bims-mitlys Biomed News
on Mitochondria and Lysosomes
Issue of 2021‒04‒11
eight papers selected by
Nicoletta Plotegher
University of Padua

  1. J Neuroimmune Pharmacol. 2021 Apr 08.
      The HIV-1 coat protein gp120 continues to be implicated in the pathogenesis of HIV-1 associated neurocognitive disorder (HAND); a condition known to affect ~50% of people living with HIV-1 (PLWH). Autopsy brain tissues of HAND individuals display morphological changes to mitochondria and endolysosomes, and HIV-1 gp120 causes mitochondrial dysfunction including increased levels of reactive oxygen species (ROS) and de-acidification of endolysosomes. Ferrous iron is linked directly to ROS production, ferrous iron is contained in and released from endolysosomes, and PLWH have elevated iron and ROS levels. Based on those findings, we tested the hypothesis that HIV-1 gp120-induced endolysosome de-acidification and subsequent iron efflux from endolysosomes is responsible for increased levels of ROS. In U87MG glioblastoma cells, HIV-1 gp120 de-acidified endolysosomes, reduced endolysosome iron levels, increased levels of cytosolic and mitochondrial iron, and increased levels of cytosolic and mitochondrial ROS. These effects were all attenuated significantly by the endolysosome-specific iron chelator deferoxamine, by inhibitors of endolysosome-resident two-pore channels and divalent metal transporter-1 (DMT-1), and by inhibitors of mitochondria-resident DMT-1 and mitochondrial permeability transition pores. These results suggest that oxidative stress commonly observed with HIV-1 gp120 is downstream of its ability to de-acidify endolysosomes, to increase the release of iron from endolysosomes, and to increase the uptake of iron into mitochondria. Thus, endolysosomes might represent early and upstream targets for therapeutic strategies against HAND.
    Keywords:  Endosomes; HIV-1 gp120; Iron; Lysosomal stress response; Lysosomes; Mitochondria; Reactive oxygen species
  2. Nat Commun. 2021 04 08. 12(1): 2107
      Vacuolar H+-ATPases (V-ATPases) transport protons across cellular membranes to acidify various organelles. ATP6V0A1 encodes the a1-subunit of the V0 domain of V-ATPases, which is strongly expressed in neurons. However, its role in brain development is unknown. Here we report four individuals with developmental and epileptic encephalopathy with ATP6V0A1 variants: two individuals with a de novo missense variant (R741Q) and the other two individuals with biallelic variants comprising one almost complete loss-of-function variant and one missense variant (A512P and N534D). Lysosomal acidification is significantly impaired in cell lines expressing three missense ATP6V0A1 mutants. Homozygous mutant mice harboring human R741Q (Atp6v0a1R741Q) and A512P (Atp6v0a1A512P) variants show embryonic lethality and early postnatal mortality, respectively, suggesting that R741Q affects V-ATPase function more severely. Lysosomal dysfunction resulting in cell death, accumulated autophagosomes and lysosomes, reduced mTORC1 signaling and synaptic connectivity, and lowered neurotransmitter contents of synaptic vesicles are observed in the brains of Atp6v0a1A512P/A512P mice. These findings demonstrate the essential roles of ATP6V0A1/Atp6v0a1 in neuronal development in terms of integrity and connectivity of neurons in both humans and mice.
