bims-mitdyn Biomed News
on Mitochondrial dynamics: mechanisms
Issue of 2020‒12‒27
six papers selected by
Edmond Chan
Queen’s University, School of Medicine

  1. Mol Cell. 2020 Dec 10. pii: S1097-2765(20)30836-4. [Epub ahead of print]
      Mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and proliferation by sensing fluctuations in environmental cues such as nutrients, growth factors, and energy levels. The Rag GTPases (Rags) serve as a critical module that signals amino acid (AA) availability to modulate mTORC1 localization and activity. Recent studies have demonstrated how AAs regulate mTORC1 activity through Rags. Here, we uncover an unconventional pathway that activates mTORC1 in response to variations in threonine (Thr) levels via mitochondrial threonyl-tRNA synthetase TARS2. TARS2 interacts with inactive Rags, particularly GTP-RagC, leading to increased GTP loading of RagA. mTORC1 activity in cells lacking TARS2 is resistant to Thr repletion, showing that TARS2 is necessary for Thr-dependent mTORC1 activation. The requirement of TARS2, but not cytoplasmic threonyl-tRNA synthetase TARS, for this effect demonstrates an additional layer of complexity in the regulation of mTORC1 activity.
    Keywords:  Rag GTPases; TARS2; amino acid; aminoacyl-tRNA synthetase; mTORC1; threonine
  2. Mol Cell. 2020 Dec 15. pii: S1097-2765(20)30827-3. [Epub ahead of print]
      In tumors, nutrient availability and metabolism are known to be important modulators of growth signaling. However, it remains elusive whether cancer cells that are growing out in the metastatic niche rely on the same nutrients and metabolic pathways to activate growth signaling as cancer cells within the primary tumor. We discovered that breast-cancer-derived lung metastases, but not the corresponding primary breast tumors, use the serine biosynthesis pathway to support mTORC1 growth signaling. Mechanistically, pyruvate uptake through Mct2 supported mTORC1 signaling by fueling serine biosynthesis-derived α-ketoglutarate production in breast-cancer-derived lung metastases. Consequently, expression of the serine biosynthesis enzyme PHGDH was required for sensitivity to the mTORC1 inhibitor rapamycin in breast-cancer-derived lung tumors, but not in primary breast tumors. In summary, we provide in vivo evidence that the metabolic and nutrient requirements to activate growth signaling differ between the lung metastatic niche and the primary breast cancer site.
    Keywords:  MCT2; PHGDH; breast cancer; lung environment; mTORC1; metastasis formation; pyruvate; serine biosynthesis; α-ketoglutarate
  3. Redox Biol. 2020 Nov 29. pii: S2213-2317(20)31023-5. [Epub ahead of print]38 101818
      Mitochondria are strategically trafficked throughout the cell by the action of microtubule motors, the actin cytoskeleton and adapter proteins. The intracellular positioning of mitochondria supports subcellular levels of ATP, Ca2+ and reactive oxygen species (ROS, i.e. hydrogen peroxide, H2O2). Previous work from our group showed that deletion of the mitochondrial adapter protein Miro1 leads to perinuclear clustering of mitochondria, leaving the cell periphery devoid of mitochondria which compromises peripheral energy status. Herein, we report that deletion of Miro1 significantly restricts subcellular H2O2 levels to the perinuclear space which directly affects intracellular responses to elevated mitochondrial ROS. Using the genetically encoded H2O2-responsive fluorescent biosensor HyPer7, we show that the highest levels of subcellular H2O2 map to sites of increased mitochondrial density. Deletion of Miro1 or disruption of microtubule dynamics with Taxol significantly reduces peripheral H2O2 levels. Following inhibition of mitochondrial complex 1 with rotenone we observe elevated spikes of H2O2 in the cell periphery and complementary oxidation of mitochondrial peroxiredoxin 3 (PRX3) and cytosolic peroxiredoxin 2 (PRX2). Conversely, in cells lacking Miro1, rotenone did not increase peripheral H2O2 or PRX2 oxidation but rather lead to increased nuclear H2O2 and an elevated DNA-damage response. Lastly, local levels of HyPer7 oxidation correlate with the size and abundance of focal adhesions (FAs) in MEFs and cells lacking Miro1 have significantly smaller focal adhesions and reduced phosphorylation levels of vinculin and p130Cas compared to Miro1+/+ MEFs. Together, we present evidence that the intracellular distribution of mitochondria influences subcellular H2O2 levels and local cellular responses dependent on mitochondrial ROS.
