bims-mitdis Biomed News
on Mitochondrial disorders
Issue of 2021‒10‒24
fifty-seven papers selected by
Catalina Vasilescu
University of Helsinki

  1. Methods Mol Biol. 2021 Oct 21.
      Leber's Hereditary Optic Neuropathy is the most prevalent mitochondrial neurological disease caused by mutations in mitochondrial DNA encoded respiratory complex I subunits. Although the genetic origin for Leber's hereditary optic neuropathy was identified about 30 years ago, the underlying pathogenesis is still unclear primarily due to the lack of a relevant system or cell model. Current models are limited to lymphoblasts, fibroblasts, or cybrid cell lines. As the disease phenotype is limited to retinal ganglion cells, induced pluripotent stem cells will serve as an excellent model for studying this tissue-specific disease, elucidating its underlying molecular mechanisms, and identifying novel therapeutic targets. Here, we describe a detailed protocol for the generation of retinal ganglion cells, and also cardiomyocytes for proof of iPSC pluripotency.
    Keywords:  Induced pluripotent stem cell; LHON; Retinal ganglion cells; mtDNA
  2. Cell. 2021 Oct 11. pii: S0092-8674(21)01116-8. [Epub ahead of print]
      The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mechanisms of mitochondrial gene expression remain poorly understood due to a lack of experimental approaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression.
    Keywords:  IGF2BP1; antisense; mitochondria; mitochondrial ribosome; morpholino; oxidative phosphorylation; translation
  3. Genes (Basel). 2021 Oct 12. pii: 1604. [Epub ahead of print]12(10):
      Mitochondrial disease originates from genetic changes that impact human bodily functions by disrupting the mitochondrial oxidative phosphorylation system. MitoCarta is a curated and published inventory that sheds light on the mitochondrial proteome, but the function of some mitochondrially-localised proteins remains poorly characterised. Consequently, various gene editing systems have been employed to uncover the involvement of these proteins in mitochondrial biology and disease. CRISPR/Cas9 is an efficient, versatile, and highly accurate genome editing tool that was first introduced over a decade ago and has since become an indispensable tool for targeted genetic manipulation in biological research. The broad spectrum of CRISPR/Cas9 applications serves as an attractive and tractable system to study genes and pathways that are essential for the regulation and maintenance of mitochondrial health. It has opened possibilities of generating reliable cell and animal models of human disease, and with further exploitation of the technology, large-scale genomic screenings have uncovered a wealth of fundamental mechanistic insights. In this review, we describe the applications of CRISPR/Cas9 system as a genome editing tool to uncover new insights into pathomechanisms of mitochondrial diseases and/or biological processes involved in mitochondrial function.
    Keywords:  CRISPR/Cas9; cell and animal models; genome editing; genome-wide CRISPR libraries screening; mitochondrial biology; mitochondrial disease
  4. Biology (Basel). 2021 Oct 15. pii: 1050. [Epub ahead of print]10(10):
      Human mitochondria are highly dynamic organelles, fusing and budding to maintain reticular networks throughout many cell types. Although extending to the extremities of the cell, the majority of the network is concentrated around the nucleus in most of the commonly cultured cell lines. This organelle harbours its own genome, mtDNA, with a different gene content to the nucleus, but the expression of which is critical for maintaining oxidative phosphorylation. Recent advances in click chemistry have allowed us to visualise sites of mitochondrial protein synthesis in intact cultured cells. We show that the majority of translation occurs in the peri-nuclear region of the network. Further analysis reveals that whilst there is a slight peri-nuclear enrichment in the levels of mitoribosomal protein and mitochondrial rRNA, it is not sufficient to explain this substantial heterogeneity in the distribution of translation. Finally, we also show that in contrast, a mitochondrial mRNA does not show such a distinct gradient in distribution. These data suggest that the relative lack of translation in the peripheral mitochondrial network is not due to an absence of mitoribosomes or an insufficient supply of the mt-mRNA transcripts.
    Keywords:  co-localisation; heterogeneity; mammalian; mitochondria; peri-nuclear; peripheral; protein synthesis
  5. EMBO J. 2021 Oct 18. e108428
      Mitochondrial cristae are extraordinarily crowded with proteins, which puts stress on the bilayer organization of lipids. We tested the hypothesis that the high concentration of proteins drives the tafazzin-catalyzed remodeling of fatty acids in cardiolipin, thereby reducing bilayer stress in the membrane. Specifically, we tested whether protein crowding induces cardiolipin remodeling and whether the lack of cardiolipin remodeling prevents the membrane from accumulating proteins. In vitro, the incorporation of large amounts of proteins into liposomes altered the outcome of the remodeling reaction. In yeast, the concentration of proteins involved in oxidative phosphorylation (OXPHOS) correlated with the cardiolipin composition. Genetic ablation of either remodeling or biosynthesis of cardiolipin caused a substantial drop in the surface density of OXPHOS proteins in the inner membrane of the mouse heart and Drosophila flight muscle mitochondria. Our data suggest that OXPHOS protein crowding induces cardiolipin remodelling and that remodeled cardiolipin supports the high concentration of these proteins in the inner mitochondrial membrane.
    Keywords:  Barth syndrome; lipid-protein interaction; macromolecular crowding; mitochondria; oxidative phosphorylation
  6. Biology (Basel). 2021 Sep 29. pii: 981. [Epub ahead of print]10(10):
      Mitochondrial cardiomyopathy (MCM) is characterized as an oxidative phosphorylation disorder of the heart. More than 100 genetic variants in nuclear or mitochondrial DNA have been associated with MCM. However, the underlying molecular mechanisms linking genetic variants to MCM are not fully understood due to the lack of appropriate cellular and animal models. Patient-specific induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) provide an attractive experimental platform for modeling cardiovascular diseases and predicting drug efficacy to such diseases. Here we introduce the pathological and therapeutic studies of MCM using iPSC-CMs and discuss the questions and latest strategies for research using iPSC-CMs.
    Keywords:  iPSC-derived cardiomyocyte; induced pluripotent stem cells (iPSC); mitochondrial cardiomyopathy; mitochondrial disease
  7. Biomedicines. 2021 Oct 01. pii: 1364. [Epub ahead of print]9(10):
      Mitochondria are the cell's power site, transforming energy into a form that the cell can employ for necessary metabolic reactions. These organelles present their own DNA. Although it codes for a small number of genes, mutations in mtDNA are common. Molecular genetics diagnosis allows the analysis of DNA in several areas such as infectiology, oncology, human genetics and personalized medicine. Knowing that the mitochondrial DNA is subject to several mutations which have a direct impact on the metabolism of the mitochondrion leading to many diseases, it is therefore necessary to detect these mutations in the patients involved. To date numerous mitochondrial mutations have been described in humans, permitting confirmation of clinical diagnosis, in addition to a better management of the patients. Therefore, different techniques are employed to study the presence or absence of mitochondrial mutations. However, new mutations are discovered, and to determine if they are the cause of disease, different functional mitochondrial studies are undertaken using transmitochondrial cybrid cells that are constructed by fusion of platelets of the patient that presents the mutation, with rho osteosarcoma cell line. Moreover, the contribution of next generation sequencing allows sequencing of the entire human genome within a single day and should be considered in the diagnosis of mitochondrial mutations.
    Keywords:  mitochondrial diseases; molecular diagnosis; mtDNA; mutation
  8. Mitochondrion. 2021 Oct 14. pii: S1567-7249(21)00142-2. [Epub ahead of print]
      Leigh syndrome (LS) is one of the most common mitochondrial diseases in children, for which at least 90 causative genes have been identified. However, many LS patients have no genetic diagnosis, indicating that more disease-related genes remain to be identified. In this study, we identified a novel variant, m.3955G>A, in mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1) in two unrelated LS patients, manifesting as infancy-onset frequent seizures, neurodegeneration, elevated lactate levels, and bilateral symmetrical lesions in the brainstem, basal ganglia, and thalamus. Transfer of the mutant mtDNA with m.3955G>A into cybrids disturbed the MT-ND1 expression and CI assembly, followed by remarkable mitochondrial dysfunction, reactive oxygen species production, and mitochondrial membrane potential reduction. Our findings demonstrated the pathogenicity of the novel m.3955G>A variant, and extend the spectrum of pathogenic mtDNA variants.