  3. Front Cell Dev Biol. 2021 ;9 640094
      Mitophagy and zymophagy are selective autophagy pathways early induced in acute pancreatitis that may explain the mild, auto limited, and more frequent clinical presentation of this disease. Adequate mitochondrial bioenergetics is necessary for cellular restoration mechanisms that are triggered during the mild disease. However, mitochondria and zymogen contents are direct targets of damage in acute pancreatitis. Cellular survival depends on the recovering possibility of mitochondrial function and efficient clearance of damaged mitochondria. This work aimed to analyze mitochondrial dynamics and function during selective autophagy in pancreatic acinar cells during mild experimental pancreatitis in rats. Also, using a cell model under the hyperstimulation of the G-coupled receptor for CCK (CCK-R), we aimed to investigate the mechanisms involved in these processes in the context of zymophagy. We found that during acute pancreatitis, mitochondrial O2 consumption and ATP production significantly decreased early after induction of acute pancreatitis, with a consequent decrease in the ATP/O ratio. Mitochondrial dysfunction was accompanied by changes in mitochondrial dynamics evidenced by optic atrophy 1 (OPA-1) and dynamin-related protein 1 (DRP-1) differential expression and ultrastructural features of mitochondrial fission, mitochondrial elongation, and mitophagy during the acute phase of experimental mild pancreatitis in rats. Mitophagy was also evaluated by confocal assay after transfection with the pMITO-RFP-GFP plasmid that specifically labels autophagic degradation of mitochondria and the expression and redistribution of the ubiquitin ligase Parkin1. Moreover, we report for the first time that vacuole membrane protein-1 (VMP1) is involved and required in the mitophagy process during acute pancreatitis, observable not only by repositioning around specific mitochondrial populations, but also by detection of mitochondria in autophagosomes specifically isolated with anti-VMP1 antibodies as well. Also, VMP1 downregulation avoided mitochondrial degradation confirming that VMP1 expression is required for mitophagy during acute pancreatitis. In conclusion, we identified a novel DRP1-Parkin1-VMP1 selective autophagy pathway, which mediates the selective degradation of damaged mitochondria by mitophagy in acute pancreatitis. The understanding of the molecular mechanisms involved to restore mitochondrial function, such as mitochondrial dynamics and mitophagy, could be relevant in the development of novel therapeutic strategies in acute pancreatitis.
    Keywords:  DRP1; Parkin1; VMP1; autophagy; mitochondrial dynamics; mitochondrial function; mitophagy; pancreatitis
  4. Dev Cell. 2021 Apr 05. pii: S1534-5807(21)00209-4. [Epub ahead of print]56(7): 878-880
      To survive, cells sense their surroundings and adapt to enable homeostasis. Studies dissecting this process reveal organizational principles, including quality-control pathways, changes to organelle shape, and inter-organelle communication, that facilitate metabolic or developmental remodeling. In this issue, several reviews discuss these organelle homeostasis principles and how they are altered in disease.
  5. Front Cell Dev Biol. 2021 ;9 630248
      Mitochondrial function is multifaceted in response to cellular energy homeostasis and metabolism, with the generation of adenosine triphosphate (ATP) through the oxidative phosphorylation (OXPHOS) being one of their main functions. Selective elimination of mitochondria by mitophagy, in conjunction with mitochondrial biogenesis, regulates mitochondrial function that is required to meet metabolic demand or stress response. Growth hormone (GH) binds to the GH receptor (GHR) and induces the JAK2/STAT5 pathway to activate the synthesis of insulin-like growth factor 1 (IGF1). The GH-GHR-IGF1 axis has been recognized to play significant roles in somatic growth, including cell proliferation, differentiation, division, and survival. In this review, we describe recent discoveries providing evidence for the contribution of the GH-GHR-IGF1 axis on mitochondrial biogenesis, mitophagy (or autophagy), and mitochondrial function under multiple physiological conditions. This may further improve our understanding of the effects of the GH-GHR-IGF1 axis on mitochondrial function, which may be controlled by the delicate balance between mitochondrial biogenesis and mitophagy. Specifically, we also highlight the challenges that remain in this field.
    Keywords:  growth hormone; growth hormone receptor; insulin-like growth factor 1; mitochondrial biogenesis; mitochondrial function; mitophagy
  6. Sci Adv. 2021 Apr;pii: eabg4544. [Epub ahead of print]7(15):
      The serine/threonine kinase ULK1 mediates autophagy initiation in response to various cellular stresses, and genetic deletion of ULK1 leads to accumulation of damaged mitochondria. Here we identify Parkin, the core ubiquitin ligase in mitophagy, and PARK2 gene product mutated in familial Parkinson's disease, as a ULK1 substrate. Recent studies uncovered a nine residue ("ACT") domain important for Parkin activation, and we demonstrate that AMPK-dependent ULK1 rapidly phosphorylates conserved serine108 in the ACT domain in response to mitochondrial stress. Phosphorylation of Parkin Ser108 occurs maximally within five minutes of mitochondrial damage, unlike activation of PINK1 and TBK1, which is observed thirty to sixty minutes later. Mutation of the ULK1 phosphorylation sites in Parkin, genetic AMPK or ULK1 depletion, or pharmacologic ULK1 inhibition, all lead to delays in Parkin activation and defects in assays of Parkin function and downstream mitophagy events. These findings reveal an unexpected first step in the mitophagy cascade.
