accurate detection of mtDNA mutations and other mitochondrial abnormalities, leading to earlier diagnosis and intervention in patients with metabolic syndrome. Additionally, the identification of specific mechanisms by which reduced mtDNA copy number and gene mutations, as well as abnormalities in mtDNA-encoded proteins and mitochondrial dynamics, contribute to metabolic syndrome may promote the development of novel therapeutic targets and interventions, such as the restoration of mitochondrial function through the targeting of specific mitochondrial defects. Additionally, advancements in genetic sequencing technologies may allow for more accurate detection of mtDNA mutations and other mitochondrial abnormalities, leading to earlier diagnosis and intervention in patients with MetS. Therefore, strategies to promote the restoration of mitochondrial function by addressing these defects may offer new options for treating MetS. This review provides an overview of the research progress and significance of mitochondrial genome and mitochondrial dynamics in MetS.
    Keywords:  metabolic syndrome; mitochondrial copy number; mitochondrial dynamics; mitochondrial gene mutations; mitochondrial proteases; mitochondrial-encoded proteins
    DOI:  https://doi.org/10.3389/fcell.2023.1153174
  15. Int J Mol Sci. 2023 Mar 17. pii: 5788. [Epub ahead of print]24(6):
      Proinflammatory cytokines such as TNFα mediate airway inflammation. Previously, we showed that TNFα increases mitochondrial biogenesis in human ASM (hASM) cells, which is associated with increased PGC1α expression. We hypothesized that TNFα induces CREB and ATF1 phosphorylation (pCREBS133 and pATF1S63), which transcriptionally co-activate PGC1α expression. Primary hASM cells were dissociated from bronchiolar tissue obtained from patients undergoing lung resection, cultured (one-three passages), and then differentiated by serum deprivation (48 h). hASM cells from the same patient were divided into two groups: TNFα (20 ng/mL) treated for 6 h and untreated controls. Mitochondria were labeled using MitoTracker green and imaged using 3D confocal microscopy to determine mitochondrial volume density. Mitochondrial biogenesis was assessed based on relative mitochondrial DNA (mtDNA) copy number determined by quantitative real-time PCR (qPCR). Gene and/or protein expression of pCREBS133, pATF1S63, PCG1α, and downstream signaling molecules (NRFs, TFAM) that regulate transcription and replication of the mitochondrial genome, were determined by qPCR and/or Western blot. TNFα increased mitochondrial volume density and mitochondrial biogenesis in hASM cells, which was associated with an increase in pCREBS133, pATF1S63 and PCG1α expression, with downstream transcriptional activation of NRF1, NRF2, and TFAM. We conclude that TNFα increases mitochondrial volume density in hASM cells via a pCREBS133/pATF1S63/PCG1α-mediated pathway.
    Keywords:  ATF1; CREB; NRFs; PGC1α; TNFα; airway inflammation; mitochondrial biogenesis; mtDNA
    DOI:  https://doi.org/10.3390/ijms24065788
  16. CNS Neurol Disord Drug Targets. 2023 Mar 27.
      Autophagy is a self-destructive cellular process that removes essential metabolites and waste from inside the cell to maintain cellular health. Mitophagy is the process by which autophagy causes disruption inside mitochondria and the total removal of damaged or stressed mitochondria, hence enhancing cellular health. The mitochondria are the powerhouses of the cell, performing essential functions such as ATP (adenosine triphosphate) generation, metabolism, Ca2+ buffering, and signal transduction. Many different mechanisms, including endosomal and autophagosomal transport, bring these substrates to lysosomes for processing. Autophagy and endocytic processes each have distinct compartments, and they interact dynamically with one another to complete digestion. Since mitophagy is essential for maintaining cellular health and using genetics, cell biology, and proteomics techniques, it is necessary to understand its beginning, particularly in ubiquitin and receptor-dependent signalling in injured mitochondria. Despite their similar symptoms and emerging genetic foundations, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have all been linked to abnormalities in autophagy and endolysosomal pathways associated with neuronal dysfunction. Mitophagy is responsible for normal mitochondrial turnover and, under certain physiological or pathological situations, may drive the elimination of faulty mitochondria. Due to their high energy requirements and post-mitotic origin, neurons are especially susceptible to autophagic and mitochondrial malfunction. This article focused on the importance of autophagy and mitophagy in neurodegenerative illnesses and how they might be used to create novel therapeutic approaches for treating a wide range of neurological disorders.
