bims-minimp Biomed News
on Mitochondria, innate immunity, proteostasis
Issue of 2021‒09‒05
twenty-nine papers selected by
Hanna Salmonowicz
International Institute of Molecular Mechanisms and Machines of the Polish Academy of Sciences

  1. J Biol Chem. 2021 Aug 27. pii: S0021-9258(21)00935-2. [Epub ahead of print] 101134
      The mitochondrial matrix protease LONP1 is an essential part of the organellar protein quality control system. LONP1 has been shown to be involved in respiration control and apoptosis. Furthermore, a reduction in LONP1 level correlates with ageing. Up to now, the effects of a LONP1 defect were mostly studied by utilizing transient, siRNA-mediated knockdown approaches. We generated a new cellular model system for studying the impact of LONP1 on mitochondrial protein homeostasis by a CRISPR/Cas-mediated genetic knockdown (gKD). These cells show a stable reduction of LONP1 along with a mild phenotype characterized by absent morphological differences and only small negative effects on mitochondrial functions under normal culture conditions. To assess the consequences of a permanent LONP1 depletion on the mitochondrial proteome, we analyzed the alterations of protein levels by quantitative mass spectrometry, demonstrating small adaptive changes, in particular with respect to mitochondrial protein biogenesis. In an additional proteomic analysis, we determined the temperature-dependent aggregation behavior of mitochondrial proteins and its dependence on a reduction of LONP1 activity, demonstrating the important role of the protease for mitochondrial protein homeostasis in mammalian cells. We identified a significant number of mitochondrial proteins that are affected by LONP1 activity especially with respect to their stress-induced solubility. Taken together, our results suggest a very good applicability of the LONP1 gKD cell line as a model system for human ageing processes.
    Keywords:  Human; LONP1 protease; cell biology; mitochondria; protein aggregation; proteostasis
  2. Cell Rep Med. 2021 Aug 17. 2(8): 100370
      LPIN1 mutations are responsible for inherited recurrent rhabdomyolysis, a life-threatening condition with no efficient therapeutic intervention. Here, we conduct a bedside-to-bench-and-back investigation to study the pathophysiology of lipin1 deficiency. We find that lipin1-deficient myoblasts exhibit a reduction in phosphatidylinositol-3-phosphate close to autophagosomes and late endosomes that prevents the recruitment of the GTPase Armus, locks Rab7 in the active state, inhibits vesicle clearance by fusion with lysosomes, and alters their positioning and function. Oxidized mitochondrial DNA accumulates in late endosomes, where it activates Toll-like receptor 9 (TLR9) and triggers inflammatory signaling and caspase-dependent myolysis. Hydroxychloroquine blocks TLR9 activation by mitochondrial DNA in vitro and may attenuate flares of rhabdomyolysis in 6 patients treated. We suggest a critical role for defective clearance of oxidized mitochondrial DNA that activates TLR9-restricted inflammation in lipin1-related rhabdomyolysis. Interventions blocking TLR9 activation or inflammation can improve patient care in vivo.
    Keywords:  Toll-like receptor 9; autophagosome; hydroxychloroquine; inflammation; late endosome; lipin1; mitochondrial quality control; rhabdomyolysis
  3. Life Sci Alliance. 2021 Nov;pii: e202101034. [Epub ahead of print]4(11):
      Mitochondrial transcription factor A (TFAM) is compacting mitochondrial DNA (dmtDNA) into nucleoids and directly controls mtDNA copy number. Here, we show that the TFAM-to-mtDNA ratio is critical for maintaining normal mtDNA expression in different mouse tissues. Moderately increased TFAM protein levels increase mtDNA copy number but a normal TFAM-to-mtDNA ratio is maintained resulting in unaltered mtDNA expression and normal whole animal metabolism. Mice ubiquitously expressing very high TFAM levels develop pathology leading to deficient oxidative phosphorylation (OXPHOS) and early postnatal lethality. The TFAM-to-mtDNA ratio varies widely between tissues in these mice and is very high in skeletal muscle leading to strong repression of mtDNA expression and OXPHOS deficiency. In the heart, increased mtDNA copy number results in a near normal TFAM-to-mtDNA ratio and maintained OXPHOS capacity. In liver, induction of LONP1 protease and mitochondrial RNA polymerase expression counteracts the silencing effect of high TFAM levels. TFAM thus acts as a general repressor of mtDNA expression and this effect can be counterbalanced by tissue-specific expression of regulatory factors.
