bims-misrem Biomed News
on Mitochondria and sarcoplasmic reticulum in muscle mass
Issue of 2021‒06‒06
five papers selected by
Rafael Antonio Casuso Pérez
University of Granada

  1. Metabolites. 2021 May 18. pii: 323. [Epub ahead of print]11(5):
      Sarcopenia is an aging-induced syndrome characterized by a progressive reduction of skeletal muscle mass and strength. Increasing evidence has attested that appropriate and scientific exercise could induce autophagy or optimize the functional status of autophagy, which plays a critical role in senescent muscular dystrophy. As a publicly recognized strategy for extending lifespan and improving the health of the elderly, the underlying mechanisms of lifelong regular aerobic exercise for the prevention of sarcopenia have not been fully elucidated. To explore the role of lifelong aerobic exercise in the beneficial regulation of autophagic signaling pathways in senescent skeletal muscle, the natural aging mice were used as the sarcopenia model and subjected to lifelong treadmill running to evaluate corresponding parameters related to skeletal muscle atrophy and autophagic signaling pathways. Compared with the young control mice, the aged mice showed a significant reduction in skeletal muscle mass, gastrocnemius muscle weight/body weight (GMW/BW) ratio, and cross-sectional areas (CSA) of skeletal muscle fibers (p < 0.01). In contrast, lifelong aerobic exercise effectively rescued these reduced biomarkers associated with muscle atrophy. Moreover, as shown in the activated AMPK/PGC-1α signaling pathway, lifelong aerobic exercise successfully prevented the aging-induced impairment of the ubiquitin-proteasome system (UPS), excessive apoptosis, defective autophagy, and mitochondrial dysfunction. The exercise-induced autophagy suppressed the key regulatory components of the UPS, inhibited excessive apoptosis, and optimized mitochondrial quality control, thereby preventing and delaying aging-induced skeletal muscle atrophy.
    Keywords:  apoptosis; autophagy; lifelong aerobic exercise; mitochondrial quality control; sarcopenia; ubiquitin-proteasome system
  2. Int J Mol Sci. 2021 May 13. pii: 5179. [Epub ahead of print]22(10):
      Periods of muscle disuse promote marked mitochondrial alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. Thus, understanding the molecular underpinnings of muscle mitochondrial decline with prolonged inactivity is of considerable interest. There are translational applications to patients subjected to limb immobilization following injury, illness-induced bed rest, neuropathies, and even microgravity. Studies in these patients, as well as on various pre-clinical rodent models have elucidated the pathways involved in mitochondrial quality control, such as mitochondrial biogenesis, mitophagy, fission and fusion, and the corresponding mitochondrial derangements that underlie the muscle atrophy that ensues from inactivity. Defective organelles display altered respiratory function concurrent with increased accumulation of reactive oxygen species, which exacerbate myofiber atrophy via degradative pathways. The preservation of muscle quality and function is critical for maintaining mobility throughout the lifespan, and for the prevention of inactivity-related diseases. Exercise training is effective in preserving muscle mass by promoting favourable mitochondrial adaptations that offset the mitochondrial dysfunction, which contributes to the declines in muscle and whole-body metabolic health. This highlights the need for further investigation of the mechanisms in which mitochondria contribute to disuse-induced atrophy, as well as the specific molecular targets that can be exploited therapeutically.
    Keywords:  apoptosis; autophagy; mitochondrial biogenesis; mitochondrial quality control; mitophagy; muscle disuse; reactive oxygen species; skeletal muscle atrophy
  3. J Cachexia Sarcopenia Muscle. 2021 May 31.
      BACKGROUND: Declines in cardiorespiratory fitness (CRF) and fat-free mass (FFM) with age are linked to mortality, morbidity and poor quality of life. High-intensity interval training (HIIT) has been shown to improve CRF and FFM in many groups, but its efficacy in the very old, in whom comorbidities are present is undefined. We aimed to assess the efficacy of and physiological/metabolic responses to HIIT, in a cohort of octogenarians with comorbidities (e.g. hypertension and osteoarthritis).METHODS: Twenty-eight volunteers (18 men, 10 women, 81.2 ± 0.6 years, 27.1 ± 0.6 kg·m-2 ) with American Society of Anaesthesiology (ASA) Grade 2-3 status each completed 4 weeks (12 sessions) HIIT after a control period of equal duration. Before and after each 4 week period, subjects underwent body composition assessments and cardiopulmonary exercise testing. Quadriceps muscle biopsies (m. vastus lateralis) were taken to quantify anabolic signalling, mitochondrial oxidative phosphorylation, and cumulative muscle protein synthesis (MPS) over 4-weeks.
