bims-mitdis Biomed News
on Mitochondrial Disorders
Issue of 2021‒02‒14
thirty-five papers selected by
Catalina Vasilescu
University of Helsinki

  1. Neuromuscul Disord. 2021 Jan 12. pii: S0960-8966(21)00005-5. [Epub ahead of print]
    Darin N, Siibak T, Peter B, Hedberg-Oldfors C, Kollberg G, Kalbin V, Moslemi AR, Macao B, Oldfors A, Falkenberg M.
      Mutations in the mitochondrial DNA polymerase gamma catalytic subunit (POLγA) compromise the stability of mitochondrial DNA (mtDNA) by leading to mutations, deletions and depletions in mtDNA. Patients with mutations in POLγA often differ remarkably in disease severity and age of onset. In this work we have studied the functional consequence of POLγA mutations in a patient with an uncommon and a very severe disease phenotype characterized by prenatal onset with intrauterine growth restriction, lactic acidosis from birth, encephalopathy, hepatopathy, myopathy, and early death. Muscle biopsy identified scattered COX-deficient muscle fibers, respiratory chain dysfunction and mtDNA depletion. We identified a novel POLγA mutation (p.His1134Tyr) in trans with the previously identified p.Thr251Ile/Pro587Leu double mutant. Biochemical characterization of the purified recombinant POLγA variants showed that the p.His1134Tyr mutation caused severe polymerase dysfunction. The p.Thr251Ile/Pro587Leu mutation caused reduced polymerase function in conditions of low dNTP concentration that mimic postmitotic tissues. Critically, when p.His1134Tyr and p.Thr251Ile/Pro587Leu were combined under these conditions, mtDNA replication was severely diminished and featured prominent stalling. Our data provide a molecular explanation for the patient´s mtDNA depletion and clinical features, particularly in tissues such as brain and muscle that have low dNTP concentration.
    Keywords:  DNA polymerase γ; Disease; Mitochondrial replication; Mutation; Perinatal phenotype
  2. Cells. 2021 Feb 10. pii: 369. [Epub ahead of print]10(2):
    Čunátová K, Reguera DP, Vrbacký M, Fernández-Vizarra E, Ding S, Fearnley IM, Zeviani M, Houštěk J, Mráček T, Pecina P.
      The oxidative phosphorylation (OXPHOS) system localized in the inner mitochondrial membrane secures production of the majority of ATP in mammalian organisms. Individual OXPHOS complexes form supramolecular assemblies termed supercomplexes. The complexes are linked not only by their function but also by interdependency of individual complex biogenesis or maintenance. For instance, cytochrome c oxidase (cIV) or cytochrome bc1 complex (cIII) deficiencies affect the level of fully assembled NADH dehydrogenase (cI) in monomeric as well as supercomplex forms. It was hypothesized that cI is affected at the level of enzyme assembly as well as at the level of cI stability and maintenance. However, the true nature of interdependency between cI and cIV is not fully understood yet. We used a HEK293 cellular model where the COX4 subunit was completely knocked out, serving as an ideal system to study interdependency of cI and cIV, as early phases of cIV assembly process were disrupted. Total absence of cIV was accompanied by profound deficiency of cI, documented by decrease in the levels of cI subunits and significantly reduced amount of assembled cI. Supercomplexes assembled from cI, cIII, and cIV were missing in COX4I1 knock-out (KO) due to loss of cIV and decrease in cI amount. Pulse-chase metabolic labeling of mitochondrial DNA (mtDNA)-encoded proteins uncovered a decrease in the translation of cIV and cI subunits. Moreover, partial impairment of mitochondrial protein synthesis correlated with decreased content of mitochondrial ribosomal proteins. In addition, complexome profiling revealed accumulation of cI assembly intermediates, indicating that cI biogenesis, rather than stability, was affected. We propose that attenuation of mitochondrial protein synthesis caused by cIV deficiency represents one of the mechanisms, which may impair biogenesis of cI.
    Keywords:  COX; COX4; OXPHOS; biogenesis interdependency; cI; cIV; cIV assembly; complex I; complexome profiling; knock-out; mitochondria; mitochondrial protein synthesis
  3. Med (N Y). 2021 Jan 15. 2(1): 49-73
    Frazier AE, Compton AG, Kishita Y, Hock DH, Welch AE, Amarasekera SSC, Rius R, Formosa LE, Imai-Okazaki A, Francis D, Wang M, Lake NJ, Tregoning S, Jabbari JS, Lucattini A, Nitta KR, Ohtake A, Murayama K, Amor DJ, McGillivray G, Wong FY, van der Knaap MS, Jeroen Vermeulen R, Wiltshire EJ, Fletcher JM, Lewis B, Baynam G, Ellaway C, Balasubramaniam S, Bhattacharya K, Freckmann ML, Arbuckle S, Rodriguez M, Taft RJ, Sadedin S, Cowley MJ, Minoche AE, Calvo SE, Mootha VK, Ryan MT, Okazaki Y, Stroud DA, Simons C, Christodoulou J, Thorburn DR.
      Background: In about half of all patients with a suspected monogenic disease, genomic investigations fail to identify the diagnosis. A contributing factor is the difficulty with repetitive regions of the genome, such as those generated by segmental duplications. The ATAD3 locus is one such region, in which recessive deletions and dominant duplications have recently been reported to cause lethal perinatal mitochondrial diseases characterized by pontocerebellar hypoplasia or cardiomyopathy, respectively.Methods: Whole exome, whole genome and long-read DNA sequencing techniques combined with studies of RNA and quantitative proteomics were used to investigate 17 subjects from 16 unrelated families with suspected mitochondrial disease.
    Findings: We report six different de novo duplications in the ATAD3 gene locus causing a distinctive presentation including lethal perinatal cardiomyopathy, persistent hyperlactacidemia, and frequently corneal clouding or cataracts and encephalopathy. The recurrent 68 Kb ATAD3 duplications are identifiable from genome and exome sequencing but usually missed by microarrays. The ATAD3 duplications result in the formation of identical chimeric ATAD3A/ATAD3C proteins, altered ATAD3 complexes and a striking reduction in mitochondrial oxidative phosphorylation complex I and its activity in heart tissue.
    Conclusions: ATAD3 duplications appear to act in a dominant-negative manner and the de novo inheritance infers a low recurrence risk for families, unlike most pediatric mitochondrial diseases. More than 350 genes underlie mitochondrial diseases. In our experience the ATAD3 locus is now one of the five most common causes of nuclear-encoded pediatric mitochondrial disease but the repetitive nature of the locus means ATAD3 diagnoses may be frequently missed by current genomic strategies.
    Funding: Australian NHMRC, US Department of Defense, Japanese AMED and JSPS agencies, Australian Genomics Health Alliance and Australian Mito Foundation.