  4. Biol Cell. 2021 Aug 31.
      Mitochondria are dynamic organelles playing essential metabolic and signaling functions in cells. Their ultrastructure has been largely investigated with electron microscopy (EM) techniques. Super-resolution microscopy approaches such as direct stochastic optical reconstruction microscopy (dSTORM) provide a fluorescent-based, quantitative alternative to EM. However, dSTORM is mainly used to image integral mitochondrial proteins, and there is little or no information on proteins transiently present at this compartment. Here, we first benchmark the power of dSTORM to resolve protein proximities on individual mitochondrial subcompartments, coupled to Geo-coPositioning System (GcoPS) to quantify the degree of protein colocalization. With our dSTORM/GcoPS method, we then analyze the submitochondrial distribution of the cancer-related Aurora kinase A/AURKA, a protein localized at various subcellular locations including mitochondria. We show that dSTORM provides sufficient spatial resolution to detect a large pool of endogenous AURKA within the matrix, and we also uncover a second pool of the kinase at the Outer Mitochondrial Membrane (OMM). We conclude by demonstrating that an aldehyde-based fixation allows for a more specific detection of the OMM pool of AURKA. Our results indicate that dSTORM coupled to GcoPS colocalization analysis is a suitable approach to explore the compartmentalization of non-integral mitochondrial proteins as AURKA, in a qualitative and quantitative manner. This method also opens up the possibility of analyzing the proximity between AURKA and its multiple mitochondrial partners with exquisite spatial resolution, thereby allowing novel insights into the mitochondrial functions controlled by AURKA. This article is protected by copyright. All rights reserved.
  5. Elife. 2021 09 01. pii: e63453. [Epub ahead of print]10
      Mitochondrial activity determines aging rate and the onset of chronic diseases. The mitochondrial permeability transition pore (mPTP) is a pathological pore in the inner mitochondrial membrane thought to be composed of the F-ATP synthase (complex V). OSCP, a subunit of F-ATP synthase, helps protect against mPTP formation. How the destabilization of OSCP may contribute to aging, however, is unclear. We have found that loss OSCP in the nematode Caenorhabditis elegans initiates the mPTP and shortens lifespan specifically during adulthood, in part via initiation of the mitochondrial unfolded protein response (UPRmt). Pharmacological or genetic inhibition of the mPTP inhibits the UPRmt and restores normal lifespan. Loss of the putative pore-forming component of F-ATP synthase extends adult lifespan, suggesting that the mPTP normally promotes aging. Our findings reveal how an mPTP/UPRmt nexus may contribute to aging and age-related diseases and how inhibition of the UPRmt may be protective under certain conditions.
    Keywords:  C. elegans; F-ATP synthase; aging; c-subunit; cell biology; mitochondrial permeability transition pore; mitochondrial unfolded protein response; oscp/atp-3
  6. Cell Metab. 2021 Aug 26. pii: S1550-4131(21)00367-3. [Epub ahead of print]
      Aging impairs the integrated immunometabolic responses, which have evolved to maintain core body temperature in homeotherms to survive cold stress, infections, and dietary restriction. Adipose tissue inflammation regulates the thermogenic stress response, but how adipose tissue-resident cells instigate thermogenic failure in the aged are unknown. Here, we define alterations in the adipose-resident immune system and identify that type 2 innate lymphoid cells (ILC2s) are lost in aging. Restoration of ILC2 numbers in aged mice to levels seen in adults through IL-33 supplementation failed to rescue old mice from metabolic impairment and increased cold-induced lethality. Transcriptomic analyses revealed intrinsic defects in aged ILC2, and adoptive transfer of adult ILC2s are sufficient to protect old mice against cold. Thus, the functional defects in adipose ILC2s during aging drive thermogenic failure.
    Keywords:  IL-33; ILC2; adipose; aging; inflammation; metabolism; thermogenesis
  7. J Cell Biol. 2021 Nov 01. pii: e202104073. [Epub ahead of print]220(11):
      Defects in autophagy cause problems in metabolism, development, and disease. The autophagic clearance of mitochondria, mitophagy, is impaired by the loss of Vps13D. Here, we discover that Vps13D regulates mitophagy in a pathway that depends on the core autophagy machinery by regulating Atg8a and ubiquitin localization. This process is Pink1 dependent, with loss of pink1 having similar autophagy and mitochondrial defects as loss of vps13d. The role of Pink1 has largely been studied in tandem with Park/Parkin, an E3 ubiquitin ligase that is widely considered to be crucial in Pink1-dependent mitophagy. Surprisingly, we find that loss of park does not exhibit the same autophagy and mitochondrial deficiencies as vps13d and pink1 mutant cells and contributes to mitochondrial clearance through a pathway that is parallel to vps13d. These findings provide a Park-independent pathway for Pink1-regulated mitophagy and help to explain how Vps13D regulates autophagy and mitochondrial morphology and contributes to neurodegenerative diseases.
