bims-minimp Biomed News
on Mitochondria, innate immunity, proteostasis
Issue of 2021‒07‒04
thirty papers selected by
Hanna Salmonowicz
Newcastle University

  1. Mol Cell. 2021 Jul 01. pii: S1097-2765(21)00402-0. [Epub ahead of print]81(13): 2808-2822.e10
      The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic DNA and induces interferon-stimulated genes (ISGs) to activate the innate immune system. Here, we report the unexpected discovery that cGAS also senses dysfunctional protein production. Purified ribosomes interact directly with cGAS and stimulate its DNA-dependent activity in vitro. Disruption of the ribosome-associated protein quality control (RQC) pathway, which detects and resolves ribosome collision during translation, results in cGAS-dependent ISG expression and causes re-localization of cGAS from the nucleus to the cytosol. Indeed, cGAS preferentially binds collided ribosomes in vitro, and orthogonal perturbations that result in elevated levels of collided ribosomes and RQC activation cause sub-cellular re-localization of cGAS and ribosome binding in vivo as well. Thus, translation stress potently increases DNA-dependent cGAS activation. These findings have implications for the inflammatory response to viral infection and tumorigenesis, both of which substantially reprogram cellular protein synthesis.
    Keywords:  ASCC3; IRF3; STING; ZNF598; cGAS; innate immunity; interferon signalling; mRNA translation; ribosome collision; ribosome-associated protein quality control
  2. EMBO J. 2021 Jun 30. e107913
      The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation-prone polyQ protein derived from human huntingtin. Expression of Q97-GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97-GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97-GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post-translational import of mitochondrial precursor proteins into mitochondria competes with aggregation-prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate-limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.
    Keywords:  Mia40; huntingtin; mitochondria; protein aggregation; protein translocation
  3. Biol Open. 2021 May 15. pii: bio058613. [Epub ahead of print]10(5):
      A dramatic rise of infections with antibiotic-resistant bacterial pathogens continues to challenge the healthcare field due to the lack of effective treatment regimes. As such, there is an urgent need to develop new antimicrobial agents that can combat these multidrug-resistant superbugs. Mitochondria are central regulators of metabolism and other cellular functions, including the regulation of innate immunity pathways involved in the defense against infection. The mitochondrial unfolded protein response (UPRmt) is a stress-activated pathway that mitigates mitochondrial dysfunction through the regulation of genes that promote recovery of the organelle. In the model organism Caenorhabditis elegans, the UPRmt also mediates an antibacterial defense program that combats pathogen infection, which promotes host survival. We sought to identify and characterize antimicrobial effectors that are regulated during the UPRmt. From our search, we discovered that the antimicrobial peptide CNC-4 is upregulated during this stress response. CNC-4 belongs to the caenacin family of antimicrobial peptides, which are predominantly found in nematodes and are known to have anti-fungal properties. Here, we find that CNC-4 also possesses potent antimicrobial activity against a spectrum of bacterial species and report on its characterization.
    Keywords:  Antimicrobial peptide; CNC-4; Caenacins; Innate immunity; Mitochondria; Mitochondrial UPR; Stress response
  4. PLoS Genet. 2021 Jul 02. 17(7): e1009664
      Mitochondrial defects can cause a variety of human diseases and protective mechanisms exist to maintain mitochondrial functionality. Imbalances in mitochondrial proteostasis trigger a transcriptional program, termed mitochondrial unfolded protein response (mtUPR). However, the temporal sequence of events in mtUPR is unclear and the consequences on mitochondrial protein import are controversial. Here, we have quantitatively analyzed all main import pathways into mitochondria after different time spans of mtUPR induction. Kinetic analyses reveal that protein import into all mitochondrial subcompartments strongly increases early upon mtUPR and that this is accompanied by rapid remodelling of the mitochondrial signature lipid cardiolipin. Genetic inactivation of cardiolipin synthesis precluded stimulation of protein import and compromised cellular fitness. At late stages of mtUPR upon sustained stress, mitochondrial protein import efficiency declined. Our work clarifies the enigma of protein import upon mtUPR and identifies sequential mtUPR stages, in which an early increase in protein biogenesis to restore mitochondrial proteostasis is followed by late stages characterized by a decrease in import capacity upon prolonged stress induction.