    Keywords:  ATAD3; cardiomyopathy; genomics; mitochondrial disease; quantitative proteomics; segmental duplication
  4. Front Physiol. 2020 ;11 542950
    Haskins N, Bhuvanendran S, Anselmi C, Gams A, Kanholm T, Kocher KM, LoTempio J, Krohmaly KI, Sohai D, Stearrett N, Bonner E, Tuchman M, Morizono H, Jaiswal JK, Caldovic L.
      Mitochondrial enzymes involved in energy transformation are organized into multiprotein complexes that channel the reaction intermediates for efficient ATP production. Three of the mammalian urea cycle enzymes: N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase 1 (CPS1), and ornithine transcarbamylase (OTC) reside in the mitochondria. Urea cycle is required to convert ammonia into urea and protect the brain from ammonia toxicity. Urea cycle intermediates are tightly channeled in and out of mitochondria, indicating that efficient activity of these enzymes relies upon their coordinated interaction with each other, perhaps in a cluster. This view is supported by mutations in surface residues of the urea cycle proteins that impair ureagenesis in the patients, but do not affect protein stability or catalytic activity. We find the NAGS, CPS1, and OTC proteins in liver mitochondria can associate with the inner mitochondrial membrane (IMM) and can be co-immunoprecipitated. Our in-silico analysis of vertebrate NAGS proteins, the least abundant of the urea cycle enzymes, identified a protein-protein interaction region present only in the mammalian NAGS protein-"variable segment," which mediates the interaction of NAGS with CPS1. Use of super resolution microscopy showed that NAGS, CPS1 and OTC are organized into clusters in the hepatocyte mitochondria. These results indicate that mitochondrial urea cycle proteins cluster, instead of functioning either independently or in a rigid multienzyme complex.
    Keywords:  N-acetylglutamate synthase; carbamylphosphate synthetase 1; enzyme cluster; metabolite channeling; mitochondria; ornithine transcarbamylase; super-resolution imaging; urea cycle
  5. PeerJ. 2021 ;9 e10651
    Ding Y, Zhuo G, Guo Q, Li M.
      Leber's Hereditary Optic Neuropathy (LHON) was a common maternally inherited disease causing severe and permanent visual loss which mostly affects males. Three primary mitochondrial DNA (mtDNA) mutations, ND1 3460G>A, ND4 11778G>A and ND6 14484T>C, which affect genes encoding respiratory chain complex I subunit, are responsible for >90% of LHON cases worldwide. Families with maternally transmitted LHON show incomplete penetrance with a male preponderance for visual loss, suggesting the involvement of secondary mtDNA variants and other modifying factors. In particular, variants in mitochondrial tRNA (mt-tRNA) are important risk factors for LHON. These variants decreased the tRNA stability, prevent tRNA aminoacylation, influence the post-transcriptionalmodification and affect tRNA maturation. Failure of mt-tRNA metabolism subsequently impairs protein synthesis and expression, folding, and function of oxidative phosphorylation (OXPHOS) enzymes, which aggravates mitochondrial dysfunction that is involved in the progression and pathogenesis of LHON. This review summarizes the recent advances in our understanding of mt-tRNA biology and function, as well as the reported LHON-related mt-tRNA second variants; it also discusses the molecular mechanism behind the involvement of these variants in LHON.
    Keywords:   tRNA metabolism; LHON; OXPHOS; Variants; mt-tRNA
  6. Nutrients. 2021 Feb 06. pii: 534. [Epub ahead of print]13(2):
    Barros CDS, Livramento JB, Mouro MG, Higa EMS, Moraes CT, Tengan CH.
      L-Arginine (L-ARG) supplementation has been suggested as a therapeutic option in several diseases, including Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like syndrome (MELAS), arguably the most common mitochondrial disease. It is suggested that L-ARG, a nitric oxide (NO) precursor, can restore NO levels in blood vessels, improving cerebral blood flow. However, NO also participates in mitochondrial processes, such as mitochondrial biogenesis, the regulation of the respiratory chain, and oxidative stress. This study investigated the effects of L-ARG on mitochondrial function, nitric oxide synthesis, and nitro-oxidative stress in cell lines harboring the MELAS mitochondrial DNA (mtDNA) mutation (m.3243A>G). We evaluated mitochondrial enzyme activity, mitochondrial mass, NO concentration, and nitro-oxidative stress. Our results showed that m.3243A>G cells had increased NO levels and protein nitration at basal conditions. Treatment with L-ARG did not affect the mitochondrial function and mass but reduced the intracellular NO concentration and nitrated proteins in m.3243A>G cells. The same treatment led to opposite effects in control cells. In conclusion, we showed that the main effect of L-ARG was on protein nitration. Lowering protein nitration is probably involved in the mechanism related to L-ARG supplementation benefits in MELAS patients.
    Keywords:  arginine; mitochondrial DNA; mitochondrial disease; nitration; nitric oxide; oxidative stress
  7. NPJ Genom Med. 2020 Mar 02. 5(1): 7
    Slone J, Huang T.
      The recent success of gene therapy across multiple clinical trials has inspired a great deal of hope regarding the treatment of previously intractable genetic diseases. This optimism has been extended to the prospect of gene therapy for mitochondrial disorders, which are not only particularly severe but also difficult to treat. However, this hope must be tempered by the reality of the mitochondrial organelle, which possesses specific biological properties that complicate genetic manipulation. In this perspective, we will discuss some of these complicating factors, including the unique pathways used to express and import mitochondrial proteins. We will also present some ways in which these challenges can be overcome by genetic manipulation strategies tailored specifically for mitochondrial diseases.
  8. Radiol Case Rep. 2021 Apr;16(4): 807-810
    Casano KR, Ryan ME, Bicknese AR, Mithal DS.
      3-Hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency is a rare mitochondrial disorder of valine metabolism which may present with motor delay, hypotonia, ataxia, dystonia, seizures poor feeding, and organic aciduria. Neuroimaging findings include signal abnormalities of the deep gray matter, particularly the globus pallidi, and cerebral peduncles. We report a 15-month-old male patient with HIBCH deficiency who presented with paroxysmal tonic upgaze of infancy, motor delay, and hypotonia. MRI revealed characteristic bilateral, symmetric signal abnormalities in the basal ganglia and a mutation in HIBCH was confirmed with whole exome sequencing. HIBCH should be a consideration in patients with Leigh-like features, especially if neuroimaging changes primarily affect the globus pallidi. Recognition of this pattern may help guide targeted testing and expedite the diagnosis and treatment of this rare disease.
    Keywords:  3-Hydroxyisobutyryl-CoA hydrolase; Basal ganglia; HIBCH deficiency; Leigh syndrome; Mitochondrial disease
  9. Rev Neurosci. 2021 Feb 23. 32(2): 203-217
    Espino De la Fuente-Muñoz C, Arias C.