    Keywords:  Leigh syndrome; MT-ND1; Novel mitochondrial DNA variant; cybrid cells
  9. Front Cell Dev Biol. 2021 ;9 754676
      Background: Ethambutol-induced optic neuropathy (EON) is a well-recognized ocular complication in patients who take ethambutol as a tuberculosis treatment. The aim of the current study was to investigate the presence of mitochondrial mutations, including OPA1 and Leber's hereditary optic neuropathy (LHON)-mitochondrial DNA (mtDNA), in patients with EON and to determine their effect on clinical features of these patients. Methods: All 47 patients underwent clinical evaluations, including best-corrected visual acuity, fundus examination, and color fundus photography; 37 patients were then followed up over time. Molecular screening methods, including PCR-based sequencing of the OPA1 gene and LHON-mtDNA mutations, together with targeted exome sequencing, were used to detect mutations. Results: We detected 15 OPA1 mutations in 18 patients and two LHON-mtDNA mutations in four patients, for an overall mutation detection rate of 46.8%. The mean presentation age was significantly younger in the patients with the mitochondrial mutations (27.5 years) than in those without mutations (48 years). Fundus examination revealed a greater prevalence of optic disc hyperemia in the patients with mutations (70.5%) than without mutations (48%). Half of the patients with mutations and 91% of the patients without mutations had improved vision. After adjusting for confounders, the logistic regression revealed that the patients with optic disc pallor on the first visit (p = 0.004) or the patients with the mitochondrial mutations (p < 0.001) had a poorer vision prognosis. Conclusion: Our results indicated that carriers with OPA1 mutations might be more vulnerable for the toxicity of EMB to develop EON.
    Keywords:  OPA1; ethambutol; mitochondrial DNA; mutation; optic neuropathy
  10. Intern Med. 2021 Oct 19.
    Keywords:  Leigh syndrome; mitochondrial disease; renal failure
  11. Stem Cell Res. 2021 Oct 12. pii: S1873-5061(21)00419-0. [Epub ahead of print]57 102572
      Mitochondria are dynamic organelles with wide range of morphologies contributing to regulating different signaling pathways and several cellular functions. Leigh syndrome (LS) is a classic pediatric mitochondrial disorder characterized by complex and variable clinical pathologies, and primarily affects the nervous system during early development. It is important to understand the differences between mitochondrial morphologies in healthy and diseased states so that focused therapies can target the disease during its early stages. In this study, we performed a comprehensive analysis of mitochondrial dynamics in five patient-derived human induced pluripotent stem cells (hiPSCs) containing different mutations associated with LS. Our results suggest that subtle alterations in mitochondrial morphologies are specific to the mtDNA variant. Three out of the five LS-hiPSCs exhibited characteristics consistent with fused mitochondria. To our knowledge, this is the first comprehensive study that quantifies mitochondrial dynamics in hiPSCs specific to mitochondrial disorders. In addition, we observed an overall decrease in mitochondrial membrane potential in all five LS-hiPSCs. A more thorough analysis of the correlations between mitochondrial dynamics, membrane potential dysfunction caused by mutations in the mtDNA in hiPSCs and differentiated derivatives will aid in identifying unique morphological signatures of various mitochondrial disorders during early stages of embryonic development.
    Keywords:  Human induced pluripotent stem cells; Leigh syndrome; Mitochondrial disorders; Mitochondrial dynamics; Mitochondrial membrane potential; Mitochondrial morphology
  12. Int J Mol Sci. 2021 Oct 14. pii: 11080. [Epub ahead of print]22(20):
      Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective cytochrome oxidase (COX) activity, interspersed among fibers with retained functional respiratory chain. We used diagnostic histochemistry to distinguish COX-negative from COX-positive fibers in nine muscle biopsies from CPEO patients and performed laser capture microdissection (LCM) coupled to genome-wide gene expression analysis. To gain molecular insight into the pathogenesis, we applied network and pathway analysis to highlight molecular differences of the COX-positive and COX-negative fiber transcriptome. We then integrated our results with proteomics data that we previously obtained comparing COX-positive and COX-negative fiber sections from three other patients. By virtue of the combination of LCM and a multi-omics approach, we here provide a comprehensive resource to tackle the pathogenic changes leading to progressive respiratory chain deficiency and disease in mitochondrial deletion syndromes. Our data show that COX-negative fibers upregulate transcripts involved in translational elongation and protein synthesis. Furthermore, based on functional annotation analysis, we find that mitochondrial transcripts are the most enriched among those with significantly different expression between COX-positive and COX-negative fibers, indicating that our unbiased large-scale approach resolves the core of the pathogenic changes. Further enrichments include transcripts encoding LIM domain proteins, ubiquitin ligases, proteins involved in RNA turnover, and, interestingly, cell cycle arrest and cell death. These pathways may thus have a functional association to the molecular pathogenesis of the disease. Overall, the transcriptome and proteome show a low degree of correlation in CPEO patients, suggesting a relevant contribution of post-transcriptional mechanisms in shaping this disease phenotype.
    Keywords:  disease models; mtDNA deletions; myopathy; proteomics; skeletal muscle; transcriptomics
  13. Microorganisms. 2021 Sep 28. pii: 2044. [Epub ahead of print]9(10):
      Mitochondria are organelles that play an important role in both energetic and synthetic metabolism of eukaryotic cells. The flow of metabolites between the cytosol and mitochondrial matrix is controlled by a set of highly selective carrier proteins localised in the inner mitochondrial membrane. As defects in the transport of these molecules may affect cell metabolism, mutations in genes encoding for mitochondrial carriers are involved in numerous human diseases. Yeast Saccharomyces cerevisiae is a traditional model organism with unprecedented impact on our understanding of many fundamental processes in eukaryotic cells. As such, the yeast is also exceptionally well suited for investigation of mitochondrial carriers. This article reviews the advantages of using yeast to study mitochondrial carriers with the focus on addressing the involvement of these carriers in human diseases.
    Keywords:  Saccharomyces cerevisiae; budding yeast; human disease; mitochondria; mitochondrial carrier family; transport
  14. Genes (Basel). 2021 Oct 19. pii: 1643. [Epub ahead of print]12(10):
      Mitochondrial stroke-like episodes (SLEs) are a hallmark of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). They should be suspected in anyone with an acute/subacute onset of focal neurological symptoms at any age and are usually driven by seizures. Suggestive features of an underlying mitochondrial pathology include evolving MRI lesions, often originating within the posterior brain regions, the presence of multisystemic involvement, including diabetes, deafness, or cardiomyopathy, and a positive family history. The diagnosis of MELAS has important implications for those affected and their relatives, given it enables early initiation of appropriate treatment and genetic counselling. However, the diagnosis is frequently challenging, particularly during the acute phase of an event. We describe four cases of mitochondrial strokes to highlight the considerable overlap that exists with other neurological disorders, including viral and autoimmune encephalitis, ischemic stroke, and central nervous system (CNS) vasculitis, and discuss the clinical, laboratory, and imaging features that can help distinguish MELAS from these differential diagnoses.
    Keywords:  MELAS; brain MRI; mitochondrial DNA; primary mitochondrial diseases; stroke-like episodes
  15. PLoS Genet. 2021 Oct 19. 17(10): e1009808
      Faithful inheritance of mitochondrial DNA (mtDNA) is crucial for cellular respiration/oxidative phosphorylation and mitochondrial membrane potential. However, how mtDNA is transmitted to progeny is not fully understood. We utilized hypersuppressive mtDNA, a class of respiratory deficient Saccharomyces cerevisiae mtDNA that is preferentially inherited over wild-type mtDNA (rho+), to uncover the factors governing mtDNA inheritance. We found that some regions of rho+ mtDNA persisted while others were lost after a specific hypersuppressive takeover indicating that hypersuppressive preferential inheritance may partially be due to active destruction of rho+ mtDNA. From a multicopy suppression screen, we found that overexpression of putative mitochondrial RNA exonuclease PET127 reduced biased inheritance of a subset of hypersuppressive genomes. This suppression required PET127 binding to the mitochondrial RNA polymerase RPO41 but not PET127 exonuclease activity. A temperature-sensitive allele of RPO41 improved rho+ mtDNA inheritance over a specific hypersuppressive mtDNA at semi-permissive temperatures revealing a previously unknown role for rho+ transcription in promoting hypersuppressive mtDNA inheritance.