  5. Biol Open. 2021 Jun 15. pii: bio058553. [Epub ahead of print]10(6):
      Mitochondrial DNA (mtDNA) encodes gene products that are essential for oxidative phosphorylation. They organize as higher order nucleoid structures (mtNucleoids) that were shown to be critical for the maintenance of mtDNA stability and integrity. While mtNucleoid structures are associated with cellular health, how they change in situ under physiological maturation and aging requires further investigation. In this study, we investigated the mtNucleoid assembly at an ultrastructural level in situ using the TFAM-Apex2 Drosophila model. We found that smaller and more compact TFAM-nucleoids are populated in the mitochondria of indirect flight muscle of aged flies. Furthermore, mtDNA transcription and replication were cross-regulated in the mtTFB2-knockdown flies as in the mtRNAPol-knockdown flies that resulted in reductions in mtDNA copy numbers and nucleoid-associated TFAM. Overall, our study reveals that the modulation of TFAM-nucleoid structure under physiological aging, which is critically regulated by mtDNA content.
    Keywords:  Mitochondrial DNA; Mitochondrial RNA polymerase (mtRNAPol); Mitochondrial nucleoid; Mitochondrial transcription factor B2 (mtTFB2); Transcription factor A (TFAM)
  6. Redox Biol. 2021 Jun 18. pii: S2213-2317(21)00208-1. [Epub ahead of print]45 102049
      Mitochondrial dysfunction is a fundamental challenge in septic cardiomyopathy. Mitophagy and the mitochondrial unfolded protein response (UPRmt) are the predominant stress-responsive and protective mechanisms involved in repairing damaged mitochondria. Although mitochondrial homeostasis requires the coordinated actions of mitophagy and UPRmt, their molecular basis and interactive actions are poorly understood in sepsis-induced myocardial injury. Our investigations showed that lipopolysaccharide (LPS)-induced sepsis contributed to cardiac dysfunction and mitochondrial damage. Although both mitophagy and UPRmt were slightly activated by LPS in cardiomyocytes, their endogenous activation failed to prevent sepsis-mediated myocardial injury. However, administration of urolithin A, an inducer of mitophagy, obviously reduced sepsis-mediated cardiac depression by normalizing mitochondrial function. Interestingly, this beneficial action was undetectable in cardiomyocyte-specific FUNDC1 knockout (FUNDC1CKO) mice. Notably, supplementation with a mitophagy inducer had no impact on UPRmt, whereas genetic ablation of FUNDC1 significantly upregulated the expression of genes related to UPRmt in LPS-treated hearts. In contrast, enhancement of endogenous UPRmt through oligomycin administration reduced sepsis-mediated mitochondrial injury and myocardial dysfunction; this cardioprotective effect was imperceptible in FUNDC1CKO mice. Lastly, once UPRmt was inhibited, mitophagy-mediated protection of mitochondria and cardiomyocytes was partly blunted. Taken together, it is plausible that endogenous UPRmt and mitophagy are slightly activated by myocardial stress and they work together to sustain mitochondrial performance and cardiac function. Endogenous UPRmt, a downstream signal of mitophagy, played a compensatory role in maintaining mitochondrial homeostasis in the case of mitophagy inhibition. Although UPRmt activation had no negative impact on mitophagy, UPRmt inhibition compromised the partial cardioprotective actions of mitophagy. This study shows how mitophagy modulates UPRmt to attenuate inflammation-related myocardial injury and suggests the potential application of mitophagy and UPRmt targeting in the treatment of myocardial stress.
    Keywords:  FUN14 domain-containing 1; Inflammation; Mitochondrial unfolded protein response; Mitophagy; Septic cardiomyopathy
  7. Int J Mol Sci. 2021 Jun 29. pii: 7030. [Epub ahead of print]22(13):
      Mitochondria are regarded as the metabolic centers of cells and are integral in many other cell processes, including the immune response. Each mitochondrion contains numerous copies of mitochondrial DNA (mtDNA), a small, circular, and bacterial-like DNA. In response to cellular damage or stress, mtDNA can be released from the mitochondrion and trigger immune and inflammatory responses. mtDNA release into the cytosol or bloodstream can occur as a response to hypoxia, sepsis, traumatic injury, excitatory cytotoxicity, or drastic mitochondrial membrane potential changes, some of which are hallmarks of neurodegenerative and mood disorders. Released mtDNA can mediate inflammatory responses observed in many neurological and mood disorders by driving the expression of inflammatory cytokines and the interferon response system. The current understanding of the role of mtDNA release in affective mood disorders and neurodegenerative diseases will be discussed.