      Mitochondrial activity is essential to support neural functions, and changes in the integrity and activity of the mitochondria can contribute to synaptic damage and neuronal death, especially in degenerative diseases associated with age, such as Alzheimer's and Parkinson's disease. Currently, different approaches are used to treat these conditions, and one strategy under research is mitochondrial transplantation. For years, mitochondria have been shown to be transferred between cells of different tissues. This process has allowed several attempts to develop transplantation schemes by isolating functional mitochondria and introducing them into damaged tissue in particular to counteract the harmful effects of myocardial ischemia. Recently, mitochondrial transfer between brain cells has also been reported, and thus, mitochondrial transplantation for disorders of the nervous system has begun to be investigated. In this review, we focus on the relevance of mitochondria in the nervous system, as well as some mitochondrial alterations that occur in neurodegenerative diseases associated with age. In addition, we describe studies that have performed mitochondrial transplantation in various tissues, and we emphasize the advances in mitochondrial transplantation aimed at treating diseases of the nervous system.
    Keywords:  bioenergetic restoration; mitochondrial transplant; neurodegenerative diseases; neuronal survival
  10. Sci Rep. 2021 Feb 11. 11(1): 3531
    Akiyama N, Shimura M, Yamazaki T, Harashima H, Fushimi T, Tsuruoka T, Ebihara T, Ichimoto K, Matsunaga A, Saito-Tsuruoka M, Yatsuka Y, Kishita Y, Kohda M, Namba A, Kamei Y, Okazaki Y, Kosugi S, Ohtake A, Murayama K.
      Prenatal diagnoses of mitochondrial diseases caused by defects in nuclear DNA (nDNA) or mitochondrial DNA have been reported in several countries except for Japan. The present study aimed to clarify the status of prenatal genetic diagnosis of mitochondrial diseases caused by nDNA defects in Japan. A comprehensive genomic analysis was performed to diagnose more than 400 patients, of which, 13 families (16 cases) had requested prenatal diagnoses. Eight cases diagnosed with wild type homozygous or heterozygous variants same as either of the heterozygous parents continued the pregnancy and delivered healthy babies. Another eight cases were diagnosed with homozygous, compound heterozygous, or hemizygous variants same as the proband. Of these, seven families chose to terminate the pregnancy, while one decided to continue the pregnancy. Neonatal- or infantile-onset mitochondrial diseases show severe phenotypes and lead to lethality. Therefore, such diseases could be candidates for prenatal diagnosis with careful genetic counseling, and prenatal testing could be a viable option for families.
  11. Free Radic Biol Med. 2021 Feb 04. pii: S0891-5849(21)00072-1. [Epub ahead of print]
    Villalba JM, Navas P.
      Coenzyme Q (CoQ, ubiquinone/ubiquinol) is a ubiquitous and unique molecule that drives electrons in mitochondrial respiratory chain and an obligatory step for multiple metabolic pathways in aerobic metabolism. Alteration of CoQ biosynthesis or its redox stage are causing mitochondrial dysfunctions as hallmark of heterogeneous disorders as mitochondrial/metabolic, cardiovascular, and age-associated diseases. Regulation of CoQ biosynthesis pathway is demonstrated to affect all steps of proteins production of this pathway, posttranslational modifications and protein-protein-lipid interactions inside mitochondria. There is a bi-directional relationship between CoQ and the epigenome in which not only the CoQ status determines the epigenetic regulation of many genes, but CoQ biosynthesis is also a target for epigenetic regulation, which adds another layer of complexity to the many pathways by which CoQ levels are regulated by environmental and developmental signals to fulfill its functions in eukaryotic aerobic metabolism.
  12. Proc Natl Acad Sci U S A. 2021 Feb 16. pii: e1921828118. [Epub ahead of print]118(7):
    Kameritsch P, Singer M, Nuernbergk C, Rios N, Reyes AM, Schmidt K, Kirsch J, Schneider H, Müller S, Pogoda K, Cui R, Kirchner T, de Wit C, Lange-Sperandio B, Pohl U, Conrad M, Radi R, Beck H.
      The mitochondrial thioredoxin/peroxiredoxin system encompasses NADPH, thioredoxin reductase 2 (TrxR2), thioredoxin 2, and peroxiredoxins 3 and 5 (Prx3 and Prx5) and is crucial to regulate cell redox homeostasis via the efficient catabolism of peroxides (TrxR2 and Trxrd2 refer to the mitochondrial thioredoxin reductase protein and gene, respectively). Here, we report that endothelial TrxR2 controls both the steady-state concentration of peroxynitrite, the product of the reaction of superoxide radical and nitric oxide, and the integrity of the vascular system. Mice with endothelial deletion of the Trxrd2 gene develop increased vascular stiffness and hypertrophy of the vascular wall. Furthermore, they suffer from renal abnormalities, including thickening of the Bowman's capsule, glomerulosclerosis, and functional alterations. Mechanistically, we show that loss of Trxrd2 results in enhanced peroxynitrite steady-state levels in both vascular endothelial cells and vessels by using a highly sensitive redox probe, fluorescein-boronate. High steady-state peroxynitrite levels were further found to coincide with elevated protein tyrosine nitration in renal tissue and a substantial change of the redox state of Prx3 toward the oxidized protein, even though glutaredoxin 2 (Grx2) expression increased in parallel. Additional studies using a mitochondria-specific fluorescence probe (MitoPY1) in vessels revealed that enhanced peroxynitrite levels are indeed generated in mitochondria. Treatment with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin [Mn(III)TMPyP], a peroxynitrite-decomposition catalyst, blunted intravascular formation of peroxynitrite. Our data provide compelling evidence for a yet-unrecognized role of TrxR2 in balancing the nitric oxide/peroxynitrite ratio in endothelial cells in vivo and thus establish a link between enhanced mitochondrial peroxynitrite and disruption of vascular integrity.
    Keywords:  mitochondria; nitric oxide; peroxynitrite; redox; thioredoxin reductase
  13. Neurology. 2021 Feb 10. pii: 10.1212/WNL.0000000000011649. [Epub ahead of print]
    Valentino RR, Heckman MG, Johnson PW, Baker MC, Soto-Beasley AI, Walton RL, Koga S, Roemer SF, Suh E, Uitti RJ, Trojanowski JQ, Grossman M, Van Deerlin VM, Rademakers R, Wszolek ZK, Dickson DW, Ross OA.
      OBJECTIVE: To determine if stable polymorphisms which define mitochondrial haplogroups in mitochondrial DNA (mtDNA) are associated with Pick's disease risk, we genotyped 52 pathologically confirmed Pick's disease cases and 910 neurologically healthy controls and performed case-control association analysis.METHODS: 52 pathologically confirmed Pick's disease cases from Mayo Clinic Florida (N=38) and the University of Pennsylvania (N=14) and 910 neurologically healthy controls collected from Mayo Clinic Florida were genotyped for unique mtDNA haplogroup-defining variants. Mitochondrial haplogroups were determined, and in a case-control analysis, associations of mtDNA haplogroups with risk of Pick's disease were evaluated using logistic regression models that were adjusted for age and sex.