    Keywords:  Alzheimer’s disease; Amyotrophic lateral sclerosis; Autophagy; Huntington’s disease; Parkinson’s disease; mitophagy; neurodegenerative disorders
    DOI:  https://doi.org/10.2174/1871527322666230327092855
  17. iScience. 2023 Apr 21. 26(4): 106349
      Mutations in the mitochondrial genome (mtDNA) can be pathogenic. Owing to the multi-copy nature of mtDNA, wild-type copies can compensate for the effects of mutant mtDNA. Wild-type copies available for compensation vary depending on the mutant load and the total copy number. Here, we examine both mutant load and copy number in the tissues of Caenorhabditis elegans. We found that neurons, but not muscles, have modestly higher mutant load than rest of the soma. We also uncovered different effect of aak-2 knockout on the mutant load in the two tissues. The most surprising result was a sharp decline in somatic mtDNA content over time. The scale of the copy number decline surpasses the modest shifts in mutant load, suggesting that it may exert a substantial effect on mitochondrial function. In summary, measuring both the copy number and the mutant load provides a more comprehensive view of the mutant mtDNA dynamics.
    Keywords:  Biological sciences; Cell biology; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2023.106349
  18. J Clin Med. 2023 Mar 22. pii: 2435. [Epub ahead of print]12(6):
      Primary mitochondrial myopathies (PMM) are a clinically and genetically highly heterogeneous group that, in some cases, may manifest exclusively as fatigue and exercise intolerance, with minimal or no signs on examination. On these occasions, the symptoms can be confused with the much more common chronic fatigue syndrome (CFS). Nonetheless, other possibilities must be excluded for the final diagnosis of CFS, with PMM being one of the primary differential diagnoses. For this reason, many patients with CFS undergo extensive studies, including extensive genetic testing and muscle biopsies, to rule out this possibility. This study evaluated the diagnostic performance of growth differentiation factor-15 (GDF-15) as a potential biomarker to distinguish which patient with chronic fatigue has a mitochondrial disorder. We studied 34 adult patients with symptoms of fatigue and exercise intolerance with a definitive diagnosis of PMM (7), CFS (22), or other non-mitochondrial disorders (5). The results indicate that GDF-15 can accurately discriminate between patients with PMM and CFS (AUC = 0.95) and between PMM and patients with fatigue due to other non-mitochondrial disorders (AUC = 0.94). Therefore, GDF-15 emerges as a promising biomarker to select which patients with fatigue should undergo further studies to exclude mitochondrial disease.
    Keywords:  GDF-15; chronic fatigue syndrome; differential diagnosis; mitochondrial myopathy
    DOI:  https://doi.org/10.3390/jcm12062435
  19. Int J Mol Sci. 2023 Mar 15. pii: 5622. [Epub ahead of print]24(6):
      Mesenchymal stem cells (MSCs) have therapeutic effects on neurodegenerative diseases (NDDs) known by their secreted molecules, referred to as the "secretome". The mitochondrial complex I inhibitor, rotenone (ROT), reproduces α-synuclein (α-syn) aggregation seen in Parkinson's disease (PD). In this present study, we examined the neuroprotective effects of the secretome from neural-induced human adipose tissue-derived stem cells (NI-ADSC-SM) during ROT toxicity in SH-SY5Y cells. Exposure to ROT significantly impaired the mitophagy by increased LRRK2, mitochondrial fission, and endoplasmic reticulum (ER) stress (ERS). ROT also increased the levels of calcium (Ca2+), VDAC, and GRP75, and decreased phosphorylated (p)-IP3R Ser1756/total (t)-IP3R1. However, NI-ADSC-SM treatment decreased Ca2+ levels along with LRRK2, insoluble ubiquitin, mitochondrial fission by halting p-DRP1 Ser616, ERS by reducing p-PERK Thr981, p-/t-IRE1α, p-SAPK, ATF4, and CHOP. In addition, NI-ADSC-SM restored the mitophagy, mitochondrial fusion, and tethering to the ER. These data suggest that NI-ADSC-SM decreases ROT-induced dysfunction in mitochondria and the ER, which subsequently stabilized tethering in mitochondria-associated membranes in SH-SY5Y cells.
