bims-mitlys Biomed News
on Mitochondria and Lysosomes
Issue of 2021‒10‒17
five papers selected by
Nicoletta Plotegher
University of Padova

  1. Mol Neurobiol. 2021 Oct 13.
      Intracellular quality control regulated by autophagy process is important for maintenance of cellular homeostasis. Deregulation of autophagy and more specifically mitophagy leads to accumulation of the misfolded proteins and damaged mitochondria that in turn leads to the cell loss. Alteration of autophagy and mitophagy has shown to be involved in the number of disorders including neurodegenerative diseases. Autophagy and mitophagy could be activated by short-time acidification of the cytosol; however, most of the compounds which can induce it are toxic. Here, we tested several organic compounds which are involved in cellular metabolism on their ability to change intracellular pH and induce mitophagy/autophagy. We have found that lactate and pyruvate are able to reduce intracellular pH in non-toxic concentrations. Short-term (2 h) and long-term (24 h) incubation of the cells with lactate and pyruvateinduced mitophagy and autophagy. Incubation of the SH-SY5Y cells or primary neurons and astrocytes with lactate or pyruvate also activated mitophagy and autophagy after MPP + treatment that led to recovery of mitochondrial function and protection of these cells against apoptotic and necrotic death. Thus, pyruvate- or lactate-induced acidification of cytosol activates cell protective mitophagy and autophagy.
    Keywords:  Autophagy; Intracellular pH; MPP + ; Mitophagy; Parkinson’s model; Pyruvate
  2. J Biochem. 2021 Oct 11. 170(2): 175-182
      Mitophagy is an evolutionarily conserved catabolic process that selectively degrades damaged or superfluous mitochondria via autophagy. Although mitophagy is considered to be critical to maintain cellular homeostasis, detailed mechanisms of mitophagy remain largely unknown. In the budding yeast Saccharomyces cerevisiae, the protein N-terminal acetyltransferase A (NatA) complex is important for transcriptional induction of the pro-mitophagic factor Atg32 and efficient degradation of mitochondria under prolonged respiratory conditions. Overexpression of Atg32 only partially recovers mitophagy in cells lacking NatA, raising the possibility that NatA may contribute to mitophagy via additional mechanisms. Here, we demonstrate that Atg32 phosphorylation, which is required for facilitating mitophagy, is altered in respiring NatA-deficient cells. Hyperphosphorylation of Atg32 partially rescues mitophagy in cells lacking NatA. Notably, mitophagy is mostly restored in NatA-null cells overexpressing hyperphosphorylated Atg32. Loss of NatA does not impair the interaction of phosphorylated Atg32 with Atg11, a scaffold protein critical for selective autophagy, suggesting that NatA-dependent Atg32 phosphorylation promotes mitophagy independently of Atg32-Atg11 interactions. We propose that NatA-mediated protein N-terminal acetylation acts in Atg32 expression and phosphorylation to drive mitophagy.
    Keywords:  Atg32; NatA; Ppg1; autophagy; mitochondria; yeast
  3. Nat Commun. 2021 Oct 13. 12(1): 5989
      Liquid-liquid phase separation promotes the formation of membraneless condensates that mediate diverse cellular functions, including autophagy of misfolded proteins. However, how phase separation participates in autophagy of dysfunctional mitochondria (mitophagy) remains obscure. We previously discovered that nuclear receptor Nur77 (also called TR3, NGFI-B, or NR4A1) translocates from the nucleus to mitochondria to mediate celastrol-induced mitophagy through interaction with p62/SQSTM1. Here, we show that the ubiquitinated mitochondrial Nur77 forms membraneless condensates capable of sequestrating damaged mitochondria by interacting with the UBA domain of p62/SQSTM1. However, tethering clustered mitochondria to the autophagy machinery requires an additional interaction mediated by the N-terminal intrinsically disordered region (IDR) of Nur77 and the N-terminal PB1 domain of p62/SQSTM1, which confers Nur77-p62/SQSTM1 condensates with the magnitude and liquidity. Our results demonstrate how composite multivalent interaction between Nur77 and p62/SQSTM1 coordinates to sequester damaged mitochondria and to connect targeted cargo mitochondria for autophagy, providing mechanistic insight into mitophagy.