    RESULTS: No individual mtDNA haplogroups or super-haplogroups were significantly associated with risk of Pick's disease after adjusting for multiple testing (P<0.0021 considered significant). However, nominally significant (P<0.05) associations towards an increased risk of Pick's disease were observed for mtDNA haplogroup W (5.8% cases versus 1.6% controls, OR=4.78, P=0.020) and sub-haplogroup H4 (5.8% cases versus. 1.2% controls, OR=4.82, P=0.021).
    CONCLUSION: Our findings indicate that mtDNA variation is not a disease driver but may influence disease susceptibility. Ongoing genetic assessments in larger cohorts of PiD are currently underway.
    Keywords:  Pick’s disease [29]; genetics [91]; mitochondrial DNA haplogroups [95]; neurodegeneration [25]; tau [161]
  14. Biomolecules. 2021 Feb 05. pii: 222. [Epub ahead of print]11(2):
    Manganelli V, Capozzi A, Recalchi S, Riitano G, Mattei V, Longo A, Misasi R, Garofalo T, Sorice M.
      Cardiolipin (CL) is a hallmark phospholipid localized within the inner mitochondrial membrane. Upon several mitochondrial stress conditions, CL is translocated to specialized platforms, where it may play a role in signaling events to promote mitophagy and apoptosis. Recent studies characterized the molecular composition of MAM-associated lipid microdomains and their implications in regulating the autophagic process. In this study we analyzed the presence of CL within MAMs following autophagic stimulus and the possible implication of raft-like microdomains enriched in CL as a signaling platform in autophagosome formation. Human 2FTGH fibroblasts and SKNB-E-2 cells were stimulated under nutrient deprivation with HBSS. MAM fraction was obtained by an ultracentrifugation procedure and analyzed by HPTLC immunostaining. CL interactions with mitofusin2 (MFN2), calnexin (CANX) and AMBRA1 were analyzed by scanning confocal microscopy and coimmunoprecipitation. The analysis revealed that CL accumulates in MAMs fractions following autophagic stimulus, where it interacts with MFN2 and CANX. It associates with AMBRA1, which in turn interacts with BECN1 and WIPI1. This study demonstrates that CL is present in MAM fractions following autophagy triggering and interacts with the multimolecular complex (AMBRA1/BECN1/WIPI1) involved in autophagosome formation. It may have both structural and functional implications in the pathophysiology of neurodegenerative disease(s).
    Keywords:  MAMs; autophagosome; cardiolipin; mitochondria
  15. Elife. 2021 Feb 10. pii: e61798. [Epub ahead of print]10
    Rosenkranz SC, Shaposhnykov AA, Träger S, Engler JB, Witte ME, Roth V, Vieira V, Paauw N, Bauer S, Schwencke-Westphal C, Schubert C, Bal LC, Schattling B, Pless O, van Horssen J, Freichel M, Friese MA.
      While transcripts of neuronal mitochondrial genes are strongly suppressed in central nervous system inflammation, it is unknown whether this results in mitochondrial dysfunction and whether an increase of mitochondrial function can rescue neurodegeneration. Here we show that predominantly genes of the electron transport chain are suppressed in inflamed mouse neurons resulting in impaired mitochondrial complex IV activity. This was associated with posttranslational inactivation of the transcriptional co-regulator PGC-1α. In mice, neuronal overexpression of Ppargc1a, which encodes for PGC-1α, led to increased numbers of mitochondria, complex IV activity and maximum respiratory capacity. Moreover, Ppargc1a overexpressing neurons showed a higher mitochondrial membrane potential that related to an improved calcium buffering capacity. Accordingly, neuronal deletion of Ppargc1a aggravated neurodegeneration during experimental autoimmune encephalomyelitis (EAE), while neuronal overexpression of Ppargc1a ameliorated it. Our study provides systemic insights into mitochondrial dysfunction in neurons during inflammation and commends elevation of mitochondrial activity as a promising neuroprotective strategy.
    Keywords:  immunology; inflammation; mouse; neuroscience
  16. Int Immunol. 2021 Feb 09. pii: dxab006. [Epub ahead of print]
    Kobayashi T, Nguyen-Tien D, Ohshima D, Karyu H, Demoto-Shimabukuro S, Sugitani-Yoshida R, Toyama-Sorimachi N.
      SLC15A4 is an endolysosome-resident amino acid transporter that regulates innate immune responses, and is genetically associated with inflammatory diseases such as systemic lupus erythematosus (SLE) and colitis. SLC15A4-deficient mice showed the amelioration of symptoms of these model diseases, and thus SLC15A4 is a promising therapeutic target of SLE and colitis. For developing SLC15A4-based therapeutic strategy, understanding human SLC15A4's property is essential. Here we characterized human SLC15A4 and demonstrated that human SLC15A4 possessed pH- and temperature-dependent activity for the transportation of dipeptide or tripeptide. Human SLC15A4 localized in LAMP1 + compartments and constitutively associated with Raptor and LAMTORs. We also investigated SLC15A4's role in inflammatory responses using human plasmacytoid dendritic cell line, CAL-1. Knock-down (KD) of SLC15A4 gene in CAL-1 (SLC15A4-KD CAL1) impaired TLR7/8 or TLR9-triggered type I interferon (IFN-I) production and mTORC1 activity, indicating that human SLC15A4 is critical for TLR7/8/9-mediated inflammatory signaling. We also examined SLC15A4's role in autophagy response since SLC15A4 loss caused the decrease of mTORC1 activity, which greatly influences on autophagy. We found that SLC15A4 was not required for autophagy induction, but was critical for autophagy sustainability. Notably, SLC15A4-KD CAL1 severely decreased mitochondria membrane potential in the starvation condition. Our findings revealed that SLC15A4 plays a key role in mitochondria integrity in human cells, which might benefit immune cells to fulfill their functions in inflammatory milieu.
  17. Antioxidants (Basel). 2021 Feb 04. pii: 236. [Epub ahead of print]10(2):
    Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Munuera-Cabeza M, Suárez-Carrillo A, Talaverón-Rey M, Sánchez-Alcázar JA.