  16. Metabolites. 2021 Sep 28. pii: 658. [Epub ahead of print]11(10):
      Direct injury of mitochondrial respiratory chain (RC) complex I by Ndufs4 subunit mutations results in complex I deficiency (CID) and a progressive encephalomyopathy, known as Leigh syndrome. While mitochondrial, cytosolic and multi-organelle pathways are known to be involved in the neuromuscular LS pathogenesis, compartment-specific metabolomics has, to date, not been applied to murine models of CID. We thus hypothesized that sub-cellular metabolomics would be able to contribute organelle-specific insights to known Ndufs4 metabolic perturbations. To that end, whole brains and skeletal muscle from late-stage Ndufs4 mice and age/sex-matched controls were harvested for mitochondrial and cytosolic isolation. Untargeted 1H-NMR and semi-targeted LC-MS/MS metabolomics was applied to the resulting cell fractions, whereafter important variables (VIPs) were selected by univariate statistics. A predominant increase in multiple targeted amino acids was observed in whole-brain samples, with a more prominent effect at the mitochondrial level. Similar pathways were implicated in the muscle tissue, showing a greater depletion of core metabolites with a compartment-specific distribution, however. The altered metabolites expectedly implicate altered redox homeostasis, alternate RC fueling, one-carbon metabolism, urea cycling and dysregulated proteostasis to different degrees in the analyzed tissues. A first application of EDTA-chelated magnesium and calcium measurement by NMR also revealed tissue- and compartment-specific alterations, implicating stress response-related calcium redistribution between neural cell compartments, as well as whole-cell muscle magnesium depletion. Altogether, these results confirm the ability of compartment-specific metabolomics to capture known alterations related to Ndufs4 KO and CID while proving its worth in elucidating metabolic compartmentalization in said pathways that went undetected in the diluted whole-cell samples previously studied.
    Keywords:  1H-NMR; LC-MS/MS; Ndufs4; complex I deficiency; cytosol; metabolomics; mitochondria; mitochondrial disease; sub-cellular metabolomics
  17. Proc Natl Acad Sci U S A. 2021 Oct 26. pii: e2025347118. [Epub ahead of print]118(43):
      Energy production via the mitochondrial electron transport chain (ETC) and mitophagy are two important processes affected in Parkinson's disease (PD). Interestingly, PINK1, mutations of which cause early-onset PD, plays a key role in both processes, suggesting that these two mechanisms are connected. However, the converging link of both pathways currently remains enigmatic. Recent findings demonstrated that lipid aggregation, along with defective mitochondria, is present in postmortem brains of PD patients. In addition, an increasing body of evidence shows that sphingolipids, including ceramide, are altered in PD, supporting the importance of lipids in the pathophysiology of PD. Here, we identified ceramide to play a crucial role in PINK1-related PD that was previously linked almost exclusively to mitochondrial dysfunction. We found ceramide to accumulate in mitochondria and to negatively affect mitochondrial function, most notably the ETC. Lowering ceramide levels improved mitochondrial phenotypes in pink1-mutant flies and PINK1-deficient patient-derived fibroblasts, showing that the effects of ceramide are evolutionarily conserved. In addition, ceramide accumulation provoked ceramide-induced mitophagy upon PINK1 deficiency. As a result of the ceramide accumulation, β-oxidation in PINK1 mutants was decreased, which was rescued by lowering ceramide levels. Furthermore, stimulation of β-oxidation was sufficient to rescue PINK1-deficient phenotypes. In conclusion, we discovered a cellular mechanism resulting from PD-causing loss of PINK1 and found a protective role of β-oxidation in ETC dysfunction, thus linking lipids and mitochondria in the pathophysiology of PINK1-related PD. Furthermore, our data nominate β-oxidation and ceramide as therapeutic targets for PD.
    Keywords:  PINK1; Parkinson’s disease; ceramide; mitochondria; β-oxidation
  18. BMC Genom Data. 2021 Oct 21. 22(1): 43
      BACKGROUND: Mitochondrial haplogroup assignment is an important tool for forensics and evolutionary genetics. African populations are known to display a high diversity of mitochondrial haplogroups. In this research we explored mitochondrial haplogroup assignment in African populations using commonly used genome-wide SNP arrays.RESULTS: We show that, from eight commonly used SNP arrays, two SNP arrays outperform the other arrays when it comes to the correct assignment of African mitochondrial haplogroups. One array enables the recognition of 81% of the African mitochondrial haplogroups from our compiled dataset of full mitochondrial sequences. Other SNP arrays were able to assign 4-62% of the African mitochondrial haplogroups present in our dataset. We also assessed the performance of available software for assigning mitochondrial haplogroups from SNP array data.
    CONCLUSIONS: These results provide the first cross-checked quantification of mitochondrial haplogroup assignment performance from SNP array data. Mitochondrial haplogroup frequencies inferred from most common SNP arrays used for human population analysis should be considered with caution.
    Keywords:  Africa; HaploGrep; Haplogroup assignment; SNP array; mtDNA
  19. J Cell Sci. 2021 Oct 22. pii: jcs.258653. [Epub ahead of print]
      Diverse genes associated with familial Parkinson's disease (familial Parkinsonism) have been implicated in mitochondrial quality control. One such gene, PARK7 encodes the protein DJ-1, pathogenic mutations of which trigger its translocation from the cytosol to the mitochondrial matrix. The translocation of steady-state cytosolic proteins like DJ-1 to the mitochondrial matrix by missense mutations is rare and the underlying mechanism remains to be elucidated. Here, we show that the protein unfolding associated with various DJ-1 mutations drives its import into the mitochondrial matrix. Increasing the structural stability of these DJ-1 mutants restores cytosolic localization. Mechanistically, we show that a reduction in the structural stability of DJ-1 exposes a cryptic N-terminal mitochondrial targeting signal (MTS) including Leu10 that promotes DJ-1 import into the mitochondrial matrix for subsequent degradation. Our work describes a novel cellular mechanism for targeting a destabilized cytosolic protein to the mitochondria for degradation.
    Keywords:  DJ-1; Import; Mitochondria; Parkinson's disease
  20. Biochem Pharmacol. 2021 Oct 18. pii: S0006-2952(21)00425-1. [Epub ahead of print] 114809
      Herein we trace links between biochemical pathways, pathogenesis, and metabolic diseases to set the stage for new therapeutic advances. Cellular and acellular microorganisms including bacteria and viruses are primary pathogenic drivers that cause disease. Missing from this statement are subcellular compartments, importantly mitochondria, which can be pathogenic by themselves, also serving as key metabolic disease intermediaries. The breakdown of food molecules provides chemical energy to power cellular processes, with mitochondria as powerhouses and ATP as the principal energy carrying molecule. Most animal cell ATP is produced by mitochondrial synthase; its central role in metabolism has been known for >80 years. Metabolic disorders involving many organ systems are prevalent in all age groups. Progressive pathogenic mitochondrial dysfunction is a hallmark of genetic mitochondrial diseases, the most common phenotypic expression of inherited metabolic disorders. Confluent genetic, metabolic, and mitochondrial axes surface in diabetes, heart failure, neurodegenerative disease, and even in the ongoing coronavirus pandemic.