    RESULTS: In comorbid octogenarians, HIIT elicited improvements in CRF (anaerobic threshold: +1.2 ± 0.4 ml·kg-1 ·min-1 , P = 0.001). HIIT also augmented total FFM (47.2 ± 1.4 to 47.6 ± 1.3 kg, P = 0.04), while decreasing total fat mass (24.8 ± 1.3 to 24 ± 1.2 kg, P = 0.0002) and body fat percentage (33.1 ± 1.5 to 32.1 ± 1.4%, P = 0.0008). Mechanistically, mitochondrial oxidative phosphorylation capacity increased after HIIT (i.e. citrate synthase activity: 52.4 ± 4 to 67.9 ± 5.1 nmol·min-1 ·mg-1 , P = 0.005; membrane protein complexes (C): C-II, 1.4-fold increase, P = 0.002; C-III, 1.2-fold increase, P = 0.03), as did rates of MPS (1.3 ± 0.1 to 1.5 ± 0.1%·day-1 , P = 0.03). The increase in MPS was supported by up-regulated phosphorylation of anabolic signalling proteins (e.g. AKT, p70S6K, and 4E-BP1; all P < 0.05). There were no changes in any of these parameters during the control period. No adverse events were reported throughout the study.
    CONCLUSIONS: The HIIT enhances skeletal muscle mass and CRF in octogenarians with disease, with up-regulation of MPS and mitochondrial capacity likely underlying these improvements. HIIT can be safely delivered to octogenarians with disease and is an effective, time-efficient intervention to improve muscle mass and physical function in a short time frame.
    Keywords:  Ageing; Disease; Exercise; HIIT; Muscle; Protein synthesis
  4. Aging Cell. 2021 Jun 01. e13379
      Increased levels of dysfunctional mitochondria within skeletal muscle are correlated with numerous age-related physiopathological conditions. Improving our understanding of the links between mitochondrial function and muscle proteostasis, and the role played by individual genes and regulatory networks, is essential to develop treatments for these conditions. One potential player is the mitochondrial outer membrane protein Fis1, a crucial fission factor heavily involved in mitochondrial dynamics in yeast but with an unknown role in higher-order organisms. By using Drosophila melanogaster as a model, we explored the effect of Fis1 mutations generated by transposon Minos-mediated integration. Mutants exhibited a higher ratio of damaged mitochondria with age as well as elevated reactive oxygen species levels compared with controls. This caused an increase in oxidative stress, resulting in large accumulations of ubiquitinated proteins, accelerated muscle function decline, and mitochondrial myopathies in young mutant flies. Ectopic expression of Fis1 isoforms was sufficient to suppress this phenotype. Loss of Fis1 led to unbalanced mitochondrial proteostasis within fly muscle, decreasing both flight capabilities and lifespan. Fis1 thus clearly plays a role in fly mitochondrial dynamics. Further investigations into the detailed function of Fis1 are necessary for exploring how mitochondrial function correlates with muscle health during aging.
    Keywords:   Drosophila melanogaster ; Fis1; aging; mitochondria
  5. Biochim Biophys Acta Proteins Proteom. 2021 May 27. pii: S1570-9639(21)00086-8. [Epub ahead of print]1869(9): 140680
      Beta-cell death and dysfunction are involved in the development of type 1 and 2 diabetes. ER-stress impairs beta-cells function resulting in pro-apoptotic stimuli that promote cell death. Hence, the identification of protective mechanisms in response to ER-stress could lead to novel therapeutic targets and insight in the pathology of these diseases. Here, we report the identification of proteins involved in dysregulated pathways upon thapsigargin treatment of MIN6 cells. Utilizing quantitative proteomics we identified upregulation of proteins involved in protein folding, unfolded protein response, redox homeostasis, proteasome processes associated with endoplasmic reticulum and downregulation of TCA cycle, cellular respiration, lipid metabolism and ribosome assembly processes associated to mitochondria and eukaryotic initiation translation factor components. Subsequently, pro-inflammatory cytokine treatment was performed to mimic pathological changes observed in beta-cells during diabetes. Cytokines induced ER stress and impaired mitochondrial function in beta-cells corroborating the results obtained with the proteomic approach. HSPB1 levels are increased by prolactin on pancreatic beta-cells and this protein is a key factor for cytoprotection although its role has not been fully elucidated. Here we show that while up-regulation of HSPB1 was able to restore the mitochondrial dysfunction induced by beta-cells' exposure to inflammatory cytokines, silencing of this chaperone abrogated the beneficial effects promoted by PRL. Taken together, our results outline the importance of HSPB1 to mitigate beta-cell dysfunction. Further studies are needed to elucidate its role in diabetes.
    Keywords:  Diabetes; ER stress; HSPB1; Mass spectrometry; Mitochondrial bioenergetics; Pancreatic beta cells; Proteomics; UPR