      Coenzyme Q10 (CoQ10 or ubiquinone) is a mobile proton and electron carrier of the mitochondrial respiratory chain with antioxidant properties widely used as an antiaging health supplement and to relieve the symptoms of many pathological conditions associated with mitochondrial dysfunction. Even though the hegemony of CoQ10 in the context of antioxidant-based treatments is undeniable, the future primacy of this quinone is hindered by the promising features of its numerous analogues. Despite the unimpeachable performance of CoQ10 therapies, problems associated with their administration and intraorganismal delivery has led clinicians and scientists to search for alternative derivative molecules. Over the past few years, a wide variety of CoQ10 analogues with improved properties have been developed. These analogues conserve the antioxidant features of CoQ10 but present upgraded characteristics such as water solubility or enhanced mitochondrial accumulation. Moreover, recent studies have proven that some of these analogues might even outperform CoQ10 in the treatment of certain specific diseases. The aim of this review is to provide detailed information about these Coenzyme Q10 analogues, as well as their functionality and medical applications.
    Keywords:  analogues; antioxidant; coenzyme Q10; medical applications; therapies
  18. Annu Rev Biochem. 2021 Feb 08.
    Ruprecht JJ, Kunji ERS.
      Members of the mitochondrial carrier family [solute carrier family 25 (SLC25)] transport nucleotides, amino acids, carboxylic acids, fatty acids, inorganic ions, and vitamins across the mitochondrial inner membrane. They are important for many cellular processes, such as oxidative phosphorylation of lipids and sugars, amino acid metabolism, macromolecular synthesis, ion homeostasis, cellular regulation, and differentiation. Here, we describe the functional elements of the transport mechanism of mitochondrial carriers, consisting of one central substrate-binding site and two gates with salt-bridge networks on either side of the carrier. Binding of the substrate during import causes three gate elements to rotate inward, forming the cytoplasmic network and closing access to the substrate-binding site from the intermembrane space. Simultaneously, three core elements rock outward, disrupting the matrix network and opening the substrate-binding site to the matrix side of the membrane. During export, substrate binding triggers conformational changes involving the same elements but operating in reverse. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see for revised estimates.
  19. Cell Mol Life Sci. 2021 Feb 12.
    Dadsena S, Jenner A, García-Sáez AJ.
      Apoptotic cell death is essential for development, immune function or tissue homeostasis, and its mis-regulation is linked to various diseases. Mitochondrial outer membrane permeabilization (MOMP) is a central event in the intrinsic apoptotic pathway and essential to control the execution of cell death. Here we review current concepts in regulation of MOMP focusing on the interaction network of the Bcl-2 family proteins as well as further regulatory elements influencing MOMP. As MOMP is a complex spatially and temporally controlled process, we point out the importance of single-molecule techniques to unveil processes which would be masked by ensemble measurements. We report key single-molecule studies applied to decipher the composition, assembly mechanism and structure of protein complexes involved in MOMP regulation.
    Keywords:  Apoptosis; Bcl-2 proteins; Mitochondrial outer membrane permeabilization (MOMP); Single-molecule techniques
  20. Elife. 2021 Feb 08. pii: e64821. [Epub ahead of print]10
    Díaz-García CM, Meyer DJ, Nathwani N, Rahman M, Martínez-François JR, Yellen G.
      When neurons engage in intense periods of activity, the consequent increase in energy demand can be met by the coordinated activation of glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. However, the trigger for glycolytic activation is unknown and the role for Ca2+ in the mitochondrial responses has been debated. Using genetically encoded fluorescent biosensors and NAD(P)H autofluorescence imaging in acute hippocampal slices, here we find that Ca2+ uptake into the mitochondria is responsible for the buildup of mitochondrial NADH, probably through Ca2+ activation of dehydrogenases in the TCA cycle. In the cytosol, we do not observe a role for the Ca2+/calmodulin signaling pathway, or AMPK, in mediating the rise in glycolytic NADH in response to acute stimulation. Aerobic glycolysis in neurons is triggered mainly by the energy demand resulting from either Na+ or Ca2+ extrusion, and in mouse dentate granule cells, Ca2+ creates the majority of this demand.
    Keywords:  brain metabolism; mitochondrial calcium; mitochondrial calcium uniporter; mouse; neuronal glycolysis; neuroscience
  21. J Inherit Metab Dis. 2021 Feb 13.
    Tucci S, Wagner C, Grünert SC, Matysiak U, Weinhold N, Klein J, Porta F, Spada M, Bordugo A, Rodella G, Furlan F, Sajeva A, Menni F, Spiekerkoetter U.
      Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common defect of mitochondrial β-oxidation. Confirmation diagnostics after newborn screening (NBS) can be performed either by enzyme testing and/ or by sequencing of the ACADM gene. Here, we report the results from enzyme testing in lymphocytes with gene variants from molecular analysis of the ACADM gene and with the initial acylcarnitine concentrations in the NBS sample. From April 2013 to August 2019, in 388 individuals with characteristic acylcarnitine profiles suggestive of MCADD the octanoyl-CoA-oxidation was measured in lymphocytes. In those individuals with residual activities <50%, molecular genetic analysis of the ACADM gene was performed. In 50% of the samples (195/388), MCADD with a residual activity ranging from 0-30% was confirmed. 45% of the samples (172/388) showed a residual activity >35% excluding MCADD. In the remaining 21 individuals, MCAD residual activity ranged from 30 to 35%. The latter group comprised both heterozygous carriers and individuals carrying two gene variants on different alleles. Twenty new variants could be identified and functionally classified based on their effect on enzyme function. C6 and C8 acylcarnitine species in NBS correlated with MCAD activity and disease severity. MCADD was only confirmed in half of the cases referred suggesting a higher false positive rate than expected. Measurement of the enzyme function in lymphocytes allowed fast confirmation diagnostics and clear determination of the pathogenicity of new gene variants. There is a clear correlation between genotype and enzyme function underlining the reproducibility of the functional measurement in vitro. This article is protected by copyright. All rights reserved.
    Keywords:  MCAD deficiency; confirmation diagnostics; fatty acid oxidation disorders; medium-chain acylcarnitines; newborn screening
  22. J Cell Biol. 2021 Mar 01. pii: e202003173. [Epub ahead of print]220(3):
    Audano M, Pedretti S, Ligorio S, Gualdrini F, Polletti S, Russo M, Ghisletti S, Bean C, Crestani M, Caruso D, De Fabiani E, Mitro N.
      The commitment of mesenchymal stem cells to preadipocytes is stimulated by hormonal induction. Preadipocytes induced to differentiate repress protein synthesis, remodel their cytoskeleton, and increase mitochondrial function to support anabolic pathways. These changes enable differentiation into mature adipocytes. Our understanding of the factors that coordinately regulate the early events of adipocyte differentiation remains incomplete. Here, by using multipronged approaches, we have identified zinc finger CCCH-type containing 10 (Zc3h10) as a critical regulator of the early stages of adipogenesis. Zc3h10 depletion in preadipocytes resulted in increased protein translation and impaired filamentous (F)-actin remodeling, with the latter detrimental effect leading to mitochondrial and metabolic dysfunction. These defects negatively affected differentiation to mature adipocytes. In contrast, Zc3h10 overexpression yielded mature adipocytes with remarkably increased lipid droplet size. Overall, our study establishes Zc3h10 as a fundamental proadipogenic transcription factor that represses protein synthesis and promotes F-actin/mitochondria dynamics to ensure proper energy metabolism and favor lipid accumulation.
