bims-mitdyn Biomed News
on Mitochondrial dynamics: mechanisms
Issue of 2021‒04‒18
eight papers selected by
Edmond Chan
Queen’s University, School of Medicine

  1. J Cell Biol. 2021 Jun 07. pii: e202006043. [Epub ahead of print]220(6):
      Here, we report that acute reduction in mitochondrial translation fidelity (MTF) causes ubiquitination of the inner mitochondrial membrane (IMM) proteins, including TRAP1 and CPOX, which occurs selectively in mitochondria with a severed outer mitochondrial membrane (OMM). Ubiquitinated IMM recruits the autophagy machinery. Inhibiting autophagy leads to increased accumulation of mitochondria with severed OMM and ubiquitinated IMM. This process occurs downstream of the accumulation of cytochrome c/CPOX in a subset of mitochondria heterogeneously distributed throughout the cell ("mosaic distribution"). Formation of mosaic mitochondria, OMM severing, and IMM ubiquitination require active mitochondrial translation and mitochondrial fission, but not the proapoptotic proteins Bax and Bak. In contrast, in Parkin-overexpressing cells, MTF reduction does not lead to the severing of the OMM or IMM ubiquitination, but it does induce Drp1-independent ubiquitination of the OMM. Furthermore, high-cytochrome c/CPOX mitochondria are preferentially targeted by Parkin, indicating that in the context of reduced MTF, they are mitophagy intermediates regardless of Parkin expression. In sum, Parkin-deficient cells adapt to mitochondrial proteotoxicity through a Drp1-mediated mechanism that involves the severing of the OMM and autophagy targeting ubiquitinated IMM proteins.
  2. Cell Rep. 2021 Apr 13. pii: S2211-1247(21)00261-8. [Epub ahead of print]35(2): 108947
      During mitochondrial fission, key molecular and cellular factors assemble on the outer mitochondrial membrane, where they coordinate to generate constriction. Constriction sites can eventually divide or reverse upon disassembly of the machinery. However, a role for membrane tension in mitochondrial fission, although speculated, has remained undefined. We capture the dynamics of constricting mitochondria in mammalian cells using live-cell structured illumination microscopy (SIM). By analyzing the diameters of tubules that emerge from mitochondria and implementing a fluorescence lifetime-based mitochondrial membrane tension sensor, we discover that mitochondria are indeed under tension. Under perturbations that reduce mitochondrial tension, constrictions initiate at the same rate, but are less likely to divide. We propose a model based on our estimates of mitochondrial membrane tension and bending energy in living cells which accounts for the observed probability distribution for mitochondrial constrictions to divide.
    Keywords:  fluorescence lifetime; fluorescent tension sensor; membrane tension; microtubules; mitochondrial division; mitochondrial dynamics; super-resolution microscopy
  3. Mol Cell. 2021 Apr 10. pii: S1097-2765(21)00143-X. [Epub ahead of print]
      Oxidative phosphorylation (OXPHOS) and glycolysis are the two major pathways for ATP production. The reliance on each varies across tissues and cell states, and can influence susceptibility to disease. At present, the full set of molecular mechanisms governing the relative expression and balance of these two pathways is unknown. Here, we focus on genes whose loss leads to an increase in OXPHOS activity. Unexpectedly, this class of genes is enriched for components of the pre-mRNA splicing machinery, in particular for subunits of the U1 snRNP. Among them, we show that LUC7L2 represses OXPHOS and promotes glycolysis by multiple mechanisms, including (1) splicing of the glycolytic enzyme PFKM to suppress glycogen synthesis, (2) splicing of the cystine/glutamate antiporter SLC7A11 (xCT) to suppress glutamate oxidation, and (3) secondary repression of mitochondrial respiratory supercomplex formation. Our results connect LUC7L2 expression and, more generally, the U1 snRNP to cellular energy metabolism.
    Keywords:  7q-; LUC7; MDS; Tarui disease; cancer; ferroptosis; myelodysplastic syndrome; phosphofructokinase; spliceosome; system X(c)(−)
  4. Sci Signal. 2021 Apr 13. pii: eabc7931. [Epub ahead of print]14(678):
      The RIG-I-like receptor (RLR) signaling pathway is pivotal for innate immunity against invading viruses, and dysregulation of this molecular cascade has been linked to various diseases. Here, we identified dimethylarginine dimethylaminohydrolase 2 (DDAH2) as a potent regulator of the RLR-mediated antiviral response in human and mouse. Overexpression of DDAH2 attenuated RLR signaling, whereas loss of DDAH2 function enhanced RLR signaling and suppressed viral replication ex vivo and in mice. Upon viral infection, DDAH2 relocated to mitochondria, where it induced the production of nitric oxide (NO) and the activation of dynamin-related protein 1 (Drp1), which promoted mitochondrial fission and blocked the activation of innate immune responses mediated by mitochondrial antiviral signaling (MAVS). TANK-binding kinase 1 (TBK1), a kinase downstream of MAVS, inhibited DDAH2 by phosphorylating DDAH2 at multiple sites. Our study thus identifies a reciprocal inhibitory loop between the DDAH2-NO cascade and the RLR signaling pathway that fine-tunes the antiviral immune response.