    Keywords:  Parkinson’s disease; endoplasmic reticulum; mitochondria-associated membranes; mitochondrial tethering; rotenone
    DOI:  https://doi.org/10.3390/ijms24065622
  20. Cerebellum. 2023 Mar 30.
      The association of hypogonadism and cerebellar ataxia was first recognized in 1908 by Gordon Holmes. Since the seminal description, several heterogeneous phenotypes have been reported, differing for age at onset, associated features, and gonadotropins levels. In the last decade, the genetic bases of these disorders are being progressively uncovered. Here, we review the diseases associating ataxia and hypogonadism and the corresponding causative genes. In the first part of this study, we focus on clinical syndromes and genes (RNF216, STUB1, PNPLA6, AARS2, SIL1, SETX) predominantly associated with ataxia and hypogonadism as cardinal features. In the second part, we mention clinical syndromes and genes (POLR3A, CLPP, ERAL1, HARS, HSD17B4, LARS2, TWNK, POLG, ATM, WFS1, PMM2, FMR1) linked to complex phenotypes that include, among other features, ataxia and hypogonadism. We propose a diagnostic algorithm for patients with ataxia and hypogonadism, and we discuss the possible common etiopathogenetic mechanisms.
    Keywords:  Ataxia; Gordon Holmes syndrome; Hypogonadism; NGS
    DOI:  https://doi.org/10.1007/s12311-023-01549-x
  21. bioRxiv. 2023 Mar 14. pii: 2023.03.14.532620. [Epub ahead of print]
      Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor comprised of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing, and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for heme biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae . Mitochondria lacking Hem25p fail to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enables robust IPP uptake demonstrating that Hem25p is sufficient for IPP transport. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in yeast.
    DOI:  https://doi.org/10.1101/2023.03.14.532620
  22. Int J Mol Sci. 2023 Mar 14. pii: 5516. [Epub ahead of print]24(6):
      Mitochondria are key structures providing most of the energy needed to maintain homeostasis. They are the main source of adenosine triphosphate (ATP), participate in glucose, lipid and amino acid metabolism, store calcium and are integral components in various intracellular signaling cascades. However, due to their crucial role in cellular integrity, mitochondrial damage and dysregulation in the context of critical illness can severely impair organ function, leading to energetic crisis and organ failure. Skeletal muscle tissue is rich in mitochondria and, therefore, particularly vulnerable to mitochondrial dysfunction. Intensive care unit-acquired weakness (ICUAW) and critical illness myopathy (CIM) are phenomena of generalized weakness and atrophying skeletal muscle wasting, including preferential myosin breakdown in critical illness, which has also been linked to mitochondrial failure. Hence, imbalanced mitochondrial dynamics, dysregulation of the respiratory chain complexes, alterations in gene expression, disturbed signal transduction as well as impaired nutrient utilization have been proposed as underlying mechanisms. This narrative review aims to highlight the current known molecular mechanisms immanent in mitochondrial dysfunction of patients suffering from ICUAW and CIM, as well as to discuss possible implications for muscle phenotype, function and therapeutic approaches.