    Keywords:  inflammation; mitochondria; mitochondrial DNA (mtDNA); neurodegenerative disease; neuropsychiatric disorder; reactive oxygen species (ROS)
  8. Curr Biol. 2021 Jun 23. pii: S0960-9822(21)00821-6. [Epub ahead of print]
      The mitochondrion is an ancient endosymbiotic organelle that performs many essential functions in eukaryotic cells.1-3 Mitochondrial impairment often results in physiological defects or diseases.2-8 Since most mitochondrial genes have been copied into the nuclear genome during evolution,9 the regulatory and interaction mechanisms between the mitochondrial and nuclear genomes are very complex. Multiple mechanisms, including antioxidant, DNA repair, mitophagy, and mitochondrial biogenesis pathways, have been shown to monitor the quality and quantity of mitochondria.10-12 Nonetheless, it remains unclear if these pathways can be further modified to enhance mitochondrial stability. Previously, experimental evolution has been used to adapt cells to novel growth conditions. By analyzing the resulting evolved populations, insights have been gained into the underlying molecular mechanisms.13 Here, we experimentally evolved yeast cells under conditions that selected for efficient respiration while continuously assaulting the mitochondrial genome (mtDNA) with ethidium bromide (EtBr). We found that the ability to maintain functional mtDNA was enhanced in most of the evolved lines when challenged with mtDNA-damaging reagents. We identified mutations of the mitochondrial NADH dehydrogenase NDE1 in most of the evolved lines, but other pathways are also involved. Finally, we show that cells displaying enhanced mtDNA retention also exhibit a prolonged replicative lifespan. Our work reveals potential evolutionary trajectories by which cells can maintain functional mitochondria in response to mtDNA stress, as well as the physiological implications of such adaptations.
    Keywords:  experimental evolution; mitochondrial DNA; mitochondrial quality control; replicative lifespan; yeast genomics
  9. Commun Biol. 2021 Jul 02. 4(1): 831
      Gain of even a single chromosome leads to changes in human cell physiology and uniform perturbations of specific cellular processes, including downregulation of DNA replication pathway, upregulation of autophagy and lysosomal degradation, and constitutive activation of the type I interferon response. Little is known about the molecular mechanisms underlying these changes. We show that the constitutive nuclear localization of TFEB, a transcription factor that activates the expression of autophagy and lysosomal genes, is characteristic of human trisomic cells. Constitutive nuclear localization of TFEB in trisomic cells is independent of mTORC1 signaling, but depends on the cGAS-STING activation. Trisomic cells accumulate cytoplasmic dsDNA, which activates the cGAS-STING signaling cascade, thereby triggering nuclear accumulation of the transcription factor IRF3 and, consequently, upregulation of interferon-stimulated genes. cGAS depletion interferes with TFEB-dependent upregulation of autophagy in model trisomic cells. Importantly, activation of both the innate immune response and autophagy occurs also in primary trisomic embryonic fibroblasts, independent of the identity of the additional chromosome. Our research identifies the cGAS-STING pathway as an upstream regulator responsible for activation of autophagy and inflammatory response in human cells with extra chromosomes, such as in Down syndrome or other aneuploidy-associated pathologies.
  10. Biology (Basel). 2021 Jun 23. pii: 572. [Epub ahead of print]10(7):
      Mitochondria are highly dynamic organelles that interchange their contents mediated by fission and fusion. However, it has previously been shown that the mitochondria of cultured human epithelial cells exhibit a gradient in the relative abundance of several proteins, with the perinuclear mitochondria generally exhibiting a higher protein abundance than the peripheral mitochondria. The molecular mechanisms that are required for the establishment and the maintenance of such inner-cellular mitochondrial protein abundance gradients are unknown. We verified the existence of inner-cellular gradients in the abundance of clusters of the mitochondrial outer membrane protein Tom20 in the mitochondria of kidney epithelial cells from an African green monkey (Vero cells) using STED nanoscopy and confocal microscopy. We found that the Tom20 gradients are established immediately after cell division and require the presence of microtubules. Furthermore, the gradients are abrogated in hyperfused mitochondrial networks. Our results suggest that inner-cellular protein abundance gradients from the perinuclear to the peripheral mitochondria are established by the trafficking of individual mitochondria to their respective cellular destination.
