bims-mirbon Biomed News
on MicroRNAs in bone
Issue of 2021‒12‒12
eight papers selected by
Japneet Kaur
Mayo Clinic


  1. Int J Oral Sci. 2021 Dec 07. 13(1): 41
      Human dental pulp stem cells (DPSCs) have emerged as an important source of stem cells in the tissue engineering, and hypoxia will change various innate characteristics of DPSCs and then affect dental tissue regeneration. Nevertheless, little is known about the complicated molecular mechanisms. In this study, we aimed to investigate the influence and mechanism of miR-140-3p on DPSCs under hypoxia condition. Hypoxia was induced in DPSCs by Cobalt chloride (CoCl2) treatment. The osteo/dentinogenic differentiation capacity of DPSCs was assessed by alkaline phosphatase (ALP) activity, Alizarin Red S staining and main osteo/dentinogenic markers. A luciferase reporter gene assay was performed to verify the downstream target gene of miR-140-3p. This research exhibited that miR-140-3p promoted osteo/dentinogenic differentiation of DPSCs under normoxia environment. Furthermore, miR-140-3p rescued the CoCl2-induced decreased osteo/odontogenic differentiation potentials in DPSCs. Besides, we investigated that miR-140-3p directly targeted lysine methyltransferase 5B (KMT5B). Surprisingly, we found inhibition of KMT5B obviously enhanced osteo/dentinogenic differentiation of DPSCs both under normoxia and hypoxia conditions. In conclusion, our study revealed the role and mechanism of miR-140-3p for regulating osteo/dentinogenic differentiation of DPSCs under hypoxia, and discovered that miR-140-3p and KMT5B might be important targets for DPSC-mediated tooth or bone tissue regeneration.
    DOI:  https://doi.org/10.1038/s41368-021-00148-y
  2. Immun Ageing. 2021 Dec 08. 18(1): 45
      BACKGROUND: Studies have shown that the decrease of osteogenic differentiation of bone marrow mesenchymal stem cells (MSC) is an important mechanism of osteoporosis. The object of this study was to explore the role and mechanism of microRNA miR-425-5p in the differentiation of MSC.METHODS: The expression of miR-425-5p in MSC was detected by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell proliferation, cell cycle and apoptosis were detected by CCK-8 colorimetry and flow cytometry. The expression of TNF were detected by ELISA.
    RESULTS: Our data show that MiR-425-5p could modulate TNF-induced cell apoptosis, proliferation, and differentiation. ANXA2 is also the target of miR-425-5p and ANXA2 was involved in TNF-induced MSC cell apoptosis, proliferation, and differentiation. In addition, MiR-425-5p enhanced osteoporosis in mice.
    CONCLUSION: MiR-425-5p might serve as a potential therapeutic target for the treatment of osteoporosis.
    Keywords:  miRNA-425-5p;osteoporosis;osteogenic differentiation;ANXA2
    DOI:  https://doi.org/10.1186/s12979-021-00256-7
  3. Acta Biomater. 2021 Dec 05. pii: S1742-7061(21)00793-5. [Epub ahead of print]
      Minimally invasive repair strategies are a very promising approach for the treatment of intervertebral disc degeneration (IDD). In recent years, small extracellular vesicles (sEVs) secreted from mesenchymal stem cells (MSCs) have been shown great potential in alleviating IDD. However, in vitro experiments, MSCs are usually exposed to a normoxic micro-environment, which differs greatly from the hypoxic micro-environment in vivo. The primary purpose of our research was to determine whether sEVs isolated from MSCs under hypoxic status (H-sEVs) exhibit a more beneficial effect on protecting IDD compared with sEVs derived from MSCs under normoxic status (N-sEVs). A tail IDD rat model and a series of experiments in vitro were conducted to compare the beneficial effects of PBS, N-sEVs, and H-sEVs treatment. Then, to validate the role of sEVs miRNAs in IDD, a miRNA microarray sequencing analysis and a series of rescue experiments were conducted. Luciferase activity, RNA-ChIP and western blot were performed to explore the potential mechanisms. The results indicate that sEVs alleviate IDD by ameliorating the homeostatic imbalance between anabolism and catabolism in vivo and in vitro. Microarray sequencing result shows that miR-17-5p is maximally enriched in H-sEVs. Toll-like receptor 4 (TLR4) was determined to be a target downstream gene of miR-17-5p. Finally, it was found that H-sEVs miR-17-5p may modulate proliferation and synthesis of human nucleus pulposus cells (HNPCs) matrix via TLR4 pathway. In conclusion, H-sEVs miR-17-5p alleviate IDD via promoting HNPCs matrix proliferation and synthesis, providing new therapeutic targets for IDD. STATEMENT OF SIGNIFICANCE: : Intervertebral disc degeneration (IDD) is the primary cause of low back pain (LBP), which is a huge burden to society. Our research demonstrates for the first time that hypoxic pretreatment of small extracellular vesicles (H-sEVs) effectively alleviated the progress of IDD. In short, in the present research, we found that H-sEVs miR-17-5p could modulate proliferation and synthesis of nucleus pulposus cells (NPCs) matrix via TLR4/PI3K/AKT pathway. Therefore, hypoxic pre-treatment is a prospective and efficient method to optimize the therapeutic effect of MSCs-derived sEVs. miRNA and MSCs-derived sEVs combination may be a promising therapeutic approach for IDD.