    Keywords:  ICUAW; critical illness; critical illness myopathy; intensive care medicine; mitochondria; muscle wasting
    DOI:  https://doi.org/10.3390/ijms24065516
  23. Int J Mol Sci. 2023 Mar 10. pii: 5320. [Epub ahead of print]24(6):
      Mitochondrial RTG (an acronym for ReTroGrade) signaling plays a cytoprotective role under various intracellular or environmental stresses. We have previously shown its contribution to osmoadaptation and capacity to sustain mitochondrial respiration in yeast. Here, we studied the interplay between RTG2, the main positive regulator of the RTG pathway, and HAP4, encoding the catalytic subunit of the Hap2-5 complex required for the expression of many mitochondrial proteins that function in the tricarboxylic acid (TCA) cycle and electron transport, upon osmotic stress. Cell growth features, mitochondrial respiratory competence, retrograde signaling activation, and TCA cycle gene expression were comparatively evaluated in wild type and mutant cells in the presence and in the absence of salt stress. We showed that the inactivation of HAP4 improved the kinetics of osmoadaptation by eliciting both the activation of retrograde signaling and the upregulation of three TCA cycle genes: citrate synthase 1 (CIT1), aconitase 1 (ACO1), and isocitrate dehydrogenase 1 (IDH1). Interestingly, their increased expression was mostly dependent on RTG2. Impaired respiratory competence in the HAP4 mutant does not affect its faster adaptive response to stress. These findings indicate that the involvement of the RTG pathway in osmostress is fostered in a cellular context of constitutively reduced respiratory capacity. Moreover, it is evident that the RTG pathway mediates peroxisomes-mitochondria communication by modulating the metabolic function of mitochondria in osmoadaptation.
    Keywords:  Hap complex; RTG signaling; TCA cycle; inter-organelle communication; metabolism; mitochondria; osmoadaptation; respiratory competence; stress response
    DOI:  https://doi.org/10.3390/ijms24065320
  24. Antioxidants (Basel). 2023 Mar 01. pii: 602. [Epub ahead of print]12(3):
      Many muscular pathologies are associated with oxidative stress and elevated levels of the tumor necrosis factor (TNF) that cause muscle protein catabolism and impair myogenesis. Myogenesis defects caused by TNF are mediated in part by reactive oxygen species (ROS), including those produced by mitochondria (mitoROS), but the mechanism of their pathological action is not fully understood. We hypothesized that mitoROS act by triggering and enhancing mitophagy, an important tool for remodelling the mitochondrial reticulum during myogenesis. We used three recently developed probes-MitoTracker Orange CM-H2TMRos, mito-QC, and MitoCLox-to study myogenesis in human myoblasts. Induction of myogenesis resulted in a significant increase in mitoROS generation and phospholipid peroxidation in the inner mitochondrial membrane, as well as mitophagy enhancement. Treatment of myoblasts with TNF 24 h before induction of myogenesis resulted in a significant decrease in the myoblast fusion index and myosin heavy chain (MYH2) synthesis. TNF increased the levels of mitoROS, phospholipid peroxidation in the inner mitochondrial membrane and mitophagy at an early stage of differentiation. Trolox and SkQ1 antioxidants partially restored TNF-impaired myogenesis. The general autophagy inducers rapamycin and AICAR, which also stimulate mitophagy, completely blocked myogenesis. The autophagy suppression by the ULK1 inhibitor SBI-0206965 partially restored myogenesis impaired by TNF. Thus, suppression of myogenesis by TNF is associated with a mitoROS-dependent increase in general autophagy and mitophagy.
