bims-misrem Biomed News
on Mitochondria and sarcoplasmic reticulum in muscle mass
Issue of 2020‒07‒19
seven papers selected by
Rafael Antonio Casuso Pérez
University of Granada


  1. Mol Metab. 2020 Jul 10. pii: S2212-8778(20)30124-1. [Epub ahead of print] 101050
    Wefers J, Connell NJ, Fealy CE, Andriessen C, de Wit V, van Moorsel D, Moonen-Kornips E, Jörgensen JA, Hesselink MKC, Havekes B, Hoeks J, Schrauwen P.
      OBJECTIVE: Skeletal muscle mitochondrial function and energy metabolism displays day-night rhythmicity in healthy, young individuals. 24-h rhythmicity of metabolism has been implicated in the etiology of age-related metabolic disorders. Whether day-night rhythmicity in skeletal muscle mitochondrial function and energy metabolism is altered in older, metabolically comprised humans is so far unknown.METHODS: Twelve male overweight volunteers with impaired glucose tolerance and insulin sensitivity stayed in a metabolic research unit for 2 days under free living conditions with regular meals. Indirect calorimetry was performed at five time points (8AM, 1PM, 6PM, 11PM, 4AM), followed by a muscle biopsy. Mitochondrial oxidative capacity was measured in permeabilized muscle fibers using high-resolution respirometry.
    RESULTS: Mitochondrial oxidative capacity did not display rhythmicity. The expression of circadian core clock genes BMAL1 and REV-ERBA showed a clear day-night rhythm (p < 0.001), peaking at the end of the waking period. Remarkably, the repressor clock gene PER2 did not show rhythmicity, whereas PER1 and PER3 were strongly rhythmic (p < 0.001). On the whole-body level resting energy expenditure was highest in the late evening (p < 0.001). Respiratory exchange ratio did not decrease in the night, indicating metabolic inflexibility.
    CONCLUSIONS: Mitochondrial oxidative capacity does not show a day-night rhythm in older, overweight participants with impaired glucose tolerance and insulin sensitivity. In addition, gene expression of PER2 in skeletal muscle indicates that rhythmicity of the negative feedback loop of the molecular clock is disturbed. ClinicalTrials.gov ID: NCT03733743.
    DOI:  https://doi.org/10.1016/j.molmet.2020.101050
  2. Int J Sports Med. 2020 Jul 17.
    Hyatt HW, Powers SK.
      Calpains are cysteine proteases expressed in skeletal muscle fibers and other cells. Although calpain was first reported to act as a kinase activating factor in skeletal muscle, the consensus is now that calpains play a canonical role in protein turnover. However, recent evidence reveals new and exciting roles for calpains in skeletal muscle. This review will discuss the functions of calpains in skeletal muscle remodeling in response to both exercise and inactivity-induced muscle atrophy. Calpains participate in protein turnover and muscle remodeling by selectively cleaving target proteins and creating fragmented proteins that can be further degraded by other proteolytic systems. Nonetheless, an often overlooked function of calpains is that calpain-mediated cleavage of proteins can result in fragmented proteins that are biologically active and have the potential to actively influence cell signaling. In this manner, calpains function beyond their roles in protein turnover and influence downstream signaling effects. This review will highlight both the canonical and noncanonical roles that calpains play in skeletal muscle remodeling including sarcomere transformation, membrane repair, triad junction formation, regulation of excitation-contraction coupling, protein turnover, cell signaling, and mitochondrial function. We conclude with a discussion of key unanswered questions regarding the roles that calpains play in skeletal muscle.
    DOI:  https://doi.org/10.1055/a-1199-7662
  3. Cell Metab. 2020 Jul 09. pii: S1550-4131(20)30318-1. [Epub ahead of print]
    Yoon H, Spinelli JB, Zaganjor E, Wong SJ, German NJ, Randall EC, Dean A, Clermont A, Paulo JA, Garcia D, Li H, Rombold O, Agar NYR, Goodyear LJ, Shaw RJ, Gygi SP, Auwerx J, Haigis MC.
      Rapid alterations in cellular metabolism allow tissues to maintain homeostasis during changes in energy availability. The central metabolic regulator acetyl-CoA carboxylase 2 (ACC2) is robustly phosphorylated during cellular energy stress by AMP-activated protein kinase (AMPK) to relieve its suppression of fat oxidation. While ACC2 can also be hydroxylated by prolyl hydroxylase 3 (PHD3), the physiological consequence thereof is poorly understood. We find that ACC2 phosphorylation and hydroxylation occur in an inverse fashion. ACC2 hydroxylation occurs in conditions of high energy and represses fatty acid oxidation. PHD3-null mice demonstrate loss of ACC2 hydroxylation in heart and skeletal muscle and display elevated fatty acid oxidation. Whole body or skeletal muscle-specific PHD3 loss enhances exercise capacity during an endurance exercise challenge. In sum, these data identify an unexpected link between AMPK and PHD3, and a role for PHD3 in acute exercise endurance capacity and skeletal muscle metabolism.