    Keywords:  Metabolic abnormalities; Mitochondrial diseases; Pathogenesis and pathogenic drivers; Physiological networks; Therapeutics; diseases; disorders; dysfunction; homeostasis; pathogenesis; reprogramming Biochemical pathways
  21. Cells. 2021 Oct 16. pii: 2775. [Epub ahead of print]10(10):
      Mitochondria are ubiquitous organelles of eukaryotic organisms with a number of essential functions, including synthesis of iron-sulfur clusters, amino acids, lipids, and adenosine triphosphate (ATP). During aging of the fungal aging model Podospora anserina, the inner mitochondrial membrane (IMM) undergoes prominent morphological alterations, ultimately resulting in functional impairments. Since phospholipids (PLs) are key components of biological membranes, maintenance of membrane plasticity and integrity via regulation of PL biosynthesis is indispensable. Here, we report results from a lipidomic analysis of isolated mitochondria from P. anserina that revealed an age-related reorganization of the mitochondrial PL profile and the involvement of the i-AAA protease PaIAP in proteolytic regulation of PL metabolism. The absence of PaIAP enhances biosynthesis of characteristic mitochondrial PLs, leads to significant alterations in the acyl composition of the mitochondrial signature PL cardiolipin (CL), and induces mitophagy. These alterations presumably cause the lifespan increase of the PaIap deletion mutant under standard growth conditions. However, PaIAP is required at elevated temperatures and for degradation of superfluous CL synthase PaCRD1 during glycolytic growth. Overall, our study uncovers a prominent role of PaIAP in the regulation of PL homeostasis in order to adapt membrane plasticity to fluctuating environmental conditions as they occur in nature.
    Keywords:  P. anserina; PaCRD1; PaIAP; aging; lipid metabolism; mitochondria
  22. Cell Rep. 2021 Oct 19. pii: S2211-1247(21)01310-3. [Epub ahead of print]37(3): 109846
      Optical methods for measuring intracellular ions including Ca2+ revolutionized our understanding of signal transduction. However, these methods are not extensively applied to intact organs due to issues including inner filter effects, motion, and available probes. Mitochondrial Ca2+ is postulated to regulate cell energetics and death pathways that are best studied in an intact organ. Here, we develop a method to optically measure mitochondrial Ca2+ and demonstrate its validity for mitochondrial Ca2+ and metabolism using hearts from wild-type mice and mice with germline knockout of the mitochondria calcium uniporter (MCU-KO). We previously reported that germline MCU-KO hearts do not show an impaired response to adrenergic stimulation. We find that these MCU-KO hearts do not take up Ca2+, consistent with no alternative Ca2+ uptake mechanisms in the absence of MCU. This approach can address the role of mitochondrial Ca2+ to the myriad of functions attributed to alterations in mitochondrial Ca2+.
    Keywords:  calcium; heart; isoproterenol; mitochondria; spectroscopy
  23. Genes (Basel). 2021 Oct 09. pii: 1590. [Epub ahead of print]12(10):
      The frequency of mitochondrial diseases (MD) has been scarcely documented, and only a few studies have reported data in certain specific geographical areas. In this study, we arranged a nationwide call in Spain to obtain a global estimate of the number of cases. A total of 3274 cases from 49 Spanish provinces were reported by 39 centres. Excluding duplicated and unsolved cases, 2761 patients harbouring pathogenic mutations in 140 genes were recruited between 1990 and 2020. A total of 508 patients exhibited mutations in nuclear DNA genes (75% paediatric patients) and 1105 in mitochondrial DNA genes (33% paediatric patients). A further 1148 cases harboured mutations in the MT-RNR1 gene (56% paediatric patients). The number of reported cases secondary to nuclear DNA mutations increased in 2014, owing to the implementation of next-generation sequencing technologies. Between 2014 and 2020, excepting MT-RNR1 cases, the incidence was 6.34 (95% CI: 5.71-6.97) cases per million inhabitants at the paediatric age and 1.36 (95% CI: 1.22-1.50) for adults. In conclusion, this is the first study to report nationwide epidemiological data for MD in Spain. The lack of identification of a remarkable number of mitochondrial genes necessitates the systematic application of high-throughput technologies in the routine diagnosis of MD.
    Keywords:  Spanish registry; epidemiological data; incidence; mitochondrial DNA mutations; mitochondrial diseases; nuclear DNA mutations
  24. Protein Cell. 2021 Oct 23.
      Zn2+ is required for the activity of many mitochondrial proteins, which regulate mitochondrial dynamics, apoptosis and mitophagy. However, it is not understood how the proper mitochondrial Zn2+ level is achieved to maintain mitochondrial homeostasis. Using Caenorhabditis elegans, we reveal here that a pair of mitochondrion-localized transporters controls the mitochondrial level of Zn2+. We demonstrate that SLC-30A9/ZnT9 is a mitochondrial Zn2+ exporter. Loss of SLC-30A9 leads to mitochondrial Zn2+ accumulation, which damages mitochondria, impairs animal development and shortens the life span. We further identify SLC-25A25/SCaMC-2 as an important regulator of mitochondrial Zn2+ import. Loss of SLC-25A25 suppresses the abnormal mitochondrial Zn2+ accumulation and defective mitochondrial structure and functions caused by loss of SLC-30A9. Moreover, we reveal that the endoplasmic reticulum contains the Zn2+ pool from which mitochondrial Zn2+ is imported. These findings establish the molecular basis for controlling the correct mitochondrial Zn2+ levels for normal mitochondrial structure and functions.
    Keywords:  C. elegans; ER-mitochondrial contact; Zn2+ transporter; development; mitochondria
  25. J Chem Inf Model. 2021 Oct 19.
      Pyruvate metabolism requires the mitochondrial pyruvate carrier (MPC) proteins to transport pyruvate from the intermembrane space through the inner mitochondrial membrane to the mitochondrial matrix. The lack of the atomic structures of MPC hampers the understanding of the functional states of MPC and molecular interactions with the substrate or inhibitor. Here, we develop the de novo models of human MPC complexes and characterize the conformational dynamics of the MPC heterodimer formed by MPC1 and MPC2 (MPC1/2) by computational simulations. Our results reveal that functional MPC1/2 prefers to adopt an inward-open conformation, with the carrier open to the matrix side, whereas the outward-open states are less populated. The energy barrier for pyruvate transport in MPC1/2 is low enough, and the inhibitor UK5099 blocks the pyruvate transport by stably binding to MPC1/2. Notably, consistent with experimental results, the MPC1 L79H mutation significantly alters the conformations of MPC1/2 and thus fails for substrate transport. However, the MPC1 R97W mutation seems to retain the transport activity. The present de novo models of MPC complexes provide structural insights into the conformational states of MPC complexes and mechanistic understanding of interactions between the substrate/inhibitor and MPC proteins.
  26. Free Radic Biol Med. 2021 Oct 14. pii: S0891-5849(21)00764-4. [Epub ahead of print]
      Permeable cell models have contributed much to the progress in mitochondrial research. Optimization of permeabilization is required to make the cell's plasma membrane permeable to small molecules while keeping the intracellular organelles and their membranes intact and fully functional. Here we report our assessment and optimization of commonly used permeabilizing agents including different saponin preparations, digitonin, and recombinant perfringolysin O employing a new electron flow based mitochondrial assay technology that utilizes a colorimetric redox dye. The results of this study provide guidance in optimizing the conditions for mitochondrial function assays with permeabilized cells using the novel redox dye-based format.
    Keywords:  Cell permeabilization; Mitochondrial assay; Mitochondrial function; Mitochondrial inhibitors; Mitochondrial metabolism; Mitochondrial substrates
  27. BMC Biol. 2021 Oct 21. 19(1): 229
      BACKGROUND: Mitochondrial dynamics is the result of a dynamic balance between fusion and fission events, which are driven via a set of mitochondria-shaping proteins. These proteins are generally considered to be binary components of either the fission or fusion machinery, but potential crosstalk between the fission and fusion machineries remains less explored. In the present work, we analyzed the roles of mitochondrial elongation factors 1 and 2 (MIEF1/2), core components of the fission machinery in mammals.RESULTS: We show that MIEFs (MIEF1/2), besides their action in the fission machinery, regulate mitochondrial fusion through direct interaction with the fusion proteins Mfn1 and Mfn2, suggesting that MIEFs participate in not only fission but also fusion. Elevated levels of MIEFs enhance mitochondrial fusion in an Mfn1/2- and OPA1-dependent but Drp1-independent manner. Moreover, mitochondrial localization and self-association of MIEFs are crucial for their fusion-promoting ability. In addition, we show that MIEF1/2 can competitively decrease the interaction of hFis1 with Mfn1 and Mfn2, alleviating hFis1-induced mitochondrial fragmentation and contributing to mitochondrial fusion.