  4. Front Cell Dev Biol. 2021 ;9 737304
      Mitophagy specifically recognizes and removes damaged or superfluous mitochondria to maintain mitochondrial homeostasis and proper neuronal function. Defective mitophagy and the resulting accumulation of damaged mitochondria occur in several neurodegenerative diseases. Previously, we showed mitochondrial dysfunction in astrocytes with POLG mutations, and here, we examined how POLG mutations affect mitophagy in astrocytes and how this can be ameliorated pharmacologically. Using induced pluripotent stem cell (iPSC)-derived astrocytes carrying POLG mutations, we found downregulation of mitophagy/autophagy-related genes using RNA sequencing-based KEGG metabolic pathway analysis. We confirmed a deficit in mitochondrial autophagosome formation under exogenous stress conditions and downregulation of the mitophagy receptor p62, reduced lipidation of LC3B-II, and decreased expression of lysosome protein lysosomal-associated membrane protein 2A (LAMP2A). These changes were regulated by the PINK1/Parkin pathway and AKT/mTOR/AMPK/ULK1 signaling pathways. Importantly, we found that double treatment with nicotinamide riboside (NR) and metformin rescued mitophagy defects and mitochondrial dysfunction in POLG-mutant astrocytes. Our findings reveal that impaired mitophagy is involved in the observed mitochondrial dysfunction caused by POLG mutations in astrocytes, potentially contributing to the phenotype in POLG-related diseases. This study also demonstrates the therapeutic potential of NR and metformin in these incurable mitochondrial diseases.
    Keywords:  IPSC (induced pluripotent stem cells); POLG; astrocytes; metformin; mitochondria; mitophagy; nicotinamide riboside (NR)
  5. Cell Death Dis. 2021 Oct 09. 12(10): 925
      Renal tubulointerstitial fibrosis was a crucial pathological feature of diabetic nephropathy (DN), and renal tubular injury might associate with abnormal mitophagy. In this study, we investigated the effects and molecular mechanisms of AMPK agonist metformin on mitophagy and cellular injury in renal tubular cell under diabetic condition. The high fat diet (HFD) and streptozotocin (STZ)-induced type 2 diabetic mice model and HK-2 cells were used in this study. Metformin was administered in the drinking water (200 mg/kg/d) for 24 weeks. Renal tubulointerstitial lesions, oxidative stress and some indicators of mitophagy (e.g., LC3II, Pink1, and Parkin) were examined both in renal tissue and HK-2 cells. Additionally, compound C (an AMPK inhibitor) and Pink1 siRNA were applied to explore the molecular regulation mechanism of metformin on mitophagy. We found that the expression of p-AMPK, Pink1, Parkin, LC3II, and Atg5 in renal tissue of diabetic mice was decreased obviously. Metformin reduced the levels of serum creatinine, urine protein, and attenuated renal oxidative injury and fibrosis in HFD/STZ induced diabetic mice. In addition, Metformin reversed mitophagy dysfunction and the over-expression of NLRP3. In vitro pretreatment of HK-2 cells with AMPK inhibitor compound C or Pink1 siRNA negated the beneficial effects of metformin. Furthermore, we noted that metformin activated p-AMPK and promoted the translocation of Pink1 from the cytoplasm to mitochondria, then promoted the occurrence of mitophagy in HK-2 cells under HG/HFA ambience. Our results suggested for the first time that AMPK agonist metformin ameliorated renal oxidative stress and tubulointerstitial fibrosis in HFD/STZ-induced diabetic mice via activating mitophagy through a p-AMPK-Pink1-Parkin pathway.