    Keywords:  Cell migration; Hydrogen peroxide; Miro1; Mitochondrial trafficking; Reactive oxygen species
  4. Autophagy. 2020 Dec 19. 1-16
      The pathogenetic mechanism of contrast-induced acute kidney injury (CI-AKI), which is the third most common cause of hospital-acquired AKI, has not been elucidated. Previously, we demonstrated that renal injury and cell apoptosis were attenuated in nlrp3 knockout CI-AKI mice. Here, we investigated the mechanism underlying NLRP3 inhibition-mediated attenuation of apoptosis in CI-AKI. The RNA sequencing analysis of renal cortex revealed that the nlrp3 or casp1 knockout CI-AKI mice exhibited upregulated cellular response to hypoxia, mitochondrial oxidation, and autophagy when compared with the wild-type (WT) CI-AKI mice, which indicated that NLRP3 inflammasome inhibition resulted in the upregulation of hypoxia signaling pathway and mitophagy. The nlrp3 or casp1 knockout CI-AKI mice and iohexol-treated HK-2 cells with MCC950 pretreatment exhibited upregulated levels of HIF1A, BECN1, BNIP3, and LC3B-II, as well as enhanced colocalization of LC3B with BNIP3 and mitochondria, and colocalization of mitochondria with lysosomes. Additionally, roxadustat, a HIF prolyl-hydroxylase inhibitor, protected the renal tubular epithelial cells against iohexol-induced injury through stabilization of HIF1A and activation of downstream BNIP3-mediated mitophagy in vivo and in vitro. Moreover, BNIP3 deficiency markedly decreased mitophagy, and also significantly exacerbated apoptosis and renal injury. This suggested the protective function of BNIP3-mediated mitophagy in CI-AKI. This study elucidated a novel mechanism in which NLRP3 inflammasome inhibition attenuated apoptosis and upregulated HIF1A and BNIP3-mediated mitophagy in CI-AKI. Additionally, this study demonstrated the potential applications of MCC950 and roxadustat in clinical CI-AKI treatment. Abbreviations: BNIP3: BCL2/adenovirus E1B interacting protein 3; Ctrl: control; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; EGLN2/PHD1: egl-9 family hypoxia-inducible factor 2; HIF1A: hypoxia inducible factor 1, alpha subunit; H-E: hematoxylin and eosin; IL18: interleukin 18; IL1B: interleukin 1 beta; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mRNA: messenger RNA; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; NLRP3: NLR family, pyrin domain containing 3; NS: normal saline; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced putative kinase 1; RNA: ribonucleic acid; SEM: standard error of the mean; siRNA: small interfering RNA; TEM: transmission electron microscopy; TUBA/α-tubulin: tubulin, alpha; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling; VDAC: voltage-dependent anion channel; WT: wild-type.
    Keywords:  Acute kidney injury; NLRP3 inflammasome; contrast media; hypoxia inducible factor; mitophagy
  5. Mitochondrion. 2020 Dec 16. pii: S1567-7249(20)30225-7. [Epub ahead of print]
      The understanding of the pathophysiology of bipolar disorder (BD) remains modest, despite recent advances in neurobiological research. The mitochondrial dysfunction hypothesis of bipolar disorder has been corroborated by several studies involving postmortem brain analysis, neuroimaging, and specific biomarkers in both rodent models and humans. Evidence suggests that BD might be related to abnormal mitochondrial morphology and dynamics, neuroimmune dysfunction, and atypical mitochondrial metabolism and oxidative stress pathways. Mitochondrial dysfunction in mood disorders is also associated with abnormal Ca2+ levels, glutamate excitotoxicity, an imbalance between pro- and antiapoptotic proteins towards apoptosis, abnormal gene expression of electron transport chain complexes, and decreased ATP synthesis. This paper aims to review and discuss the implications of mitochondrial dysfunction in BD etiology and to explore mitochondria as a potential target for novel therapeutic agents.
    Keywords:  Bipolar disorder; Depression; Mania; Mitochondria; Mitochondrial modulators
  6. EMBO J. 2020 Dec 21. e107407
      The endoplasmic reticulum (ER) membrane protein complex (EMC) was identified over a decade ago in a genetic screen for ER protein homeostasis. The EMC inserts transmembrane domains (TMDs) with limited hydrophobicity. Two recent cryo-EM structures, and a third model based on partial high- and low-resolution structures, suggest how this is accomplished.