    Keywords:  Prolyl hydroxylase 3; acetyl-CoA carboxylase 2 modification; exercise capacity; fat catabolism
    DOI:  https://doi.org/10.1016/j.cmet.2020.06.017
  4. Int J Mol Sci. 2020 Jul 15. pii: E4987. [Epub ahead of print]21(14):
    Wu S, Zou MH.
      Adenosine monophosphate-activated protein kinase (AMPK) is in charge of numerous catabolic and anabolic signaling pathways to sustain appropriate intracellular adenosine triphosphate levels in response to energetic and/or cellular stress. In addition to its conventional roles as an intracellular energy switch or fuel gauge, emerging research has shown that AMPK is also a redox sensor and modulator, playing pivotal roles in maintaining cardiovascular processes and inhibiting disease progression. Pharmacological reagents, including statins, metformin, berberine, polyphenol, and resveratrol, all of which are widely used therapeutics for cardiovascular disorders, appear to deliver their protective/therapeutic effects partially via AMPK signaling modulation. The functions of AMPK during health and disease are far from clear. Accumulating studies have demonstrated crosstalk between AMPK and mitochondria, such as AMPK regulation of mitochondrial homeostasis and mitochondrial dysfunction causing abnormal AMPK activity. In this review, we begin with the description of AMPK structure and regulation, and then focus on the recent advances toward understanding how mitochondrial dysfunction controls AMPK and how AMPK, as a central mediator of the cellular response to energetic stress, maintains mitochondrial homeostasis. Finally, we systemically review how dysfunctional AMPK contributes to the initiation and progression of cardiovascular diseases via the impact on mitochondrial function.
    Keywords:  AMPK; cardiovascular disease; mitochondrial function
    DOI:  https://doi.org/10.3390/ijms21144987
  5. Cell Rep. 2020 Jul 14. pii: S2211-1247(20)30883-4. [Epub ahead of print]32(2): 107902
    Liao PC, Wolken DMA, Serrano E, Srivastava P, Pon LA.
      The mitochondria-associated degradation pathway (MAD) mediates ubiquitination and degradation of mitochondrial outer membrane (MOM) proteins by the proteasome. We find that the MAD, but not other quality-control pathways including macroautophagy, mitophagy, or mitochondrial chaperones and proteases, is critical for yeast cellular fitness under conditions of paraquat (PQ)-induced oxidative stress in mitochondria. Specifically, inhibition of the MAD increases PQ-induced defects in growth and mitochondrial quality and decreases chronological lifespan. We use mass spectrometry analysis to identify possible MAD substrates as mitochondrial proteins that exhibit increased ubiquitination in response to PQ treatment and inhibition of the MAD. We identify candidate substrates in the mitochondrial matrix and inner membrane and confirm that two matrix proteins are MAD substrates. Our studies reveal a broader function for the MAD in mitochondrial protein surveillance beyond the MOM and a major role for the MAD in cellular and mitochondrial fitness in response to chronic, low-level oxidative stress in mitochondria.
    Keywords:  Saccharomyces cerevisiae; chronological lifespan; mitochondrial quality control; mitophagy; oxidative stress; paraquat; proteasome; proteostasis; reactive oxygen species; ubiquitin
    DOI:  https://doi.org/10.1016/j.celrep.2020.107902
  6. Front Cell Dev Biol. 2020 ;8 532
    Rossini M, Filadi R.
      In cardiomyocytes, to carry out cell contraction, the distribution, morphology, and dynamic interaction of different cellular organelles are tightly regulated. For instance, the repetitive close apposition between junctional sarcoplasmic reticulum (jSR) and specialized sarcolemma invaginations, called transverse-tubules (TTs), is essential for an efficient excitation-contraction coupling (ECC). Upon an action potential, Ca2+ microdomains, generated in synchrony at the interface between TTs and jSR, underlie the prompt increase in cytosolic Ca2+ concentration, ultimately responsible for cell contraction during systole. This process requires a considerable amount of energy and the active participation of mitochondria, which encompass ∼30% of the cell volume and represent the major source of ATP in the heart. Importantly, in adult cardiomyocytes, mitochondria are distributed in a highly orderly fashion and strategically juxtaposed with SR. By taking advantage of the vicinity to Ca2+ releasing sites, they take up Ca2+ and modulate ATP synthesis according to the specific cardiac workload. Interestingly, with respect to SR, a biased, polarized positioning of mitochondrial Ca2+ uptake/efflux machineries has been reported, hinting the importance of a strictly regulated mitochondrial Ca2+ handling for heart activity. This notion, however, has been questioned by the observation that, in some mouse models, the deficiency of specific molecules, modulating mitochondrial Ca2+ dynamics, triggers non-obvious cardiac phenotypes. This review will briefly summarize the physiological significance of SR-mitochondria apposition in cardiomyocytes, as well as the pathological consequences of an altered organelle communication, focusing on Ca2+ signaling. We will discuss ongoing debates and propose future research directions.
    Keywords:  ATP; Ca2+; MCU; cardiomyocyte; heart; mitochondria; organelle contacts; sarcoplasmic reticulum
    DOI:  https://doi.org/10.3389/fcell.2020.00532