    CONCLUSIONS: Our study suggests that MIEFs serve as a central hub that interacts with and regulates both the fission and fusion machineries, which uncovers a novel mechanism for balancing these opposing forces of mitochondrial dynamics in mammals.
    Keywords:  Drp1; MIEF1/2; Mfn1/2; Mitochondrial dynamics; Mitochondrial fission; Mitochondrial fusion; hFis1
  28. Biochem Soc Trans. 2021 Oct 19. pii: BST20210272. [Epub ahead of print]
      The pathway of mitochondrial-specific autophagy (mitophagy, defined here as the specific elimination of mitochondria following distinct mitochondrial injuries or developmental/metabolic alterations) is important in health and disease. This review will be focussed on the earliest steps of the pathway concerning the mechanisms and requirements for initiating autophagosome formation on a mitochondrial target. More specifically, and in view of the fact that we understand the basic mechanism of non-selective autophagy and are beginning to reshape this knowledge towards the pathways of selective autophagy, two aspects of mitophagy will be covered: (i) How does a machinery normally working in association with the endoplasmic reticulum (ER) to make an autophagosome can also do so at a site distinct from the ER such as on the surface of the targeted cargo? and (ii) how does the machinery deal with cargo of multiple sizes?
    Keywords:  autophagy; endoplasmic reticulum; imaging techniques; mitochondria
  29. Ann Clin Transl Neurol. 2021 Oct 18.
      OBJECTIVE: To delineate the full phenotypic spectrum of BCS1L-related disease, provide better understanding of the genotype-phenotype correlations and identify reliable prognostic disease markers.METHODS: We performed a retrospective multinational cohort study of previously unpublished patients followed in 15 centres from 10 countries. Patients with confirmed biallelic pathogenic BCS1L variants were considered eligible. Clinical, laboratory, neuroimaging and genetic data were analysed. Patients were stratified into different groups based on the age of disease onset, whether homozygous or compound heterozygous for the c.232A>G (p.Ser78Gly) variant, and those with other pathogenic BCS1L variants.
    RESULTS: Thirty-three patients were included. We found that growth failure, lactic acidosis, tubulopathy, hepatopathy and early death were more frequent in those with disease onset within the first month of life. In those with onset after 1 month, neurological features including movement disorders and seizures were more frequent. Novel phenotypes, particularly involving movement disorder, were identified in this group. The presence of the c.232A>G (p.Ser78Gly) variant was associated with significantly worse survival and exclusively found in those with disease onset within the first month of life, whilst other pathogenic BCS1L variants were more frequent in those with later symptom onset.
    INTERPRETATION: The phenotypic spectrum of BCS1L-related disease comprises a continuum of clinical features rather than a set of separate syndromic clinical identities. Age of onset defines BCS1L-related disease clinically and early presentation is associated with poor prognosis. Genotype correlates with phenotype in the presence of the c.232A>G (p.Ser78Gly) variant.
  30. Biomedicines. 2021 Oct 13. pii: 1457. [Epub ahead of print]9(10):
      Primary mitochondrial diseases are caused by mutations in mitochondrial or nuclear genes, leading to the abnormal function of specific mitochondrial pathways. Mitochondrial dysfunction is also a secondary event in more common pathophysiological conditions, such as obesity and metabolic syndrome. In both cases, the improvement and management of mitochondrial homeostasis remain challenging. Here, we show that beta-resorcylic acid (β-RA), which is a natural phenolic compound, competed in vivo with 4-hydroxybenzoic acid, which is the natural precursor of coenzyme Q biosynthesis. This led to a decrease in demethoxyubiquinone, which is an intermediate metabolite of CoQ biosynthesis that is abnormally accumulated in Coq9R239X mice. As a consequence, β-RA rescued the phenotype of Coq9R239X mice, which is a model of primary mitochondrial encephalopathy. Moreover, we observed that long-term treatment with β-RA also reduced the size and content of the white adipose tissue (WAT) that is normally accumulated during aging in wild-type mice, leading to the prevention of hepatic steatosis and an increase in survival at the elderly stage of life. The reduction in WAT content was due to a decrease in adipogenesis, an adaptation of the mitochondrial proteome in the kidneys, and stimulation of glycolysis and acetyl-CoA metabolism. Therefore, our results demonstrate that β-RA acted through different cellular mechanisms, with effects on mitochondrial metabolism; as such, it may be used for the treatment of primary coenzyme Q deficiency, overweight, and hepatic steatosis.
    Keywords:  3T3-L1; astrogliosis; encephalopathy; hepatic steatosis; mitochondrial disease; mitochondrial proteome; mouse model; obesity; spongiosis; white adipose tissue
  31. Trends Microbiol. 2021 Oct 13. pii: S0966-842X(21)00237-7. [Epub ahead of print]
      Mitochondria control various processes that are integral to cellular and organismal homeostasis, including Ca2+ fluxes, bioenergetic metabolism, and cell death. Perhaps not surprisingly, multiple pathogenic bacteria have evolved strategies to subvert mitochondrial functions in support of their survival and dissemination. Here, we discuss nonimmunological pathogenic mechanisms that converge on the ability of bacteria to control the mitochondrial compartment of host cells.
    Keywords:  Listeria monocytogenes; Mycobacterium tuberculosis; autophagy; mitochondria-associated ER membranes; oxidative phosphorylation; regulated cell death
  32. Elife. 2021 Oct 18. pii: e67900. [Epub ahead of print]10
      Activating LRRK2 mutations cause Parkinson's disease, and pathogenic LRRK2 kinase interferes with ciliogenesis. Previously, we showed that cholinergic interneurons of the dorsal striatum lose their cilia in R1441C LRRK2 mutant mice (Dhekne et al., 2018). Here, we show that cilia loss is seen as early as 10 weeks of age in these mice and also in two other mouse strains carrying the most common human G2019S LRRK2 mutation. Loss of the PPM1H phosphatase that is specific for LRRK2-phosphorylated Rab GTPases yields the same cilia loss phenotype seen in mice expressing pathogenic LRRK2 kinase, strongly supporting a connection between Rab GTPase phosphorylation and cilia loss. Moreover, astrocytes throughout the striatum show a ciliation defect in all LRRK2 and PPM1H mutant models examined. Hedgehog signaling requires cilia, and loss of cilia in LRRK2 mutant rodents correlates with dysregulation of Hedgehog signaling as monitored by in situ hybridization of Gli1 and Gdnf transcripts. Dopaminergic neurons of the substantia nigra secrete a Hedgehog signal that is sensed in the striatum to trigger neuroprotection; our data support a model in which LRRK2 and PPM1H mutant mice show altered responses to critical Hedgehog signals in the nigrostriatal pathway.
    Keywords:  cell biology; mouse; neuroscience
  33. Front Cardiovasc Med. 2021 ;8 720085
      Heart function maintenance requires a large amount of energy, which is supplied by the mitochondria. In addition to providing energy to cardiomyocytes, mitochondria also play an important role in maintaining cell function and homeostasis. Although adult cardiomyocyte mitochondria appear as independent, low-static organelles, morphological changes have been observed in cardiomyocyte mitochondria under stress or pathological conditions. Indeed, cardiac mitochondrial fission and fusion are involved in the occurrence and development of heart diseases. As mitochondrial fission and fusion are primarily regulated by mitochondrial dynamins in a GTPase-dependent manner, GTPase-dependent mitochondrial fusion (MFN1, MFN2, and OPA1) and fission (DRP1) proteins, which are abundant in the adult heart, can also be regulated in heart diseases. In fact, these dynamic proteins have been shown to play important roles in specific diseases, including ischemia-reperfusion injury, heart failure, and metabolic cardiomyopathy. This article reviews the role of GTPase-dependent mitochondrial fusion and fission protein-mediated mitochondrial dynamics in the occurrence and development of heart diseases.