  8. J Vis Exp. 2021 Aug 10.
      As the center for oxidative phosphorylation and apoptotic regulation, mitochondria play a vital role in human health. Proper mitochondrial function depends on a robust quality control system to maintain protein homeostasis (proteostasis). Declines in mitochondrial proteostasis have been linked to cancer, aging, neurodegeneration, and many other diseases. Msp1 is a AAA+ ATPase anchored in the outer mitochondrial membrane that maintains proteostasis by removing mislocalized tail-anchored proteins. Using purified components reconstituted into proteoliposomes, we have shown that Msp1 is necessary and sufficient to extract a model tail-anchored protein from a lipid bilayer. Our simplified reconstituted system overcomes several of the technical barriers that have hindered detailed study of membrane protein extraction. Here, we provide detailed methods for the generation of liposomes, membrane protein reconstitution, and the Msp1 extraction assay.
  9. Free Radic Biol Med. 2021 Aug 26. pii: S0891-5849(21)00692-4. [Epub ahead of print]175 18-27
      Iron is an essential nutrient that forms cofactors required for the activity of hundreds of cellular proteins. However, iron can be toxic and must be precisely managed. Poly r(C) binding protein 1 (PCBP1) is an essential, multifunctional protein that binds both iron and nucleic acids, regulating the fate of both. As an iron chaperone, PCBP1 binds cytosolic iron and delivers it to iron enzymes for activation and to ferritin for storage. Mice deleted for PCBP1 in the liver exhibit dysregulated iron balance, with lower levels of liver iron stores and iron enzymes, but higher levels of chemically-reactive iron. Unchaperoned iron triggers the formation of reactive oxygen species, leading to lipid peroxidation and ferroptotic cell death. Hepatic PCBP1 deletion produces chronic liver disease in mice, with steatosis, triglyceride accumulation, and elevated plasma ALT levels. Human and mouse models of fatty liver disease are associated with mitochondrial dysfunction. Here we show that, although deletion of PCBP1 does not affect mitochondrial iron balance, it does affect mitochondrial function. PCBP1 deletion affected mitochondrial morphology and reduced levels of respiratory complexes II and IV, oxygen consumption, and ATP production. Depletion of mitochondrial lipids cardiolipin and coenzyme Q, along with reduction of mitochondrial oxygen consumption, were the first manifestations of mitochondrial dysfunction. Although dietary supplementation with vitamin E ameliorated the liver disease in mice with hepatic PCBP1 deletion, supplementation with coenzyme Q was required to fully restore mitochondrial lipids and function. In conclusion, our studies indicate that mitochondrial function can be restored in livers subjected to ongoing oxidative damage from unchaperoned iron by supplementation with coenzyme Q, a mitochondrial lipid essential for respiration that also functions as a lipophilic radical-trapping agent.
    Keywords:  Cardiolipin; Coenzyme Q; Ferroptosis; NAFLD; NASH; Oxidative stress; PCBP1; Steatosis
  10. Nat Commun. 2021 Sep 02. 12(1): 5241
      Individual induced pluripotent stem cells (iPSCs) show considerable phenotypic heterogeneity, but the reasons for this are not fully understood. Comprehensively analysing the mitochondrial genome (mtDNA) in 146 iPSC and fibroblast lines from 151 donors, we show that most age-related fibroblast mtDNA mutations are lost during reprogramming. However, iPSC-specific mutations are seen in 76.6% (108/141) of iPSC lines at a mutation rate of 8.62 × 10-5/base pair. The mutations observed in iPSC lines affect a higher proportion of mtDNA molecules, favouring non-synonymous protein-coding and tRNA variants, including known disease-causing mutations. Analysing 11,538 single cells shows stable heteroplasmy in sub-clones derived from the original donor during differentiation, with mtDNA variants influencing the expression of key genes involved in mitochondrial metabolism and epidermal cell differentiation. Thus, the dynamic mtDNA landscape contributes to the heterogeneity of human iPSCs and should be considered when using reprogrammed cells experimentally or as a therapy.