  23. Cell Mol Life Sci. 2021 Feb 12.
    Shah M, Chacko LA, Joseph JP, Ananthanarayanan V.
      The ability of a mitochondrion to undergo fission and fusion, and to be transported and localized within a cell are central not just to proper functioning of mitochondria, but also to that of the cell. The cytoskeletal filaments, namely microtubules, F-actin and intermediate filaments, have emerged as prime movers in these dynamic mitochondrial shape and position transitions. In this review, we explore the complex relationship between the cytoskeleton and the mitochondrion, by delving into: (i) how the cytoskeleton helps shape mitochondria via fission and fusion events, (ii) how the cytoskeleton facilitates the translocation and anchoring of mitochondria with the activity of motor proteins, and (iii) how these changes in form and position of mitochondria translate into functioning of the cell.
    Keywords:  Cytoskeleton; Microtubules; Mitochondria; Mitochondrial dynamics; Molecular motors
  24. Biomedicines. 2021 Feb 04. pii: 153. [Epub ahead of print]9(2):
    Nikiforov NG, Ryabova A, Kubekina MV, Romanishkin ID, Trofimov KA, Chegodaev YS, Ivanova E, Orekhov AN.
      Atherosclerosis is associated with a chronic local inflammatory process in the arterial wall. Our previous studies have demonstrated the altered proinflammatory activity of circulating monocytes in patients with atherosclerosis. Moreover, atherosclerosis progression and monocyte proinflammatory activity were associated with mitochondrial DNA (mtDNA) mutations in circulating monocytes. The role of mitochondria in the immune system cells is currently well recognized. They can act as immunomodulators by releasing molecules associated with bacterial infection. We hypothesized that atherosclerosis can be associated with changes in the mitochondrial function of circulating monocytes. To test this hypothesis, we performed live staining of the mitochondria of CD14+ monocytes from healthy donors and atherosclerosis patients with MitoTracker Orange CMTMRos dye, which is sensitive to mitochondrial membrane potential. The intensity of such staining reflects mitochondrial functional activity. We found that parts of monocytes in the primary culture were characterized by low MitoTracker staining (MitoTracker-low monocytes). Such cells were morphologically similar to cells with normal staining and able to metabolize 5-aminolevulinic acid and accumulate the heme precursor protoporphyrin IX (PplX), indicative of partially preserved mitochondrial function. We assessed the proportion of MitoTracker-low monocytes in the primary culture for each study subject and compared the results with other parameters, such as monocyte ability to lipopolysaccharide (LPS)-induced proinflammatory activation and the intima-media thickness of carotid arteries. We found that the proportion of MitoTracker-low monocytes was associated with the presence of atherosclerotic plaques. An increased number of such monocytes in the primary culture was associated with a reduced proinflammatory activation ability of cells. The obtained results indicate the presence of circulating monocytes with mitochondrial dysfunction and the association of such cells with chronic inflammation and atherosclerosis development.
    Keywords:  MitoTracker Orange CMTMRos; atherosclerosis; inflammation; mitochondrial membrane potential; monocyte
  25. J Mol Cell Cardiol. 2021 Feb 05. pii: S0022-2828(21)00025-0. [Epub ahead of print]154 41-59
    Aravamudhan S, Türk C, Bock T, Keufgens L, Nolte H, Lang F, Krishnan RK, König T, Hammerschmidt P, Schindler N, Brodesser S, Rozsivalova DH, Rugarli E, Trifunovic A, Brüning J, Langer T, Braun T, Krüger M.
      Heart development relies on PTMs that control cardiomyocyte proliferation, differentiation and cardiac morphogenesis. We generated a map of phosphorylation sites during the early stages of cardiac postnatal development in mice; we quantified over 10,000 phosphorylation sites and 5000 proteins that were assigned to different pathways. Analysis of mitochondrial proteins led to the identification of PGC-1- and ERR-induced regulator in muscle 1 (PERM1), which is specifically expressed in skeletal muscle and heart tissue and associates with the outer mitochondrial membrane. We demonstrate PERM1 is subject to rapid changes mediated by the UPS through phosphorylation of its PEST motif by casein kinase 2. Ablation of Perm1 in mice results in reduced protein expression of lipin-1 accompanied by accumulation of specific phospholipid species. Isolation of Perm1-deficient mitochondria revealed significant downregulation of mitochondrial transport proteins for amino acids and carnitines, including SLC25A12/13/29/34 and CPT2. Consistently, we observed altered levels of various lipid species, amino acids, and acylcarnitines in Perm1-/- mitochondria. We conclude that the outer mitochondrial membrane protein PERM1 regulates homeostasis of lipid and amino acid metabolites in mitochondria.
    Keywords:  Heart development; Lipid metabolism; Mitochondria; PERM1; Phosphoproteomics; SILAC
  26. Nat Genet. 2021 Feb 08.
    Cheng F, Zhao J, Wang Y, Lu W, Liu Z, Zhou Y, Martin WR, Wang R, Huang J, Hao T, Yue H, Ma J, Hou Y, Castrillon JA, Fang J, Lathia JD, Keri RA, Lightstone FC, Antman EM, Rabadan R, Hill DE, Eng C, Vidal M, Loscalzo J.
      Technological and computational advances in genomics and interactomics have made it possible to identify how disease mutations perturb protein-protein interaction (PPI) networks within human cells. Here, we show that disease-associated germline variants are significantly enriched in sequences encoding PPI interfaces compared to variants identified in healthy participants from the projects 1000 Genomes and ExAC. Somatic missense mutations are also significantly enriched in PPI interfaces compared to noninterfaces in 10,861 tumor exomes. We computationally identified 470 putative oncoPPIs in a pan-cancer analysis and demonstrate that oncoPPIs are highly correlated with patient survival and drug resistance/sensitivity. We experimentally validate the network effects of 13 oncoPPIs using a systematic binary interaction assay, and also demonstrate the functional consequences of two of these on tumor cell growth. In summary, this human interactome network framework provides a powerful tool for prioritization of alleles with PPI-perturbing mutations to inform pathobiological mechanism- and genotype-based therapeutic discovery.
  27. Am J Physiol Cell Physiol. 2021 Feb 10.
    Qualls AE, Southern WM, Call JA.