    Keywords:  ECM synthesis; Hypoxia; Intervertebral disc degeneration; Proliferation; miR-17-5p/TLR4 axis; sEVs
    DOI:  https://doi.org/10.1016/j.actbio.2021.11.044
  4. Front Cell Dev Biol. 2021 ;9 719898
      This study aimed to investigate the potential roles of circRNAs in regulating osteoarthritis (OA)-related ghrelin synthesis, autophagy induction, and the relevant molecular mechanisms. Results showed that Col2a1, Acan, ghrelin, and autophagy-related markers expression were downregulated, while matrix metalloproteinase 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) expressions increased in both IL-1β-induced rat chondrocytes and cartilage tissues of OA rats. A total of 130 circRNAs and 731 mRNAs were differentially expressed in IL-1β-induced rat chondrocytes. Among them, we found that circPan3 expression was significantly decreased in both cellular and animal OA models. CircPan3 directly targeted miR-667-5p. CircPan3 overexpression promoted Col2a1, Acan, ghrelin, beclin 1, and LC3-II expression but reduced MMP13 and ADAMTS5 expression in rat chondrocytes, whereas overexpression of miR-667-5p exhibited opposite effects on the above markers. Furthermore, we found that miR-667-5p bound directly to the 3'-UTR sequence of ghrelin gene. Moreover, the circPan3-induced alterations in chondrocytes were antagonized by miR-667-5p overexpression. Taken together, our findings demonstrate that circPan3 promotes ghrelin synthesis and chondrocyte autophagy via targeting miR-667-5p, protecting against OA injury. This study provided experimental evidence that circPan3/miR-667-5p/ghrelin axis might serve as targets of drug development for the treatment of OA.
    Keywords:  chondrocyte autophagy; circPAN3; ghrelin; miR-667-5p; osteoarthritis
    DOI:  https://doi.org/10.3389/fcell.2021.719898
  5. Int Immunopharmacol. 2021 Dec 07. pii: S1567-5769(21)01052-3. [Epub ahead of print]102 108416
      Osteoarthritis (OA) is a chronic degenerative disease which seriously affects the patients' daily activities and quality of life. In our previous findings, we demonstrated that overexpression of miR-7 was found in OA and promoted OA development. Its exact mechanism remains unclear. Herein, we confirmed that KLF4 was the target gene of miR-7 and KLF4 was down-regulated in human OA tissues and OA chondrocyte. KLF4 was negatively modulated by miR-7 via dual luciferase reporter assay. Cartilage-specific genes (SOX9, COL2A1, RUNX2, MMP13) are crucial regulators in cartilage degeneration. Through qRT-PCR and western blot, we observed that KLF4 overexpression could increase the expression of SOX9 and COL2A1, decrease RUNX2 and MMP13. In the meanwhile, miR-7 was proven to regulate the expression of the above cartilage-specific genes by targeting KLF4, which demonstrated KLF4 could prevent OA development. Subsequently, KLF4 also activated TGF-β1 signaling pathway, thereby affecting OA progression. Excessive KLF4 could up-regulate TGF-β1 and p-Smad2/3 level, and Smad4 level was prevented in OA chondrocytes, while adding TGF-β1 inhibitor SB525334 could rescue this impact, along with reduced TGF-β1 and p-Smad2/3 level, enriched Smad4 level. KLF4 could also reverse the effect of miR-7 on TGF-β1 signaling. Besides, it was confirmed that KLF4 could improve OA in rat OA models by HE and Safranin O-Fast green staining, and immunohistochemistry. Collectively, our findings will give more detailed evidence about miR-7 and KLF4 in OA diagnosis and treatment.
    Keywords:  Chondrocyte; KLF4; Osteoarthritis; TGF-β1; miR-7
    DOI:  https://doi.org/10.1016/j.intimp.2021.108416
  6. Front Cell Dev Biol. 2021 ;9 754025
      Mesenchymal stem/stromal cells (MSCs) represent a promising tool to treat cardiovascular diseases. One mode of action through which MSCs exert their protective effects is secretion of extracellular vesicles (EVs). Recently, we demonstrated that rat adipose-derived MSC-overexpressing stem cell factor (SCF) can induce endogenous regenerative processes and improve cardiac function. In the present work, we isolated EVs from intact, GFP- or SCF-overexpressing rat MSC and analyzed microarray datasets of their miRNA cargo. We uncovered a total of 95 differentially expressed miRNAs. We did not observe significant differences between EVs from GFP-MSC and SCF-MSC that may indicate intrinsic changes in MSC after viral transduction. About 80 miRNAs were downregulated in EVs from both SCF- or GFP-MSC. We assembled the miRNA-based network and found several nodes of target genes among which Vim Sept3 and Vsnl1 are involved in regulation of cellular migration that is consistent with our previous EVs data. Topological analyses of the network also revealed that among the downregulated miRNA-rno-miRNA-128-3p that regulates plenty of targets is presumably associated with chemokine signaling pathways. Overall, our data suggest that genetic modification of MSC has a great impact on their miRNA composition and provide novel insights into the regulatory networks underlying EV effects.