  11. J Biol Chem. 2021 Aug 27. pii: S0021-9258(21)00936-4. [Epub ahead of print] 101135
      Yeast is a facultative anaerobe and uses diverse electron acceptors to maintain redox-regulated import of cysteine-rich precursors via the mitochondrial intermembrane space assembly (MIA) pathway. With the growing diversity of substrates utilizing the MIA pathway, understanding the capacity of the intermembrane space (IMS) to handle different types of stress is crucial. We used mass spectrometry to identify additional proteins that interacted with the sulfhydryl oxidase Erv1 of the MIA pathway. Aim32, a thioredoxin-like [2Fe-2S] ferredoxin protein, was identified as an Erv1 binding protein. Detailed localization studies showed that Aim32 resided in both the mitochondrial matrix and IMS. Aim32 interacted with additional proteins including redox protein Osm1 and protein import components Tim17, Tim23, and Tim22. Deletion of Aim32 or mutation of conserved cysteine residues that coordinate the Fe-S center in Aim32 resulted in an increased accumulation of proteins with aberrant disulfide linkages. In addition, the steady-state level of assembled TIM22, TIM23, and Oxa1 protein import complexes was decreased. Aim32 also bound to several mitochondrial proteins under nonreducing conditions, suggesting a function in maintaining the redox status of proteins by potentially targeting cysteine residues that may be sensitive to oxidation. Finally, Aim32 was essential for growth in conditions of stress such as elevated temperature and hydroxyurea (HU), and under anaerobic conditions. These studies suggest that the Fe-S protein Aim32 has a potential role in general redox homeostasis in the matrix and IMS. Thus, Aim32 may be poised as a sensor or regulator in quality control for a broad range of mitochondrial proteins.
    Keywords:  disulfide; mitochondria; mitochondrial transport; protein import; redox regulation; thiol; thioredoxin
  12. Elife. 2021 Sep 01. pii: e68610. [Epub ahead of print]10
      Most age-related human diseases are accompanied by a decline in cellular organelle integrity, including impaired lysosomal proteostasis and defective mitochondrial oxidative phosphorylation. An open question, however, is the degree to which inherited variation in or near genes encoding each organelle contributes to age-related disease pathogenesis. Here, we evaluate if genetic loci encoding organelle proteomes confer greater-than-expected age-related disease risk. As mitochondrial dysfunction is a 'hallmark' of aging, we begin by assessing nuclear and mitochondrial DNA loci near genes encoding the mitochondrial proteome and surprisingly observe a lack of enrichment across 24 age-related traits. Within nine other organelles, we find no enrichment with one exception: the nucleus, where enrichment emanates from nuclear transcription factors. In agreement, we find that genes encoding several organelles tend to be 'haplosufficient', while we observe strong purifying selection against heterozygous protein-truncating variants impacting the nucleus. Our work identifies common variation near transcription factors as having outsize influence on age-related trait risk, motivating future efforts to determine if and how this inherited variation then contributes to observed age-related organelle deterioration.
    Keywords:  genetics; genomics; human
  13. Mitochondrion. 2021 Aug 25. pii: S1567-7249(21)00115-X. [Epub ahead of print]
      Altered insulin signaling and insulin resistance are considered the link between Alzheimer's disease (AD) and metabolic syndrome. Here, by using an in vitro and an in vivo model, we investigated the relationship between these disorders focusing on neuronal mitochondrial dysfunction and mitophagy. In vitro Aβ insult induced the opening of mitochondrial permeability transition pore (mPTP), mitochondrial membrane potential (ΔΨm) loss, and apoptosis while insulin addition ameliorated these dysfunctions. The same alterations were detected in a 16 weeks of age mouse model of diet-induced obesity and insulin resistance. In addition, we detected an increase of fission related proteins and activation of mitophagy, proved by the rise of PINK1 and Parkin proteins. Nevertheless, in vitro, the increase of p62 and LC3 indicated an alteration in autophagy, while, in vivo decreased expression of p62 and increase of LC3 suggested removing of damaged mitochondria. Finally, in aged mice (28 and 48 weeks), the data indicated impairment of mitophagy and suggested the accumulation of damaged mitochondria. Taken together these outcomes indicate that alteration of the insulin pathway affects mitochondrial integrity, and effective mitophagy is age-dependent.
    Keywords:  aging; insulin pathway; metabolic diseases; mitochondrion; mitophagy; neurodegeneration
  14. J Venom Anim Toxins Incl Trop Dis. 2021 ;27 e20200183
      The COVID-19 pandemic brought attention to studies about viral infections and their impact on the cell machinery. SARS-CoV-2, for example, invades the host cells by ACE2 interaction and possibly hijacks the mitochondria. To better understand the disease and to propose novel treatments, crucial aspects of SARS-CoV-2 enrolment with host mitochondria must be studied. The replicative process of the virus leads to consequences in mitochondrial function, and cell metabolism. The hijacking of mitochondria, on the other hand, can drive the extrusion of mitochondrial DNA (mtDNA) to the cytosol. Extracellular mtDNA evoke robust proinflammatory responses once detected, that may act in different pathways, eliciting important immune responses. However, few receptors are validated and are able to detect and respond to mtDNA. In this review, we propose that the mtDNA and its detection might be important in the immune process generated by SARS-CoV-2 and that this mechanism might be important in the lung pathogenesis seen in clinical symptoms. Therefore, investigating the mtDNA receptors and their signaling pathways might provide important clues for therapeutic interventions.