      Skeletal muscle mitochondria are highly adaptable, highly dynamic organelles that maintain the functional integrity of the muscle fiber by providing ATP for contraction and cellular homeostasis (e.g., Na+/K+ ATPase). Emerging as early modulators of inflammation, mitochondria sense and respond to cellular stress. Mitochondria communicate with the environment, in part, by release of physical signals called mitochondrial-derived damage-associated molecular patterns (mito-DAMPs) and deviation from routine function (e.g. reduced ATP production, Ca2+ overload). When skeletal muscle is compromised, mitochondria contribute to an acute inflammatory response necessary for myofibril regeneration; however, exhaustive signaling associated with altered or reduced mitochondrial function can be detrimental to muscle outcomes. Here we describe changes in mitochondrial content, structure, and function following skeletal muscle injury and disuse and highlight the influence of mitochondrial-cytokine crosstalk on muscle regeneration and recovery. While the appropriate therapeutic modulation following muscle stressors remains unknown, retrospective gene expression analysis reveal interleukin-6 (IL-6), interleukin-1b (IL-1b), chemokine C-X-C motif ligand 1 (CXCL1), and monocyte chemoattractant protein 1 (MCP-1) are significantly upregulated following three unique muscle injuries. These cytokines modulate mitochondrial function and execute bona fide pleiotropic roles that can aid functional recovery of muscle; however, when aberrant, chronically disrupt healing partly by exacerbating mitochondrial dysfunction. Multidisciplinary efforts to delineate the opposing regulatory roles of inflammatory cytokines in the muscle-mitochondrial environment are required to modulate regenerative behavior following skeletal muscle injury or disuse. Future therapeutic directions to consider include quenching or limited release of mito-DAMPs and cytokines present in cytosol or circulation.
    Keywords:  IL-6; inflammation; mito-DAMPs; mitochondria; skeletal muscle injury
  28. PLoS Genet. 2021 Feb 11. 17(2): e1009360
    Chen YC, Huang HR, Hsu CH, Ou CY.
      Neurons are highly specialized cells with polarized cellular processes and subcellular domains. As vital organelles for neuronal functions, mitochondria are distributed by microtubule-based transport systems. Although the essential components of mitochondrial transport including motors and cargo adaptors are identified, it is less clear how mitochondrial distribution among somato-dendritic and axonal compartment is regulated. Here, we systematically study mitochondrial motors, including four kinesins, KIF5, KIF17, KIF1, KLP-6, and dynein, and transport regulators in C. elegans PVD neurons. Among all these motors, we found that mitochondrial export from soma to neurites is mainly mediated by KIF5/UNC-116. Interestingly, UNC-116 is especially important for axonal mitochondria, while dynein removes mitochondria from all plus-end dendrites and the axon. We surprisingly found one mitochondrial transport regulator for minus-end dendritic compartment, TRAK-1, and two mitochondrial transport regulators for axonal compartment, CRMP/UNC-33 and JIP3/UNC-16. While JIP3/UNC-16 suppresses axonal mitochondria, CRMP/UNC-33 is critical for axonal mitochondria; nearly no axonal mitochondria present in unc-33 mutants. We showed that UNC-33 is essential for organizing the population of UNC-116-associated microtubule bundles, which are tracks for mitochondrial trafficking. Disarrangement of these tracks impedes mitochondrial transport to the axon. In summary, we identified a compartment-specific transport regulation of mitochondria by UNC-33 through organizing microtubule tracks for different kinesin motors other than microtubule polarity.
  29. BMC Med Genomics. 2021 Feb 12. 14(1): 47
    Doan RN, Miller MB, Kim SN, Rodin RE, Ganz J, Bizzotto S, Morillo KS, Huang AY, Digumarthy R, Zemmel Z, Walsh CA.
      BACKGROUND: Mosaic mutations contribute to numerous human disorders. As such, the identification and precise quantification of mosaic mutations is essential for a wide range of research applications, clinical diagnoses, and early detection of cancers. Currently, the low-throughput nature of single allele assays (e.g., allele-specific ddPCR) commonly used for genotyping known mutations at very low alternate allelic fractions (AAFs) have limited the integration of low-level mosaic analyses into clinical and research applications. The growing importance of mosaic mutations requires a more rapid, low-cost solution for mutation detection and validation.METHODS: To overcome these limitations, we developed Multiple Independent Primer PCR Sequencing (MIPP-Seq) which combines the power of ultra-deep sequencing and truly independent assays. The accuracy of MIPP-seq to quantifiable detect and measure extremely low allelic fractions was assessed using a combination of SNVs, insertions, and deletions at known allelic fractions in blood and brain derived DNA samples.
    RESULTS: The Independent amplicon analyses of MIPP-Seq markedly reduce the impact of allelic dropout, amplification bias, PCR-induced, and sequencing artifacts. Using low DNA inputs of either 25 ng or 50 ng of DNA, MIPP-Seq provides sensitive and quantitative assessments of AAFs as low as 0.025% for SNVs, insertion, and deletions.
    CONCLUSIONS: MIPP-Seq provides an ultra-sensitive, low-cost approach for detecting and validating known and novel mutations in a highly scalable system with broad utility spanning both research and clinical diagnostic testing applications. The scalability of MIPP-Seq allows for multiplexing mutations and samples, which dramatically reduce costs of variant validation when compared to methods like ddPCR. By leveraging the power of individual analyses of multiple unique and independent reactions, MIPP-Seq can validate and precisely quantitate extremely low AAFs across multiple tissues and mutational categories including both indels and SNVs. Furthermore, using Illumina sequencing technology, MIPP-seq provides a robust method for accurate detection of novel mutations at an extremely low AAF.
    Keywords:  Mosaic; Sequencing; Somatic; Validate; Variation
  30. iScience. 2021 Feb 19. 24(2): 102034
    Hsieh JY, Yang HP, Tewary SK, Cheng HC, Liu YL, Tai SC, Chen WL, Hsu CH, Huang TJ, Chou CJ, Huang YN, Peng CT, Ho MC, Liu GY, Hung HC.
      Human mitochondrial NAD(P)+-dependent malic enzyme (ME2) is well recognized to associate with cancer cell metabolism, and the single nucleotide variants (SNVs) of ME2 may play a role in enzyme regulation. Here we reported that the SNVs of ME2 occurring in the allosteric sites lead to inactivation or overactivation of ME2. Two ME2-SNVs, ME2_R67Q and ME2-R484W, that demonstrated inactivating or overactivating enzyme activities of ME2, respectively, have different impact toward the cells. The cells with overactivating SNV enzyme, ME2_R484W, grow more rapidly and are more resistant to cellular senescence than the cells with wild-type or inactivating SNV enzyme, ME2_R67Q. Crystal structures of these two ME2-SNVs reveal that ME2_R67Q was an inactivating "dead form," and ME2_R484W was an overactivating "closed form" of the enzyme. The resolved ME2-SNV structures provide a molecular basis to explain the abnormal kinetic properties of these SNV enzymes.