  5. PLoS Pathog. 2021 Apr 15. 17(4): e1009506
      Regulation of mitochondrial structure and function is a central component of infection with viruses, including human cytomegalovirus (HCMV), as a virus means to modulate cellular metabolism and immune responses. Here, we link the activity of the mitochondrial deacetylase SIRT3 and global mitochondrial acetylation status to host antiviral responses via regulation of both mitochondrial structural integrity and metabolism during HCMV infection. We establish that SIRT3 deacetylase activity is necessary for suppressing virus production, and that SIRT3 maintains mitochondrial pH and membrane potential during infection. By defining the temporal dynamics of SIRT3-substrate interactions during infection, and overlaying acetylome and proteome information, we find altered SIRT3 associations with the mitochondrial fusion factor OPA1 and acetyl-CoA acyltransferase 2 (ACAA2), concomitant with changes in their acetylation levels. Using mutagenesis, microscopy, and virology assays, we determine OPA1 regulates mitochondrial morphology of infected cells and inhibits HCMV production. OPA1 acetylation status modulates these functions, and we establish K834 as a site regulated by SIRT3. Control of SIRT3 protein levels or enzymatic activity is sufficient for regulating mitochondrial filamentous structure. Lastly, we establish a virus restriction function for ACAA2, an enzyme involved in fatty acid beta-oxidation. Altogether, we highlight SIRT3 activity as a regulatory hub for mitochondrial acetylation and morphology during HCMV infection and point to global acetylation as a reflection of mitochondrial health.
  6. Nat Commun. 2021 Apr 16. 12(1): 2304
      Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
  7. J Biol Chem. 2021 Apr 14. pii: S0021-9258(21)00429-4. [Epub ahead of print] 100643
      Coenzyme Q (CoQ), a redox-active lipid essential for oxidative phosphorylation, is synthesized by virtually all cells, but how eukaryotes make the universal CoQ head group precursor 4-hydroxybenzoate (4-HB) from tyrosine is unknown. The first and last steps of this pathway have been defined in Saccharomyces cerevisiae, but the intermediates and enzymes involved in converting 4-hydroxyphenylpyruvate (4-HPP) to 4-hydroxybenzaldehyde (4-HBz) have not been described. Here, we interrogate this pathway with genetic screens, targeted LC-MS, and chemical genetics. We identify three redundant aminotransferases (Bna3, Bat2, and Aat2) that support CoQ biosynthesis in the absence of the established pathway tyrosine aminotransferases, Aro8 and Aro9. We use isotope labeling to identify bona fide tyrosine catabolites, including 4-hydroxyphenylacetate (4-HPA) and 4-hydroxyphenyllactate (4-HPL). Additionally, we find multiple compounds that rescue this pathway when exogenously supplemented, most notably 4-hydroxyphenylacetaldehyde (4-HPAA) and 4-hydroxymandelate (4-HMA). Finally, we show that the Ehrlich pathway decarboxylase Aro10 is dispensable for 4-HB production. These results define new features of 4-HB synthesis in yeast, demonstrate the redundant nature of this pathway, and provide a foundation for further study.
    Keywords:  4-hydroxybenzoate; Saccharomyces cerevisiae; biosynthesis; coenzyme Q; mass spectrometry (MS); metabolism; ubiquinone
  8. Cell. 2021 Apr 13. pii: S0092-8674(21)00366-4. [Epub ahead of print]
      Cellular versatility depends on accurate trafficking of diverse proteins to their organellar destinations. For the secretory pathway (followed by approximately 30% of all proteins), the physical nature of the vessel conducting the first portage (endoplasmic reticulum [ER] to Golgi apparatus) is unclear. We provide a dynamic 3D view of early secretory compartments in mammalian cells with isotropic resolution and precise protein localization using whole-cell, focused ion beam scanning electron microscopy with cryo-structured illumination microscopy and live-cell synchronized cargo release approaches. Rather than vesicles alone, the ER spawns an elaborate, interwoven tubular network of contiguous lipid bilayers (ER exit site) for protein export. This receptacle is capable of extending microns along microtubules while still connected to the ER by a thin neck. COPII localizes to this neck region and dynamically regulates cargo entry from the ER, while COPI acts more distally, escorting the detached, accelerating tubular entity on its way to joining the Golgi apparatus through microtubule-directed movement.
    Keywords:  COPI; COPII; cholesterol; correlative light and electron microscopy; endoplasmic reticulum exit sites; endoplasmic reticulum to Golgi transport intermediate; focused ion beam-scanning electron microscopy; membrane trafficking; retention using selective hook system; secretory pathway