    Keywords:  DRP1; MFN2; OPA1; heart disease; mfn1
  34. Nutrients. 2021 Sep 29. pii: 3466. [Epub ahead of print]13(10):
      Mitochondrial dysfunction is widely reported in various diseases and contributes to their pathogenesis. We assessed the effect of cocoa flavanols supplementation on mitochondrial function and whole metabolism, and we explored whether the mitochondrial deacetylase sirtuin-3 (Sirt3) is involved or not. We explored the effects of 15 days of CF supplementation in wild type and Sirt3-/- mice. Whole-body metabolism was assessed by indirect calorimetry, and an oral glucose tolerance test was performed to assess glucose metabolism. Mitochondrial respiratory function was assessed in permeabilised fibres and the pyridine nucleotides content (NAD+ and NADH) were quantified. In the wild type, CF supplementation significantly modified whole-body metabolism by promoting carbohydrate use and improved glucose tolerance. CF supplementation induced a significant increase of mitochondrial mass, while significant qualitative adaptation occurred to maintain H2O2 production and cellular oxidative stress. CF supplementation induced a significant increase in NAD+ and NADH content. All the effects mentioned above were blunted in Sirt3-/- mice. Collectively, CF supplementation boosted the NAD metabolism that stimulates sirtuins metabolism and improved mitochondrial function, which likely contributed to the observed whole-body metabolism adaptation, with a greater ability to use carbohydrates, at least partially through Sirt3.
    Keywords:  NAD metabolism; cocoa flavanols; glucose metabolism; mitochondrial mass; skeletal muscle
  35. Circulation. 2021 Oct 21.
      Background: Hypertrophic cardiomyopathy (HCM) is a complex disease partly explained by the effects of individual gene variants on sarcomeric protein biomechanics. At the cellular level, HCM mutations most commonly enhance force production, leading to higher energy demands. Despite significant advances in elucidating sarcomeric structure-function relationships, there is still much to be learned about the mechanisms that link altered cardiac energetics to HCM phenotypes. In this work, we test the hypothesis that changes in cardiac energetics represent a common pathophysiologic pathway in HCM. Methods: We performed a comprehensive multi-omics profile of the molecular (transcripts, metabolites, and complex lipids), ultrastructural, and functional components of HCM energetics using myocardial samples from 27 HCM patients and 13 normal controls (donor hearts). Results: Integrated omics analysis revealed alterations in a wide array of biochemical pathways with major dysregulation in fatty acid metabolism, reduction of acylcarnitines, and accumulation of free fatty acids. HCM hearts showed evidence of global energetic decompensation manifested by a decrease in high energy phosphate metabolites [ATP, ADP, and phosphocreatine (PCr)] and a reduction in mitochondrial genes involved in creatine kinase and ATP synthesis. Accompanying these metabolic derangements, electron microscopy showed an increased fraction of severely damaged mitochondria with reduced cristae density, coinciding with reduced citrate synthase (CS) activity and mitochondrial oxidative respiration. These mitochondrial abnormalities were associated with elevated reactive oxygen species (ROS) and reduced antioxidant defenses. However, despite significant mitochondrial injury, HCM hearts failed to upregulate mitophagic clearance. Conclusions: Overall, our findings suggest that perturbed metabolic signaling and mitochondrial dysfunction are common pathogenic mechanisms in patients with HCM. These results highlight potential new drug targets for attenuation of the clinical disease through improving metabolic function and reducing mitochondrial injury.
  36. J Med Genet. 2021 Oct 16. pii: jmedgenet-2021-107729. [Epub ahead of print]
      BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency.METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed.
    RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone.
    CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.
    Keywords:  early diagnosis; epilepsy; nervous system diseases; pediatrics
  37. Cells. 2021 Sep 29. pii: 2586. [Epub ahead of print]10(10):
      Elevated mitochondrial reactive oxygen species (mROS) and an increase in caspase-3 activity are established mechanisms that lead to skeletal muscle atrophy via the upregulation of protein degradation pathways. However, the mechanisms upstream of an increase in mROS and caspase-3 activity in conditions of muscle atrophy have not been identified. Based upon knowledge that an event known as mitochondrial permeability transition (MPT) causes an increase in mROS emission and the activation of caspase-3 via mitochondrial release of cytochrome c, as well as the circumstantial evidence for MPT in some muscle atrophy conditions, we tested MPT as a mechanism of atrophy. Briefly, treating cultured single mouse flexor digitorum brevis (FDB) fibers from adult mice with a chemical inducer of MPT (Bz423) for 24 h caused an increase in mROS and caspase-3 activity that was accompanied by a reduction in muscle fiber diameter that was able to be prevented by inhibitors of MPT, mROS, or caspase-3 (p < 0.05). Similarly, a four-day single fiber culture as a model of disuse caused atrophy that could be prevented by inhibitors of MPT, mROS, or activated caspase-3. As such, our results identify MPT as a novel mechanism of skeletal muscle atrophy that operates through mROS emission and caspase-3 activation.
    Keywords:  ROS; caspase-3; mitochondrial permeability transition pore; skeletal muscle atrophy
  38. Int J Mol Sci. 2021 Oct 15. pii: 11117. [Epub ahead of print]22(20):
      Mitochondrial dysfunction and stem cell exhaustion are two hallmarks of aging. In the hematopoietic system, aging is linked to imbalanced immune response and reduced regenerative capacity in hematopoietic stem cells (HSCs), as well as an increased predisposition to a spectrum of diseases, including myelodysplastic syndrome and acute myeloid leukemia. Myeloid-biased differentiation and loss of polarity are distinct features of aged HSCs, which generally exhibit enhanced mitochondrial oxidative phosphorylation and increased production of reactive oxygen species (ROS), suggesting a direct role for mitochondria in the degenerative process. Here, we provide an overview of current knowledge of the mitochondrial mechanisms that contribute to age-related phenotypes in HSCs. These include mitochondrial ROS production, alteration/activation of mitochondrial metabolism, the quality control pathway of mitochondria, and inflammation. Greater understanding of the key machineries of HSC aging will allow us to identify new therapeutic targets for preventing, delaying, or even reversing aspects of this process.
    Keywords:  ROS; aging; hematopoiesis; hematopoietic stem cell; inflammation; mitochondrial metabolism; stem cell exhaustion
  39. Am J Hum Genet. 2021 Oct 12. pii: S0002-9297(21)00351-7. [Epub ahead of print]
      We conducted an updated epidemiological study of Leber hereditary optic neuropathy (LHON) in Australia by using registry data to establish the risk of vision loss among different LHON mutations, sex, age at onset, and mitochondrial haplogroup. We identified 96 genetically unrelated LHON pedigrees, including 56 unpublished pedigrees, and updated 40 previously known pedigrees, comprising 620 affected individuals and 4,948 asymptomatic carriers. The minimum prevalence of vision loss due to LHON in Australia in 2020 was one in 68,403 individuals. Although our data confirm some well-established features of LHON, the overall risk of vision loss among those with a LHON mutation was lower than reported previously-17.5% for males and 5.4% for females. Our findings confirm that women, older adults, and younger children are also at risk. Furthermore, we observed a higher incidence of vision loss in children of affected mothers as well as in children of unaffected women with at least one affected brother. Finally, we confirmed our previous report showing a generational fall in prevalence of vision loss among Australian men. Higher reported rates of vision loss in males with a LHON mutation are not supported by our work and other epidemiologic studies. Accurate knowledge of risk is essential for genetic counseling of individuals with LHON mutations. This knowledge could also inform the detection and validation of potential biomarkers and has implications for clinical trials of treatments aimed at preventing vision loss in LHON because an overestimated risk may lead to an underpowered study or a false claim of efficacy.