  7. Semin Cancer Biol. 2021 Apr 06. pii: S1044-579X(21)00105-X. [Epub ahead of print]
      Arsenic exposure in contaminated drinking water is a global health issue, as more than 200 million people are affected globally. Arsenic has been known to cause skin, liver, lung, bladder and prostate cancers. Accordingly, it has been categorized as a group I human carcinogen by the International Agency for Research on Cancer (IARC). Various natural and anthropogenic activities lead to the release of arsenic in the environment, contaminating air, water and food sources. Traditionally, genetic mutations have been the center of cancer research. However, emerging studies have now focused on the importance of epigenetics, metabolism and endoplasmic reticulum (ER) stress in cancer. Arsenic is highly capable of inducing stress in the cells via the generation of free radicals causing oxidative stress, epigenetic and genetic alterations, mitochondrial dysfunction, activation of intracellular signaling pathways, and impairment of autophagy and DNA repair systems. The cancer cells are able to utilize the unfolded protein response (UPR) to overcome these internal stresses in various stages of arsenic-induced carcinogenesis, from cancer growth to immune responses. The UPR is an evolutionarily conserved stress response that has both survival and apoptotic outcomes. PERK, IRE1α and ATF6α are the three ER stress sensors that are activated to maintain cellular proteostasis, which can also promote apoptosis on prolonged ER stress. The dual nature of UPR in different cancer types and stages is a challenge for researchers. We must investigate the role and the connections among ER stress-associated UPR, mitochondrial dysfunction and autophagy in arsenic malignancies to identify key targets for cancer prevention and therapeutics.
    Keywords:  Arsenic; Autophagy; Cancer stem cells; ER stress; UPR
  8. Toxicology. 2021 Apr 03. pii: S0300-483X(21)00093-7. [Epub ahead of print] 152770
      Extensive health studies had declared that exposure to particulate matter (PM) was closely associated with neurodegenerative diseases, i.e. Parkinson's disease (PD). Our aim was to clarify the potential molecular mechanism by which PM2.5 aggravated PD symptoms using in vitro and in vivo PD models. In this study, PC12 cells treated with rotenone (1 μM) and/or PM2.5 (50 μg/mL) for 4 days was used as the in vitro model. C57BL/6 J mice expored to PM2.5 (inhalation, 2.5 mg/kg) and rotenone (intraperitoneal injection, 30 mg/kg) for 28 days was used as the in vivo model. Rapamycin was used to promote the level of autophagy. The results showed that after exposure to PM2.5, the apoptosis of rotenone-treated PC12 cells were increased by increasing the ROS levels and decreasing the levels of mitochondrial membrane potential. In rotenone-treated PC12 cells, exposure to PM2.5 could decrease the ratio of LC3II/LC3I and the expression levels of Atg5, and increase the expression level of mTOR, suggesting that PM2.5 exposure inhibited autophagy. Furthermore, the mitophagy related genes, including PINK1 and Parkin, were decreased. At the same time, inhalation of PM2.5 could relieve the behavioral abnormalities of PD mouse induced by rotenone. The levels of inflammatory factors (TNF-α, IL-1β, and IL-6) were significantly increased. Inhalation of PM2.5 could induce the oxidative stress and apoptosis in the substantia nigra of PD mouse, as well as the key markers of autophagy and mitophagy were also changed, which was consistent with the cell model. Besides, rapamycin would relieve the damaging effect of PM2.5 by triggering autophagy and mitophagy in rotenone-induced PD models. These results indicated that exposure to PM2.5 aggravated the behavioral abnormalities of PD symptoms through increasing oxidative stress, decreasing autophagy and mitophagy, and inducing mitochondria-mediated neuronal apoptosis. These findings not only revealed the effects and mechanism of PM2.5 exposure on PD, but also provided fundamental data that can be exploited to develop environmental safety policies.
    Keywords:  Apoptosis; Autophagy; Mitophagy; Oxidative stress; PM2.5; Parkinson’s disease