    Keywords:  SkQ1; TNF; antioxidant; mitochondria; mitophagy; myogenesis; reactive oxygen species (ROS)
    DOI:  https://doi.org/10.3390/antiox12030602
  25. Int J Mol Sci. 2023 Mar 20. pii: 5891. [Epub ahead of print]24(6):
      Mitochondria-nucleus communication during stress dictates cellular fate with consequences on the etiopathology of multiple age-related diseases. Impaired mitochondrial quality control through loss of function of the mitochondrial protease HtrA2 associates with accumulation of damaged mitochondria and triggers the integrated stress response, implicating the transcription factor CHOP. Here we have employed a combined model of impaired mitochondria quality control, namely HtrA2 loss of function, and/or integrated stress response, namely CHOP loss of function, and genotoxicity to address the distinctive roles of these cellular components in modulating intracellular and intercellular responses. The genotoxic agents employed were cancer therapeutic agents such as irradiation with X-ray and protons or treatment with the radiomimetic bleomycin. The irradiation had an enhanced effect in inducing DNA damage in cells with CHOP loss of function, while the bleomycin treatment induced more DNA damage in all the transgenic cells as compared to the control. The genetic modifications impaired the transmission of DNA damage signalling intercellularly. Furthermore, we have dissected the signalling pathways modulated by irradiation in selected genotypes with RNA sequencing analysis. We identified that loss of HtrA2 and CHOP function, respectively, lowers the threshold where irradiation may induce the activation of innate immune responses via cGAS-STING; this may have a significant impact on decisions for combined therapeutic approaches for various diseases.
    Keywords:  DNA damage; integrated stress response; mitochondria function; radioinduced signalling pathways
    DOI:  https://doi.org/10.3390/ijms24065891
  26. Sci Rep. 2023 Mar 30. 13(1): 5203
      Systemic inflammation underlies the association between obesity and nonalcoholic fatty liver disease (NAFLD). Here, we investigated functional changes in leukocytes' mitochondria in obese individuals and their associations with NAFLD. We analyzed 14 obese male Japanese university students whose body mass index was > 30 kg/m2 and 15 healthy age- and sex-matched lean university students as controls. We observed that the mitochondrial oxidative phosphorylation (OXPHOS) capacity with complex I + II-linked substrates in peripheral blood mononuclear cells (PBMCs), which was measured using a high-resolution respirometry, was significantly higher in the obese group versus the controls. The PBMCs' mitochondrial complex IV capacity was also higher in the obese subjects. All of the obese subjects had hepatic steatosis defined by a fatty liver index (FLI) score ≥ 60, and there was a positive correlation between their FLI scores and their PBMCs' mitochondrial OXPHOS capacity. The increased PBMCs' mitochondrial OXPHOS capacity was associated with insulin resistance, systemic inflammation, and higher serum levels of interleukin-6 in the entire series of subjects. Our results suggest that the mitochondrial respiratory capacity is increased in the PBMCs at the early stage of obesity, and the enhanced PBMCs' mitochondrial oxidative metabolism is associated with hepatic steatosis in obese young adults.
    DOI:  https://doi.org/10.1038/s41598-023-32549-w
  27. Nat Chem Biol. 2023 Mar 27.
      Although nicotinamide adenine dinucleotide phosphate (NADPH) is produced and consumed in both the cytosol and mitochondria, the relationship between NADPH fluxes in each compartment has been difficult to assess due to technological limitations. Here we introduce an approach to resolve cytosolic and mitochondrial NADPH fluxes that relies on tracing deuterium from glucose to metabolites of proline biosynthesis localized to either the cytosol or mitochondria. We introduced NADPH challenges in either the cytosol or mitochondria of cells by using isocitrate dehydrogenase mutations, administering chemotherapeutics or with genetically encoded NADPH oxidase. We found that cytosolic challenges influenced NADPH fluxes in the cytosol but not NADPH fluxes in mitochondria, and vice versa. This work highlights the value of using proline labeling as a reporter system to study compartmentalized metabolism and reveals that NADPH homeostasis in the cytosolic and mitochondrial locations of a cell are independently regulated, with no evidence for NADPH shuttle activity.