    Keywords:  Cytokine storm; Innate receptors; Mitochondria; SARS-CoV-2
  15. Inflamm Res. 2021 Sep 02.
      BACKGROUND: The insulin/IGF-1 signaling pathway has a major role in the regulation of longevity both in Caenorhabditis elegans and mammalian species, i.e., reduced activity of this pathway extends lifespan, whereas increased activity accelerates the aging process. The insulin/IGF-1 pathway controls protein and energy metabolism as well as the proliferation and differentiation of insulin/IGF-1-responsive cells. Insulin/IGF-1 signaling also regulates the functions of the innate and adaptive immune systems. The purpose of this review was to elucidate whether insulin/IGF-1 signaling is linked to immunosuppressive STAT3 signaling which is known to promote the aging process.METHODS: Original and review articles encompassing the connections between insulin/IGF-1 and STAT3 signaling were examined from major databases including Pubmed, Scopus, and Google Scholar.
    RESULTS: The activation of insulin/IGF-1 receptors stimulates STAT3 signaling through the JAK and AKT-driven signaling pathways. STAT3 signaling is a major activator of immunosuppressive cells which are able to counteract the chronic low-grade inflammation associated with the aging process. However, the activation of STAT3 signaling stimulates a negative feedback response through the induction of SOCS factors which not only inhibit the activity of insulin/IGF-1 receptors but also that of many cytokine receptors. The inhibition of insulin/IGF-1 signaling evokes insulin resistance, a condition known to be increased with aging. STAT3 signaling also triggers the senescence of both non-immune and immune cells, especially through the activation of p53 signaling.
    CONCLUSIONS: Given that cellular senescence, inflammaging, and counteracting immune suppression increase with aging, this might explain why excessive insulin/IGF-1 signaling promotes the aging process.
    Keywords:  Ageing; Alzheimer’s; FoxO; Immunosenescence; Tolerance; mTOR
  16. Bioelectricity. 2021 Jun 01. 3(2): 111-115
      During aging, mitochondrial membrane potential, a key indicator for bioenergetics of cells, depolarizes in a wide range of species-from yeasts, plants to animals. In humans, the decline of mitochondrial activities can impact the high-energy-consuming organs, such as the brain and heart, and increase the risks of age-linked diseases. Intriguingly, a mild depolarization of mitochondria has lifespan-extending effects, suggesting an important role played by bioelectricity during aging. However, the underpinning biophysical mechanism is not very well understood due in part to the difficulties associated with a multiscale process. Budding yeast Saccharomyces cerevisiae could provide a model system to bridge this knowledge gap and provide insights into aging. In this perspective, we overview recent studies on the yeast mitochondrial membrane electrophysiology and aging and call for more electrochemical and biophysical studies on aging.
    Keywords:  aging; electrophysiology; mitochondrial membrane potential; yeast
  17. Am J Physiol Cell Physiol. 2021 09 01.
      Mitochondria are dynamic organelles that differ significantly in their morphologies across cell types, reflecting specific cellular needs and stages in development. Despite the wide biological significance in disease and health, delineating mitochondrial morphologies in complex systems remains challenging. Here, we present the Mitochondrial Cellular Phenotype (MitoCellPhe) tool developed for quantifying mitochondrial morphologies and demonstrate its utility in delineating differences in mitochondrial morphologies in a human fibroblast and human induced pluripotent stem cell (hiPSC) line. MitoCellPhe generates 24 parameters, allowing for a comprehensive analysis of mitochondrial structures and importantly allows for quantification to be performed on mitochondria in images containing single cells or clusters of cells. With this tool, we were able to validate previous findings that show networks of mitochondria in healthy fibroblast cell lines and a more fragmented morphology in hiPSCs. Using images generated from control and diseased fibroblasts and hiPSCs, we also demonstrate the efficacy of the toolset in delineating differences in morphologies between healthy and the diseased state in both stem cell (hiPSC) and differentiated fibroblast cells. Our results demonstrate that MitoCellPhe enables high-throughput, sensitive, detailed and quantitative mitochondrial morphological assessment and thus enables better biological insights into mitochondrial dynamics in health and disease.
    Keywords:  mitochondria; morphology; networks; stem cells; structure
  18. STAR Protoc. 2021 Sep 17. 2(3): 100767
      Changes in mitochondrial size, shape, and subcellular position, a process collectively known as mitochondrial dynamics, are exploited for various cancer traits. Modulation of subcellular mitochondrial trafficking and accumulation at the cortical cytoskeleton has been linked to the machinery of cell movements, fueling cell invasion and metastatic spreading. Here, we detail a technique to track changes in mitochondrial volume using a commercial CellLight™ Mitochondria-RFP/GFP reporter and live confocal microscopy. This allows a real-time study of mitochondrial dynamics in live cells. For complete details on the use and execution of this protocol, please refer to Bertolini et al. (2020).