    Keywords:  adeno-associated viral vectors; extracellular vesicles; mesenchymal stromal cells; miRNA; stress
    DOI:  https://doi.org/10.3389/fcell.2021.754025
  7. Front Physiol. 2021 ;12 708278
      Skeletal muscle growth and maintenance depend on two tightly regulated processes, myogenesis and muscle regeneration. Both processes involve a series of crucial regulatory molecules including muscle-specific microRNAs, known as myomiRs. We recently showed that four myomiRs, miR-1, miR-133a, miR-133b, and miR-206, are encapsulated within muscle-derived exosomes and participate in local skeletal muscle communication. Although these four myomiRs have been extensively studied for their function in muscles, no information exists regarding their endogenous and exosomal levels across age. Here we aimed to identify any age-related changes in the endogenous and muscle-derived exosomal myomiR levels during acute skeletal muscle growth. The four endogenous and muscle-derived myomiRs were investigated in five skeletal muscles (extensor digitorum longus, soleus, tibialis anterior, gastrocnemius, and quadriceps) of 2-week-1-year-old wild-type male mice. The expression of miR-1, miR-133a, and miR-133b was found to increase rapidly until adolescence in all skeletal muscles, whereas during adulthood it remained relatively stable. By contrast, endogenous miR-206 levels were observed to decrease with age in all muscles, except for soleus. Differential expression of the four myomiRs is also inversely reflected on the production of two protein targets; serum response factor and connexin 43. Muscle-derived exosomal miR-1, miR-133a, and miR-133b levels were found to increase until the early adolescence, before reaching a plateau phase. Soleus was found to be the only skeletal muscle to release exosomes enriched in miR-206. In this study, we showed for the first time an in-depth longitudinal analysis of the endogenous and exosomal levels of the four myomiRs during skeletal muscle development. We showed that the endogenous expression and extracellular secretion of the four myomiRs are associated to the function and size of skeletal muscles as the mice age. Overall, our findings provide new insights for the myomiRs' significant role in the first year of life in mice.
    Keywords:  age; differential expression; muscle endogenous; muscle growth; muscle-derived exosomes; myomiRs; skeletal muscle
    DOI:  https://doi.org/10.3389/fphys.2021.708278
  8. Front Immunol. 2021 ;12 790880
      Background: The etiology of rheumatoid arthritis (RA) remains poorly understood. Early and accurate diagnosis still difficult to achieve. Inflammatory related molecules released into the circulation such cytokines and exosome-derived microRNAs (exomiRNAs) could be good candidates for early diagnosis of autoimmune diseases. We sought to discover a serum biomarker panel for the early detection of RA based on exomiRNAs and inflammatory markers.Methods: A 179 miRNAs-microarray panel was analyzed in a pilot study (4 early RA and 4 controls). Validation of deregulated exomiRNAs was performed in a larger cohort (24 patients with early RA and 24 controls). miRNet software was used to predict exomiRNA gene-targets interactions. Potentially altered pathways were analyzed by Reactome pathway database search. STRING database was used to predict protein-protein interaction networks. Enzyme-linked immunosorbent assay was used to measure serum levels of sTWEAK and sCD163. Signature biomarker candidates were statistical analyzed.
    Results: We detected 11 differentially expressed exomiRNAs in early RA pilot study. Validation analysis revealed that 6/11 exomiRNAs showed strong agreement with the pilot microarray data (exomiR-144-3p, -25-3p, -15a-5p, -451a, -107 and -185-5p). sTWEAK and sCD163 biomarkers were significantly elevated in the serum of patients with early RA. Receiver operating characteristic (ROC) analysis showed that the best panel to diagnose early RA contained exomiR-451a, exomiR-25-3p and sTWEAK, and could correctly classify 95.6% of patients, with an area under the ROC curve of 0.983 and with 100% specificity and 85.7% sensitivity. The YWHAB gene was identified as a common target of the putative miRNA-regulated pathways.
    Conclusion: A novel serum biomarker panel composed of exomiR-451a, exomiR-25-3p and serum levels of sTWEAK may have use in the early clinical diagnosis of RA. A new predicted exomiRNA-target gene YHWAB has been identified and may have a relevant role in the development of RA.
    Keywords:  early rheumatoid arthritis; exomiRNAs; exosomes; sCD163; sTWEAK
    DOI:  https://doi.org/10.3389/fimmu.2021.790880