    DOI:  https://doi.org/10.1038/s41589-023-01283-9
  28. Cell Mol Life Sci. 2023 Mar 29. 80(4): 108
      Episodes of chronic stress can result in psychic disorders like post-traumatic stress disorder, but also promote the development of metabolic syndrome and type 2 diabetes. We hypothesize that muscle, as main regulator of whole-body energy expenditure, is a central target of acute and adaptive molecular effects of stress in this context. Here, we investigate the immediate effect of a stress period on energy metabolism in Musculus gastrocnemius in our established C57BL/6 chronic variable stress (Cvs) mouse model. Cvs decreased lean body mass despite increased energy intake, reduced circadian energy expenditure (EE), and substrate utilization. Cvs altered the proteome of metabolic components but not of the oxidative phosphorylation system (OXPHOS), or other mitochondrial structural components. Functionally, Cvs impaired the electron transport chain (ETC) capacity of complex I and complex II, and reduces respiratory capacity of the ETC from complex I to ATP synthase. Complex I-OXPHOS correlated to diurnal EE and complex II-maximal uncoupled respiration correlated to diurnal and reduced nocturnal EE. Bioenergetics assessment revealed higher optimal thermodynamic efficiencies (ƞ-opt) of mitochondria via complex II after Cvs. Interestingly, transcriptome and methylome were unaffected by Cvs, thus excluding major contributions to supposed metabolic adaptation processes. In summary, the preclinical Cvs model shows that metabolic pressure by Cvs is initially compensated by adaptation of mitochondria function associated with high thermodynamic efficiency and decreased EE to manage the energy balance. This counter-regulation of mitochondrial complex II may be the driving force to longitudinal metabolic changes of muscle physiological adaptation as the basis of stress memory.
    Keywords:  Enriched mitochondria; Metabolic adaptation; Methylome; Mitochondrial thermodynamic efficiency (ƞ-opt); Proteome; Transcriptome
    DOI:  https://doi.org/10.1007/s00018-023-04761-4
  29. Front Cell Dev Biol. 2023 ;11 1146564
      The disturbance in mitochondrial functions and homeostasis are the major features of neuron degenerative conditions, like Parkinson's disease, Amyotrophic Lateral Sclerosis, and Alzheimer's disease, along with protein misfolding. The aberrantly folded proteins are known to link with impaired mitochondrial pathways, further contributing to disease pathogenesis. Despite their central significance, the implications of mitochondrial homeostasis disruption on other organelles and cellular processes remain insufficiently explored. Here, we have reviewed the dysfunction in mitochondrial physiology, under neuron degenerating conditions. The disease misfolded proteins impact quality control mechanisms of mitochondria, such as fission, fusion, mitophagy, and proteasomal clearance, to the detriment of neuron. The adversely affected mitochondrial functional roles, like oxidative phosphorylation, calcium homeostasis, and biomolecule synthesis as well as its axes and contacts with endoplasmic reticulum and lysosomes are also discussed. Mitochondria sense and respond to multiple cytotoxic stress to make cell adapt and survive, though chronic dysfunction leads to cell death. Mitochondria and their proteins can be candidates for biomarkers and therapeutic targets. Investigation of internetworking between mitochondria and neurodegeneration proteins can enhance our holistic understanding of such conditions and help in designing more targeted therapies.
    Keywords:  autophagy; mitochondria; mitostasis; neurodegeneration; oxidative stress; proteasome
    DOI:  https://doi.org/10.3389/fcell.2023.1146564
  30. J Neurosci Res. 2023 Mar 28.
      Stroke represents one of the leading causes of disability and death worldwide. Reactive oxygen species overproduction-induced oxidative stress in mitochondria results in mitochondrial DNA damage, mitochondrial autophagy (mitophagy), inflammation, and apoptosis during the pathologic progression of stroke. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator that induces the transcription of a wide range of antioxidant genes to attenuate mitochondrial oxidative stress. Different antioxidative compounds, including polyphenols, mitochondrial antioxidants, triterpenoids, and others, have been shown to be able to activate Nrf2 and, thus, exert neuroprotective effects on stroke by ameliorating mitochondrial oxidative damage. In this review, we briefly discussed the role of mitochondrial oxidative stress in the pathophysiology of stroke and focused on the protective effects of antioxidative compounds through attenuating mitochondrial oxidative damage by activating Nrf2 in stroke. In conclusion, these antioxidants may represent novel therapeutic strategies against stroke.