    Keywords:  Cancer; Microscopy; Molecular/Chemical Probes
  19. Biochim Biophys Acta Gene Regul Mech. 2021 Aug 25. pii: S1874-9399(21)00066-3. [Epub ahead of print] 194748
      The SWI/SNF subfamily remodelers (SWI/SNF and RSC) generally promote gene expression by displacing or evicting nucleosomes at the promoter regions. Their action creates a nucleosome-depleted region where transcription machinery accesses the DNA. Their involvement has been shown critical for inducing stress-responsive transcription programs. Although the role of SWI/SNF and RSC complexes in transcription regulation of heat shock responsive genes is well studied, their involvement at other pathways such as unfolded protein response (UPR) and protein quality control (PQC) is less known. This study shows that SWI/SNF occupies promoters of UPR, HSP and PQC genes in response to unfolded protein stress, and its recruitment at UPR promoters depends on Hac1 transcription factor and other epigenetic factors like Ada2 and Ume6. Disruption of SWI/SNF's activity does not affect the remodeling of these promoters or gene expression. However, inactivation of RSC and SWI/SNF together diminishes expression of most of the UPR, HSP and PQC genes tested. Furthermore, RSC and SWI/SNF colocalize at these promoters, suggesting that these two remodelers functionally cooperate to induce stress-responsive genes under proteotoxic conditions.
    Keywords:  Chromatin remodeling complexes; ER stress; RSC; SWI/SNF; Transcription regulation; UPR
  20. J Physiol. 2021 Sep 01.
      KEY POINTS: Ischemia is highly deleterious to mammalian brain and this damage is largely mediated by mitochondrial dysfunction. Naked mole-rats are among the most hypoxia-tolerant mammals and their brain tolerates ischemia ex vivo, but the impact of ischemia on mitochondrial function is unknown. Naked mole-rat but not mouse brain mitochondria retain respiratory capacity and membrane integrity following ischemia or ischemia/reperfusion. Differences in free radical management and respiratory pathway control between species may mediate this tolerance. These results help us understand how natural models of hypoxia-tolerance also tolerate ischemia in brain.ABSTRACT: Naked mole-rats (NMRs; Heterocephalus glaber) are among the most hypoxia-tolerant mammals. There is evidence that NMR brain tolerates in vitro hypoxia and NMR brain mitochondria exhibit functional plasticity following in vivo hypoxia; however, if and how these organelles tolerate ischemia and how ischemic stress impacts mitochondrial energetics and redox regulation is entirely unknown. We hypothesized that mitochondria fundamentally contribute to in vitro ischemia resistance in NMR brain. To test this, we treated NMR and CD-1 mouse cortical brain sheets with an in vitro ischemic mimic and evaluated mitochondrial respiration capacity and redox regulation following 15- or 30-mins ischemia or ischemia/reperfusion (I/R). We found that, relative to mice, NMR brain largely retains mitochondrial function and redox balance post-ischemia and I/R. Specifically: i) ischemia reduced complex I and II -linked respiration ∼50-70% in mice, versus ∼20-40% in NMR brain, ii) NMR but not mouse brain maintained relatively steady respiration control ratios and robust mitochondrial membrane integrity, iii) electron leakage post-ischemia was lesser in NMR than mouse brain and NMR brain retained higher coupling efficiency, and iv) free radical generation during and following ischemia and I/R was lower from NMR brains than mice. Taken together, our results indicate that NMR brain mitochondria are more tolerant of ischemia and I/R than mice and retain respiratory capacity while avoiding redox derangements. Overall, these findings support the hypothesis that hypoxia-tolerant NMR brain is also ischemia-tolerant and suggest that NMRs may be a natural model of ischemia-tolerance in which to investigate evolutionarily derived solutions to ischemic pathology. This article is protected by copyright. All rights reserved.
    Keywords:  electron transport system; free radicals; glutamate dehydrogenase; membrane integrity; mitochondrial permeability transition pore; mitochondrial respiration
  21. Sci Rep. 2021 Aug 30. 11(1): 17373
      Advanced glycation endproducts (AGEs) are involved in several diseases, including NAFLD and NASH. RAGE is the main receptor mediating the pro-inflammatory signalling induced by AGEs. Therefore, targeting of RAGE has been proposed for prevention of chronic inflammatory diseases. However, the role of RAGE in the development of NAFLD and NASH remains poorly understood. We thus aimed to analyse the effect of obesity on AGEs accumulation, AGE-receptors and AGE-detoxification, and whether the absence of RAGE might improve hepatosteatosis and inflammation, by comparing the liver of lean control, obese (LeptrDb-/-) and obese RAGE-deficient (RAGE-/- LeptrDb-/-) mice. Obesity induced AGEs accumulation and RAGE expression with hepatosteatosis and inflammation in LeptrDb-/-, compared to lean controls. Despite the genetic deletion of RAGE in the LeptrDb-/- mice, high levels of intrahepatic AGEs were maintained accompanied by decreased expression of the protective AGE-receptor-1, impaired AGE-detoxifying system glyoxalase-1, and increased expression of the alternative AGE-receptor galectin-3. We also found sustained hepatosteatosis and inflammation as determined by persistent activation of the lipogenic SREBP1c and proinflammatory NLRP3 signalling pathways. Thus, RAGE targeting is not effective in the prevention of NAFLD in conditions of obesity, likely due to the direct liver specific crosstalk of RAGE with other AGE-receptors and AGE-detoxifying systems.