    Keywords:  Biological Sciences; Cancer; Cell Biology; Genetics; Structural Biology
  31. Mol Aspects Med. 2021 Feb 04. pii: S0098-2997(21)00004-2. [Epub ahead of print] 100944
    Lucock M.
      The biological role of two key vitamins, folic acid and vitamin D is so fundamental to life processes, it follows that their UV sensitivity, dietary abundance (both key exposomal factors) and variability in dependent genes will modify their functional efficacy, particularly in the context of maintaining the integrity and function of genome and epigenome. This article therefore examines folate and vitamin D-related phenotypic adaptation to environmental factors which vary across the human life cycle as well as over an evolutionary time-scale. Molecular mechanisms, key nutrigenomic factors, phenotypic maladaptation and evolutionary models are discussed.
    Keywords:  Adaptation; Epigenetics; Evolution; Exposome; Folic acid; Phenome; Vitamin D
  32. Int J Mol Sci. 2021 Jan 25. pii: 1161. [Epub ahead of print]22(3):
    Alonso-Barroso E, Pérez B, Desviat LR, Richard E.
      Propionic acidemia (PA), one of the most frequent life-threatening organic acidemias, is caused by mutations in either the PCCA or PCCB genes encoding both subunits of the mitochondrial propionyl-CoA carboxylase (PCC) enzyme. Cardiac alterations (hypertrophy, dilated cardiomyopathy, long QT) are one of the major causes of mortality in patients surviving the neonatal period. To overcome limitations of current cellular models of PA, we generated induced pluripotent stem cells (iPSCs) from a PA patient with defects in the PCCA gene, and successfully differentiated them into cardiomyocytes. PCCA iPSC-derived cardiomyocytes exhibited reduced oxygen consumption, an accumulation of residual bodies and lipid droplets, and increased ribosomal biogenesis. Furthermore, we found increased protein levels of HERP, GRP78, GRP75, SIG-1R and MFN2, suggesting endoplasmic reticulum stress and calcium perturbations in these cells. We also analyzed a series of heart-enriched miRNAs previously found deregulated in the heart tissue of a PA murine model and confirmed their altered expression. Our novel results show that PA iPSC-cardiomyocytes represent a promising model for investigating the pathological mechanisms underlying PA cardiomyopathies, also serving as an ex vivo platform for therapeutic evaluation.
    Keywords:  cardiac dysfunction; disease model; iPSC; iPSC-derived cardiomyocytes; propionic acidemia
  33. NPJ Genom Med. 2020 Jul 02. 5(1): 25
    Graham Linck EJ, Richmond PA, Tarailo-Graovac M, Engelke U, Kluijtmans LAJ, Coene KLM, Wevers RA, Wasserman W, van Karnebeek CDM, Mostafavi S.
      Many inborn errors of metabolism (IEMs) are amenable to treatment, therefore early diagnosis is imperative. Whole-exome sequencing (WES) variant prioritization coupled with phenotype-guided clinical and bioinformatics expertise is typically used to identify disease-causing variants; however, it can be challenging to identify the causal candidate gene when a large number of rare and potentially pathogenic variants are detected. Here, we present a network-based approach, metPropagate, that uses untargeted metabolomics (UM) data from a single patient and a group of controls to prioritize candidate genes in patients with suspected IEMs. We validate metPropagate on 107 patients with IEMs diagnosed in Miller et al. (2015) and 11 patients with both CNS and metabolic abnormalities. The metPropagate method ranks candidate genes by label propagation, a graph-smoothing algorithm that considers each gene's metabolic perturbation in addition to the network of interactions between neighbors. metPropagate was able to prioritize at least one causative gene in the top 20th percentile of candidate genes for 92% of patients with known IEMs. Applied to patients with suspected neurometabolic disease, metPropagate placed at least one causative gene in the top 20th percentile in 9/11 patients, and ranked the causative gene more highly than Exomiser's phenotype-based ranking in 6/11 patients. Interestingly, ranking by a weighted combination of metPropagate and Exomiser scores resulted in improved prioritization. The results of this study indicate that network-based analysis of UM data can provide an additional mode of evidence to prioritize causal genes in patients with suspected IEMs.
  34. Neurosci Res. 2021 Feb 06. pii: S0168-0102(21)00030-4. [Epub ahead of print]
    Nii T, Eguchi R, Otsuguro KI.
      Hydrogen sulfide (H2S) is a well-known inhibitor of the mitochondrial electron transport chain (ETC). H2S also increases intracellular Ca2+ levels in astrocytes, which are glial cells and that supply lactate as an energy substrate to neurons. Here, we examined the relationship between H2S-induced metabolic changes and Ca2+ responses in spinal cord astrocytes. Na2S (150 μM), an H2S donor, increased the intracellular Ca2+ concentration, which was inhibited by an ETC inhibitor and an uncoupler of mitochondrial oxidative phosphorylation. Na2S also increased the accumulation of extracellular lactate. Na2S alone did not change intracellular ATP content, but decreased it when glycolysis was inhibited. The Na2S-induced Ca2+ increase and accumulation of extracellular lactate were inhibited by emetine, an inhibitor of translocon complex, which mediates Ca2+ leak from the endoplasmic reticulum (ER). Furthermore, an inhibitor of the Ca2+-sensitive NADH shuttle decreased Na2S-mediated accumulation of lactate. We conclude that inhibition of the mitochondrial ETC by H2S induces Ca2+ release from mitochondria and the ER in spinal cord astrocytes, which increases lactate production. H2S may promote glycolysis by activating the Ca2+-sensitive NADH shuttle and facilitating the supply of lactate from astrocytes to neurons.
    Keywords:  ATP; astrocytes; calcium; hydrogen sulfide; lactate
  35. J Cell Sci. 2021 Feb 08. pii: jcs252023. [Epub ahead of print]134(5):
    Pernas L.
      The study of metabolic changes associated with host-pathogen interactions have largely focused on the strategies that microbes use to subvert host metabolism to support their own proliferation. However, recent reports demonstrate that changes in host cell metabolism can also be detrimental to pathogens and restrict their growth. In this Review, I present a framework to consider how the host cell exploits the multifaceted roles of metabolites to defend against microbes. I also highlight how the rewiring of metabolic processes can strengthen cellular barriers to microbial invasion, regulate microbial virulence programs and factors, limit microbial access to nutrient sources and generate toxic environments for microbes. Collectively, the studies described here support a critical role for the rewiring of cellular metabolism in the defense against microbes. Further study of host-pathogen interactions from this framework has the potential to reveal novel aspects of host defense and metabolic control, and may inform how human metabolism impacts the progression of infectious disease.
    Keywords:  Cellular defense; Host–pathogen interaction; Immunity; Metabolism; Metabolites; Microbes; Mitochondria; Nutrients