    Keywords:  Nrf2; antioxidants; mitochondrial oxidative damage; stroke
    DOI:  https://doi.org/10.1002/jnr.25194
  31. Sci Rep. 2023 Mar 28. 13(1): 5029
      Lysine Nɛ-acylations, such as acetylation or succinylation, are post-translational modifications that regulate protein function. In mitochondria, lysine acylation is predominantly non-enzymatic, and only a specific subset of the proteome is acylated. Coenzyme A (CoA) can act as an acyl group carrier via a thioester bond, but what controls the acylation of mitochondrial lysines remains poorly understood. Using published datasets, here we found that proteins with a CoA-binding site are more likely to be acetylated, succinylated, and glutarylated. Using computational modeling, we show that lysine residues near the CoA-binding pocket are highly acylated compared to those farther away. We hypothesized that acyl-CoA binding enhances acylation of nearby lysine residues. To test this hypothesis, we co-incubated enoyl-CoA hydratase short chain 1 (ECHS1), a CoA-binding mitochondrial protein, with succinyl-CoA and CoA. Using mass spectrometry, we found that succinyl-CoA induced widespread lysine succinylation and that CoA competitively inhibited ECHS1 succinylation. CoA-induced inhibition at a particular lysine site correlated inversely with the distance between that lysine and the CoA-binding pocket. Our study indicated that CoA acts as a competitive inhibitor of ECHS1 succinylation by binding to the CoA-binding pocket. Together, this suggests that proximal acylation at CoA-binding sites is a primary mechanism for lysine acylation in the mitochondria.
    DOI:  https://doi.org/10.1038/s41598-023-31900-5
  32. Science. 2023 Mar 30. eadg6518
      Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, arises from SMN protein insufficiency following SMN1 loss. Approved therapies circumvent endogenous SMN regulation and require repeated dosing or may wane. We describe genome editing of SMN2, an insufficient copy of SMN1 harboring a C6>T mutation, to permanently restore SMN protein levels and rescue SMA phenotypes. We used nucleases or base editors to modify five SMN2 regulatory regions. Base editing converted SMN2 T6>C, restoring SMN protein levels to wild-type. AAV9-mediated base editor delivery in Δ7SMA mice yielded 87% average T6>C conversion, improved motor function, and extended average lifespan, which was enhanced by one-time base editor+nusinersen co-administration (111 versus 17 days untreated). These findings demonstrate the potential of a one-time base editing treatment for SMA.
    DOI:  https://doi.org/10.1126/science.adg6518
  33. J Peripher Nerv Syst. 2023 Mar 25.
      Charcot-Marie-Tooth (CMT) neuropathies are a group of genetically and phenotypically heterogeneous disorders that predominantly affect the peripheral nervous system. Unraveling the genetic and molecular mechanisms, as well as the cellular effects of CMT mutations, has facilitated the development of promising gene therapy approaches. Proposed gene therapy treatments for CMTs include virally or non-virally mediated gene replacement, addition, silencing, modification, and editing of genetic material. For most CMT neuropathies, gene- and disease- and even mutation-specific therapy approaches targeting the neuronal axon or myelinating Schwann cells may be needed, due to the diversity of underlying cellular and molecular-genetic mechanisms. The efficiency of gene therapies to improve the disease phenotype has been tested mostly in vitro and in vivo rodent models that reproduce different molecular and pathological aspects of CMT neuropathies. In the next stage, bigger animal models, in particular non-human primates, provide important insights into the translatability of the proposed administration and dosing, demonstrating scale-up potential and safety. The path toward clinical trials is faced with further challenges but is becoming increasingly feasible owing to the progress and knowledge gained from clinical applications of gene therapies for other neurological disorders, as well as the emergence of sensitive outcome measures and biomarkers in patients with CMT neuropathies.