  22. Aging Cell. 2021 Aug 30. e13468
      Ataxia-telangiectasia (A-T) is a genetic disorder caused by the lack of functional ATM kinase. A-T is characterized by chronic inflammation, neurodegeneration and premature ageing features that are associated with increased genome instability, nuclear shape alterations, micronuclei accumulation, neuronal defects and premature entry into cellular senescence. The causal relationship between the detrimental inflammatory signature and the neurological deficiencies of A-T remains elusive. Here, we utilize human pluripotent stem cell-derived cortical brain organoids to study A-T neuropathology. Mechanistically, we show that the cGAS-STING pathway is required for the recognition of micronuclei and induction of a senescence-associated secretory phenotype (SASP) in A-T olfactory neurosphere-derived cells and brain organoids. We further demonstrate that cGAS and STING inhibition effectively suppresses self-DNA-triggered SASP expression in A-T brain organoids, inhibits astrocyte senescence and neurodegeneration, and ameliorates A-T brain organoid neuropathology. Our study thus reveals that increased cGAS and STING activity is an important contributor to chronic inflammation and premature senescence in the central nervous system of A-T and constitutes a novel therapeutic target for treating neuropathology in A-T patients.
    Keywords:  Ataxia-Telangiectasia; brain aging; brain organoids; cGAS-STING signalling; cellular senescence; neurodegeneration
  23. Development. 2021 Sep 02. pii: dev.199477. [Epub ahead of print]
      The STAT3 transcription factor, acting both in the nucleus and mitochondria, maintains embryonic stem cell pluripotency and promotes their proliferation. In this work, using zebrafish, we determined in vivo that mitochondrial STAT3 regulates mtDNA transcription in embryonic and larval stem cell niches and that this activity affects their proliferation rates. As a result, we demonstrated that STAT3 import inside mitochondria requires Y705 phosphorylation by Jak, while its mitochondrial transcriptional activity, as well as its effect on proliferation, depends on the MAPK target S727. These data were confirmed using mouse embryonic stem cells: while the Y705 mutated STAT3 cannot enter mitochondria, the S727 mutation does not affect the import in the organelle and is responsible for STAT3-dependent mitochondrial transcription. Surprisingly, STAT3-dependent increase of mitochondrial transcription seems independent from STAT3 binding to STAT3 responsive elements. Finally, loss of function experiments, with chemical inhibition of the JAK/STAT3 pathway or genetic ablation of stat3 gene, demonstrated that STAT3 is also required for cell proliferation in the intestine of zebrafish.
    Keywords:  ESC; STAT3; mitochondria; transcription; zebrafish
  24. Cell Rep. 2021 Aug 31. pii: S2211-1247(21)01085-8. [Epub ahead of print]36(9): 109642
      Post-translational modification of ribosomal proteins enables rapid and dynamic regulation of protein biogenesis. Site-specific ubiquitylation of 40S ribosomal proteins uS10 and eS10 plays a key role during ribosome-associated quality control (RQC). Distinct, and previously functionally ambiguous, ubiquitylation events on the 40S proteins uS3 and uS5 are induced by diverse proteostasis stressors that impact translation activity. Here, we identify the ubiquitin ligase RNF10 and the deubiquitylating enzyme USP10 as the key enzymes that regulate uS3 and uS5 ubiquitylation. Prolonged uS3 and uS5 ubiquitylation results in 40S, but not 60S, ribosomal protein degradation in a manner independent of canonical autophagy. We show that blocking progression of either scanning or elongating ribosomes past the start codon triggers site-specific ubiquitylation events on ribosomal proteins uS5 and uS3. This study identifies and characterizes a distinct arm in the RQC pathway, initiation RQC (iRQC), that acts on 40S ribosomes during translation initiation to modulate translation activity and capacity.