    Keywords:  LHON; blindness; epidemiology; genetic counseling; mitochondria; optic atrophy; penetrance; risk; vision loss
  40. Arch Toxicol. 2021 Dec;95(12): 3633-3650
      It has been nearly 15 years since the discovery of human-induced pluripotent stem cells (iPSCs). During this time, differentiation methods to targeted cells have dramatically improved, and many types of cells in the human body can be currently generated at high efficiency. In the cardiovascular field, the ability to generate human cardiomyocytes in vitro with the same genetic background as patients has provided a great opportunity to investigate human cardiovascular diseases at the cellular level to clarify the molecular mechanisms underlying the diseases and discover potential therapeutics. Additionally, iPSC-derived cardiomyocytes have provided a powerful platform to study drug-induced cardiotoxicity and identify patients at high risk for the cardiotoxicity; thus, accelerating personalized precision medicine. Moreover, iPSC-derived cardiomyocytes can be sources for cardiac cell therapy. Here, we review these achievements and discuss potential improvements for the future application of iPSC technology in cardiovascular diseases.
    Keywords:  Cardiomyocyte; Differentiation into subtypes; Disease modeling; Induced pluripotent stem cells; Maturation
  41. Mol Biol Cell. 2021 Oct 20. mbcE21060314
      The electron transport chain (ETC) is a well-studied and highly conserved metabolic pathway that produces ATP through generation of a proton gradient across the inner mitochondrial membrane coupled to oxidative phosphorylation. ETC mutations are associated with a wide array of human disease conditions and to aging-related phenotypes in a number of different organisms. In this study, we sought to better understand the role of the ETC in aging using a yeast model. A panel of ETC mutant strains that fail to survive starvation was used to isolate suppressor mutants that survive. These suppressors tend to fall into major nutrient sensing and signaling pathways, suggesting that the ETC is involved in proper starvation signaling to these pathways in yeast. These suppressors also partially restore ETC-associated gene expression and pH homeostasis defects, though it remains unclear if these phenotypes directly cause the suppression or are simply effects. This work further highlights the complex cellular network connections between metabolic pathways and signaling events in the cell, and their potential roles in aging and age-related diseases.
  42. Nat Neurosci. 2021 Oct 21.
      Amyotrophic lateral sclerosis overlapping with frontotemporal dementia (ALS/FTD) is a fatal and currently untreatable disease characterized by rapid cognitive decline and paralysis. Elucidating initial cellular pathologies is central to therapeutic target development, but obtaining samples from presymptomatic patients is not feasible. Here, we report the development of a cerebral organoid slice model derived from human induced pluripotent stem cells (iPSCs) that recapitulates mature cortical architecture and displays early molecular pathology of C9ORF72 ALS/FTD. Using a combination of single-cell RNA sequencing and biological assays, we reveal distinct transcriptional, proteostasis and DNA repair disturbances in astroglia and neurons. We show that astroglia display increased levels of the autophagy signaling protein P62 and that deep layer neurons accumulate dipeptide repeat protein poly(GA), DNA damage and undergo nuclear pyknosis that could be pharmacologically rescued by GSK2606414. Thus, patient-specific iPSC-derived cortical organoid slice cultures are a reproducible translational platform to investigate preclinical ALS/FTD mechanisms as well as novel therapeutic approaches.
  43. ACS Chem Biol. 2021 Oct 21.
      Mitochondrial proteases are interesting but challenging drug targets for multifactorial diseases, such as neurodegeneration and cancer. The mitochondrial inner membrane protease OMA1 is a bona fide drug target for heart failure supported by data from human linkage analysis and animal disease models, but presumably relevant for more indications. OMA1 acts at the intersection of energy metabolism and stress signaling. The protease cleaves the structural protein OPA1, which organizes the cristae, as well as the signaling peptide DELE1, which can stimulate the integrated stress response. OMA1 shows little activity under physiological conditions but hydrolyzes OPA1 in mitochondria destined for mitophagy and during apoptosis. Little is known about OMA1, its structure has not been solved, let alone its context-dependent regulation. Autocatalytic processing and the lack of OMA1 inhibitors are thereby creating the biggest roadblocks. This study introduces a scalable, cellular OMA1 protease assay suitable for high-throughput drug screening. The assay utilizes an engineered luciferase targeted to the inner membrane as artificial OMA1 substrate, whereby the reporter signal inversely correlates to OMA1 activity. Testing different screening protocols and sampling different compound collections validated the reporter and demonstrated that both OMA1 activators as well as OMA1 inhibitors can be identified with the assay. Ten kinase-targeted cancer drugs triggered OMA1 in the assays, which suggests-considering cardiotoxicity as a rather common side-effect of this class of drugs-cross-reactivity with the OMA1 pathway.
  44. Front Cell Dev Biol. 2021 ;9 735678
      Iron-sulfur (Fe/S) clusters (ISCs) are redox-active protein cofactors that their synthesis, transfer, and insertion into target proteins require many components. Mitochondrial ISC assembly is the foundation of all cellular ISCs in eukaryotic cells. The mitochondrial ISC cooperates with the cytosolic Fe/S protein assembly (CIA) systems to accomplish the cytosolic and nuclear Fe/S clusters maturation. ISCs are needed for diverse cellular functions, including nitrogen fixation, oxidative phosphorylation, mitochondrial respiratory pathways, and ribosome assembly. Recent research advances have confirmed the existence of different ISCs in enzymes that regulate DNA metabolism, including helicases, nucleases, primases, DNA polymerases, and glycosylases. Here we outline the synthesis of mitochondrial, cytosolic and nuclear ISCs and highlight their functions in DNA metabolism.
    Keywords:  DNA metabolism; DNA repair; DNA replication; genome stability; iron-sulfur (Fe-S) clusters
  45. Curr Opin Neurobiol. 2021 Oct 13. pii: S0959-4388(21)00107-0. [Epub ahead of print]72 80-90
      Leigh syndrome (LS) is a neurodegenerative disease characterized by bilaterally symmetric brainstem or basal ganglia lesions. More than 80 genes, largely impacting mitochondrial energy metabolism, can underlie LS, and no approved medicines exist. Described 70 years ago, LS was initially diagnosed by the characteristic, necrotic lesions on autopsy. It has been broadly assumed that antemortem neuroimaging abnormalities in these regions correspond to end-stage histopathology. However, clinical observations and animal studies suggest that neuroimaging findings may represent an intermediate state, that is more dynamic than previously appreciated, and even reversible. We review this literature, discuss related conditions that are treatable, and present two new LS cases with radiographic improvement. We review studies in which hypoxia reverses advanced LS in a mouse model. The fluctuating and potentially reversible nature of radiographic LS lesions will be important in clinical trial design. Better understanding of this plasticity could lead to new therapies.
  46. Stem Cell Reports. 2021 Oct 05. pii: S2213-6711(21)00491-4. [Epub ahead of print]
      In Parkinson's disease (PD), substantia nigra (SN) dopaminergic (DA) neurons degenerate, while related ventral tegmental area (VTA) DA neurons remain relatively unaffected. Here, we present a methodology that directs the differentiation of mouse and human pluripotent stem cells toward either SN- or VTA-like DA lineage and models their distinct vulnerabilities. We show that the level of WNT activity is critical for the induction of the SN- and VTA-lineage transcription factors Sox6 and Otx2, respectively. Both WNT signaling modulation and forced expression of these transcription factors can drive DA neurons toward the SN- or VTA-like fate. Importantly, the SN-like lineage enriched DA cultures recapitulate the selective sensitivity to mitochondrial toxins as observed in PD, while VTA-like neuron-enriched cultures are more resistant. Furthermore, a proteomics approach led to the identification of compounds that alter SN neuronal survival, demonstrating the utility of our strategy for disease modeling and drug discovery.