    Keywords:  Charcot-Marie-Tooth disease; axonal degeneration; gene therapy; inherited neuropathy; mouse models; non human primates
    DOI:  https://doi.org/10.1111/jns.12543
  34. Nat Commun. 2023 Mar 28. 14(1): 1738
      Chromium(III) is extensively used as a supplement for muscle development and the treatment of diabetes mellitus. However, its mode of action, essentiality, and physiological/pharmacological effects have been a subject of scientific debate for over half a century owing to the failure in identifying the molecular targets of Cr(III). Herein, by integrating fluorescence imaging with a proteomic approach, we visualized the Cr(III) proteome being mainly localized in the mitochondria, and subsequently identified and validated eight Cr(III)-binding proteins, which are predominately associated with ATP synthesis. We show that Cr(III) binds to ATP synthase at its beta subunit via the catalytic residues of Thr213/Glu242 and the nucleotide in the active site. Such a binding suppresses ATP synthase activity, leading to the activation of AMPK, improving glucose metabolism, and rescuing mitochondria from hyperglycaemia-induced fragmentation. The mode of action of Cr(III) in cells also holds true in type II diabetic male mice. Through this study, we resolve the long-standing question of how Cr(III) ameliorates hyperglycaemia stress at the molecular level, opening a new horizon for further exploration of the pharmacological effects of Cr(III).
    DOI:  https://doi.org/10.1038/s41467-023-37351-w
  35. J Biol Chem. 2023 Mar 23. pii: S0021-9258(23)00286-7. [Epub ahead of print] 104644
      The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of mammalian cell growth that is dysregulated in a number of human diseases, including metabolic syndromes, aging and cancer. Structural, biochemical and pharmacological studies that have increased our understanding of how mTORC1 executes growth control often relied upon purified mTORC1 protein. However, current immunoaffinity-based purification methods are expensive, inefficient, and do not necessarily isolate endogenous mTORC1, hampering their overall utility in research. Here we present a simple tool to isolate endogenous mTORC1 from various cellular sources. By recombinantly expressing and isolating mTORC1-binding Rag GTPases from E. Coli and using them as affinity probes, we demonstrate that mTORC1 can be isolated from mouse, bovine and human sources. Our results indicate that mTORC1 isolated by this relatively inexpensive method is catalytically active and amenable to scaling. Collectively, this tool may be utilized to isolate mTORC1 from various cellular sources, organs, and disease contexts, aiding mTORC1-related research.
    DOI:  https://doi.org/10.1016/j.jbc.2023.104644
  36. Methods Mol Biol. 2023 ;2631 393-417
      The generation of genetically engineered (GE) pigs for disease modeling and xenotransplantation has been massively facilitated by the discovery of the CRISPR/Cas9 system. For livestock, genome editing is a powerful tool when used in combination with either somatic cell nuclear transfer (SCNT) or microinjection (MI) into fertilized oocytes. To generate either knockout or knock-in animals using SCNT, genome editing is carried out in vitro. This has the advantage that fully characterized cells are being employed to generate cloned pigs, predetermining their genetic makeups. However, this technique is labor-intensive and, hence, SCNT is better suited for more challenging projects such as the generation of multi-knockout- and knock-in pigs. Alternatively, CRISPR/Cas9 is introduced directly into fertilized zygotes via microinjection to produce knockout pigs more rapidly. Finally, the embryos are each transferred into recipient sows to deliver GE piglets.Both techniques, SCNT and MI, are technically challenging and therefore require skilled expertise, especially when applied for porcine embryos. Here, we present a detailed laboratory protocol for the generation of knockout and knock-in porcine somatic donor cells for SCNT and knockout pigs via microinjection. We describe the state-of-the-art method for isolation, cultivation, and manipulation of porcine somatic cells, which can then be used for SCNT. Moreover, we describe the isolation and maturation of porcine oocytes, their manipulation by microinjection, and the embryo transfer into surrogate sows.
    Keywords:  CRISPR/Cas9; Embryo transfer; Genome editing; Knock-in; Knockout; Microinjection; Pig; Porcine somatic cells; Somatic cell nuclear transfer; Zygote
    DOI:  https://doi.org/10.1007/978-1-0716-2990-1_19