    Keywords:  RNF10; protein homeostasis; ribosome-associated quality control; translation initiation; ubiquitin
  25. Mech Ageing Dev. 2021 Aug 30. pii: S0047-6374(21)00135-4. [Epub ahead of print]199 111563
      Age associated chronic inflammation is a major contributor to diseases with advancing age. Adipose tissue function is at the nexus of processes contributing to age-related metabolic disease and mediating longevity. Hormonal fluctuations in aging potentially regulate age-associated visceral adiposity and metabolic dysfunction. Visceral adiposity in aging is linked to aberrant adipogenesis, insulin resistance, lipotoxicity and altered adipokine secretion. Age-related inflammatory phenomena depict sex differences in macrophage polarization, changes in T and B cell numbers, and types of dendritic cells. Sex differences are also observed in adipose tissue remodeling and cellular senescence suggesting a role for sex steroid hormones in the regulation of the adipose tissue microenvironment. It is crucial to investigate sex differences in aging clinical outcomes to identify and better understand physiology in at-risk individuals. Early interventions aimed at targets involved in adipose tissue adipogenesis, remodeling and inflammation in aging could facilitate a profound impact on health span and overcome age-related functional decline.
    Keywords:  Adipose tissue; Adipose tissue inflammation; Aging; Macrophages; Metabolism; Sex differences
  26. Mol Cell. 2021 Aug 26. pii: S1097-2765(21)00649-3. [Epub ahead of print]
      Mammalian cells use diverse pathways to prevent deleterious consequences during DNA replication, yet the mechanism by which cells survey individual replisomes to detect spontaneous replication impediments at the basal level, and their accumulation during replication stress, remain undefined. Here, we used single-molecule localization microscopy coupled with high-order-correlation image-mining algorithms to quantify the composition of individual replisomes in single cells during unperturbed replication and under replicative stress. We identified a basal-level activity of ATR that monitors and regulates the amounts of RPA at forks during normal replication. Replication-stress amplifies the basal activity through the increased volume of ATR-RPA interaction and diffusion-driven enrichment of ATR at forks. This localized crowding of ATR enhances its collision probability, stimulating the activation of its replication-stress response. Finally, we provide a computational model describing how the basal activity of ATR is amplified to produce its canonical replication stress response.
    Keywords:  ATR activity; DNA replication; high-content image mining; superresolution imaging
  27. Nature. 2021 Sep 01.
      Oxygen is critical for a multitude of metabolic processes that are essential for human life. Biological processes can be identified by treating cells with 18O2 or other isotopically labelled gases and systematically identifying biomolecules incorporating labeled atoms. Here we labelled cell lines of distinct tissue origins with 18O2 to identify the polar oxy-metabolome, defined as polar metabolites labelled with 18O under different physiological O2 tensions. The most highly 18O-labelled feature was 4-hydroxymandelate (4-HMA). We demonstrate that 4-HMA is produced by hydroxyphenylpyruvate dioxygenase-like (HPDL), a protein of previously unknown function in human cells. We identify 4-HMA as an intermediate involved in the biosynthesis of the coenzyme Q10 (CoQ10) headgroup in human cells. The connection of HPDL to CoQ10 biosynthesis provides crucial insights into the mechanisms underlying recently described neurological diseases related to HPDL deficiencies1-4 and cancers with HPDL overexpression5.
  28. Lupus. 2021 Sep 01. 9612033211038931
      The paradigm that autoimmune diseases are abberations in the adaptive immune system is over 50 years old, but recent data suggest a multitude of abnormalities in the innate immune system in lupus and other autoimmune diseases. This viewpoint elaborates the reasons that I think it is time to reexamine this paradigm and shift our research focus to the innate immune system in lupus and other prototypic autoimmune diseases.
    Keywords:  Systemic lupus erythematosus; autoimmune; autoinflammatory
  29. Cancer Res. 2021 Sep 03. pii: canres.CAN-21-2734-E.2021. [Epub ahead of print]
      HSP90 is critical for the maintenance of cellular proteostasis. In cancer cells, HSP90 also becomes a nucleating site for the stabilization of multiprotein complexes including signaling pathways and transcription complexes. Here we describe the role of this HSP90 form, referred to as oncogenic HSP90, in the regulation of cytosolic metabolic pathways in proliferating B-cell lymphoma cells. Oncogenic HSP90 assisted in the organization of metabolic enzymes into non-membrane-bound functional compartments. Under experimental conditions that conserved cellular proteostasis, oncogenic HSP90 coordinated and sustained multiple metabolic pathways required for energy production and maintenance of cellular biomass as well as for secretion of extracellular metabolites. Conversely, inhibition of oncogenic HSP90, in the absence of apparent client protein degradation, decreased the efficiency of MYC-driven metabolic reprogramming. This study reveals that oncogenic HSP90 supports metabolism in B-cell lymphoma cells and patients with diffuse large B-cell lymphoma, providing a novel mechanism of activity for HSP90 inhibitors.