    Keywords:  derivation of substantia nigra dopaminergic neuronal lineage from pluripotent stem cells; directed differentiation of pluripotent stem cells into distinct dopaminergic subpopulations; modeling selective dopaminergic vulnerability in vitro; pluripotent stem cell-based model of Parkinson's disease
  47. Nat Metab. 2021 Oct;3(10): 1327-1341
      Calorie restriction (CR) promotes healthy ageing in diverse species. Recently, it has been shown that fasting for a portion of each day has metabolic benefits and promotes lifespan. These findings complicate the interpretation of rodent CR studies, in which animals typically eat only once per day and rapidly consume their food, which collaterally imposes fasting. Here we show that a prolonged fast is necessary for key metabolic, molecular and geroprotective effects of a CR diet. Using a series of feeding regimens, we dissect the effects of calories and fasting, and proceed to demonstrate that fasting alone recapitulates many of the physiological and molecular effects of CR. Our results shed new light on how both when and how much we eat regulate metabolic health and longevity, and demonstrate that daily prolonged fasting, and not solely reduced caloric intake, is likely responsible for the metabolic and geroprotective benefits of a CR diet.
  48. Mitochondrion. 2021 Oct 18. pii: S1567-7249(21)00143-4. [Epub ahead of print]
      Mitochondrial injury plays an important role in the occurrence and development of kidney diseases. However, the existing assays to determine mitochondrial function restrict our ability to understand the relationship between mitochondrial dysfunction and kidney damage. These limitations may be overcome by recent findings on urinary mitochondrial DNA (UmtDNA). Elevated UmtDNA level may serve as a surrogate biomarker of mitochondrial dysfunction, kidney damage, and progression and prognosis of kidney diseases. Herein, we review the recent research progress on UmtDNA in kidney diseases diagnosis and highlight the research areas that should be expanded in future as well as discuss the future perspectives.
    Keywords:  Biomarker; Kidney diseases; Mitochondrial dysfunction; Urinary mitochondrial DNA
  49. Redox Biol. 2021 Oct 14. pii: S2213-2317(21)00326-8. [Epub ahead of print]47 102166
      NADPH oxidase 4 (NOX4) regulates endothelial inflammation by producing hydrogen peroxide (H2O2) and to a lesser extent O2•-. The ratio of NOX4-derived H2O2 and O2•- can be altered by coenzyme Q (CoQ) mimics. Therefore, we hypothesize that cytochrome b5 reductase 3 (CYB5R3), a CoQ reductase abundant in vascular endothelial cells, regulates inflammatory activation. To examine endothelial CYB5R3 in vivo, we created tamoxifen-inducible endothelium-specific Cyb5r3 knockout mice (R3 KO). Radiotelemetry measurements of systolic blood pressure showed systemic hypotension in lipopolysaccharides (LPS) challenged mice, which was exacerbated in R3 KO mice. Meanwhile, LPS treatment caused greater endothelial dysfunction in R3 KO mice, evaluated by acetylcholine-induced vasodilation in the isolated aorta, accompanied by elevated mRNA expression of vascular adhesion molecule 1 (Vcam-1). Similarly, in cultured human aortic endothelial cells (HAEC), LPS and tumor necrosis factor α (TNF-α) induced VCAM-1 protein expression was enhanced by Cyb5r3 siRNA, which was ablated by silencing the Nox4 gene simultaneously. Moreover, super-resolution confocal microscopy indicated mitochondrial co-localization of CYB5R3 and NOX4 in HAECs. APEX2-based electron microscopy and proximity biotinylation also demonstrated CYB5R3's localization on the mitochondrial outer membrane and its interaction with NOX4, which was further confirmed by the proximity ligation assay. Notably, Cyb5r3 knockdown HAECs showed less total H2O2 but more mitochondrial O2•-. Using inactive or non-membrane bound active CYB5R3, we found that CYB5R3 activity and membrane translocation are needed for optimal generation of H2O2 by NOX4. Lastly, cells lacking the CoQ synthesizing enzyme COQ6 showed decreased NOX4-derived H2O2, indicating a requirement for endogenous CoQ in NOX4 activity. In conclusion, CYB5R3 mitigates endothelial inflammatory activation by assisting in NOX4-dependent H2O2 generation via CoQ.
    Keywords:  CYB5R3; CoQ; Inflammation; NOX4; ROS
  50. Methods Mol Biol. 2021 Oct 19.
      Human induced pluripotent stem cells (hiPSCs) can be expanded at limitless scale in vitro and give rise to various organotypic cells, cardiomyocytes (CMs) among them. Advanced protocols shape the differentiation process of pluripotent stem cells by controlled growth factor application. Modulating the Wnt signaling pathway is effective to direct hiPSCs to CMs (hiPSC-CMs) and native growth factors were replaced by small chemical compounds. Here, we describe a refined protocol for scalable generation of hiPSC-CMs that manipulates porcupine and tankyrase sub-pathways of Wnt signaling for tight inhibition of non-canonical Wnt signaling. The approach results in a differentiation efficiency toward hiPSC-CMs of 87 ± 0.9% in stirred bioreactor cultures and yields about 70 million hiPSC-CMs per 100 mL serum free cardiac differentiation medium. The differentiation protocol is easily adapted from 3D to 2D culture and vice versa and has been demonstrated to work with different hiPSC lines.
    Keywords:  3D culture; Bioreactor; Cardiomyocytes; Human induced pluripotent stem cells; Scalable differentiation process
  51. Stem Cell Reports. 2021 Oct 07. pii: S2213-6711(21)00490-2. [Epub ahead of print]
      Frontotemporal dementia type 3 (FTD3), caused by a point mutation in the charged multivesicular body protein 2B (CHMP2B), affects mitochondrial ultrastructure and the endolysosomal pathway in neurons. To dissect the astrocyte-specific impact of mutant CHMP2B expression, we generated astrocytes from human induced pluripotent stem cells (hiPSCs) and confirmed our findings in CHMP2B mutant mice. Our data provide mechanistic insights into how defective autophagy causes perturbed mitochondrial dynamics with impaired glycolysis, increased reactive oxygen species, and elongated mitochondrial morphology, indicating increased mitochondrial fusion in FTD3 astrocytes. This shift in astrocyte homeostasis triggers a reactive astrocyte phenotype and increased release of toxic cytokines, which accumulate in nuclear factor kappa b (NF-κB) pathway activation with increased production of CHF, LCN2, and C3 causing neurodegeneration.
    Keywords:  CHMP2B; FTD3; NF-kB; autophagy; complement 3; cytokines; hiPSC-derived astrocytes; mitochondria; reactive astrocytes
  52. Cell Rep. 2021 Oct 19. pii: S2211-1247(21)01331-0. [Epub ahead of print]37(3): 109864
      Increasing evidence suggests that neurodevelopmental alterations might contribute to increase the susceptibility to develop neurodegenerative diseases. We investigate the occurrence of developmental abnormalities in dopaminergic neurons in a model of Parkinson's disease (PD). We monitor the differentiation of human patient-specific neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and single-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes. The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S NESCs, neurons, and midbrain organoids compared to controls. We also observe accelerated dopaminergic differentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.
    Keywords:  LRRK2; NR2F1; Parkinson's disease; dopaminergic neurons
  53. FASEB J. 2021 Nov;35(11): e21965
      Obesity and metabolic disorders caused by energy surplus pose an increasing concern within the global population. Brown adipose tissue (BAT) dissipates energy through mitochondrial non-shivering thermogenesis, thus representing a powerful agent against obesity. Here we explore the novel role of a mitochondrial outer membrane protein, LETM1-domain containing 1 (LETMD1), in BAT. We generated a knockout (Letmd1KO ) mouse model and analyzed BAT morphology, function and gene expression under various physiological conditions. While the Letmd1KO mice are born normally and have normal morphology and body weight, they lose multilocular brown adipocytes completely and have diminished mitochondrial abundance, DNA copy number, cristae structure, and thermogenic gene expression in the intrascapular BAT, associated with elevated reactive oxidative stress. In consequence, the Letmd1KO mice fail to maintain body temperature in response to acute cold exposure without food and become hypothermic within 4 h. Although the cold-exposed Letmd1KO mice can maintain body temperature in the presence of food, they cannot upregulate expression of uncoupling protein 1 (UCP1) and convert white to beige adipocytes, nor can they respond to adrenergic stimulation. These results demonstrate that LETMD1 is essential for mitochondrial structure and function, and thermogenesis of brown adipocytes.
    Keywords:  LETM1 domain containing 1; brown adipose tissue; cold intolerance; mitochondria; thermogenesis