    Keywords:  image analysis; inner-cellular heterogeneity; nanoscopy; protein distribution; super-resolution microscopy
  11. Elife. 2021 Jun 30. pii: e65215. [Epub ahead of print]10
      The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca²⁺-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca2+-buffering requirements of the cell. Here, we explore the role of Miro1 in parvalbumin interneurons and how changes in mitochondrial trafficking could alter network activity in the mouse brain. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization while PV+ interneuron mediated inhibition remained intact. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30 - 80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.
    Keywords:  cell biology; mouse; neuroscience
  12. J Neurochem. 2021 Jul 03.
      Protein arginine methyltransferases (PRMTs) are a family of enzymes involved in gene regulation and protein/histone modifications. PRMT8 is primarily expressed in the central nervous system, specifically within the cellular membrane and synaptic vesicles. Recently, PRMT8 has been described to play key roles in neuronal signaling such as a regulator of dendritic arborization, synaptic function and maturation, and neuronal differentiation and plasticity. Here, we examined the role of PRMT8 in response to hypoxia-induced stress in brain metabolism. Our results from liquid chromatography mass spectrometry, mitochondrial oxygen consumption rate (OCR), and protein analyses indicate that PRMT8(-/-) knockout mice presented with altered membrane phospholipid composition, decreased mitochondrial stress capacity, and increased neuroinflammatory markers, such as TNF-α and ionized calcium binding adaptor molecule 1 (Iba1, a specific marker for microglia/macrophage activation) after hypoxic stress. Furthermore, adenovirus-based overexpression of PRMT8 reversed the changes in membrane phospholipid composition, mitochondrial stress capacity, and neuroinflammatory markers. Together, our findings establish PRMT8 as an important regulatory component of membrane phospholipid composition, short-term memory function, mitochondrial function, and neuroinflammation in response to hypoxic stress.
    Keywords:  Protein arginine methyltransferase; hypoxic stress; mitochondrial function; neuroinflammation; phospholipids
  13. J Cell Biol. 2021 Aug 02. pii: e202011078. [Epub ahead of print]220(8):
      The ER is a key organelle of membrane biogenesis and crucial for the folding of both membrane and secretory proteins. Sensors of the unfolded protein response (UPR) monitor the unfolded protein load in the ER and convey effector functions for maintaining ER homeostasis. Aberrant compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent activators of the UPR. How the distinct signals from lipid bilayer stress and unfolded proteins are processed by the conserved UPR transducer Ire1 remains unknown. Here, we have generated a functional, cysteine-less variant of Ire1 and performed systematic cysteine cross-linking experiments in native membranes to establish its transmembrane architecture in signaling-active clusters. We show that the transmembrane helices of two neighboring Ire1 molecules adopt an X-shaped configuration independent of the primary cause for ER stress. This suggests that different forms of stress converge in a common, signaling-active transmembrane architecture of Ire1.
  14. Int J Mol Sci. 2021 Jun 04. pii: 6085. [Epub ahead of print]22(11):
      Lysine succinylation is a post-translational modification which alters protein function in both physiological and pathological processes. Mindful that it requires succinyl-CoA, a metabolite formed within the mitochondrial matrix that cannot permeate the inner mitochondrial membrane, the question arises as to how there can be succinylation of proteins outside mitochondria. The present mini-review examines pathways participating in peroxisomal fatty acid oxidation that lead to succinyl-CoA production, potentially supporting succinylation of extramitochondrial proteins. Furthermore, the influence of the mitochondrial status on cytosolic NAD+ availability affecting the activity of cytosolic SIRT5 iso1 and iso4-in turn regulating cytosolic protein lysine succinylations-is presented. Finally, the discovery that glia in the adult human brain lack subunits of both alpha-ketoglutarate dehydrogenase complex and succinate-CoA ligase-thus being unable to produce succinyl-CoA in the matrix-and yet exhibit robust pancellular lysine succinylation, is highlighted.
    Keywords:  fatty acid oxidation; ketoglutarate dehydrogenase complex; lysine; peroxisomes; post-translational modification; succinyl-CoA
  15. Int J Mol Sci. 2021 Jun 09. pii: 6228. [Epub ahead of print]22(12):
      Caseinolytic protease P (ClpP) is a mitochondrial serine protease. In mammalian cells, the heterodimerization of ClpP and its AAA+ ClpX chaperone results in a complex called ClpXP, which has a relevant role in protein homeostasis and in maintaining mitochondrial functionality through the degradation of mitochondrial misfolded or damaged proteins. Recent studies demonstrate that ClpP is upregulated in primary and metastatic human tumors, supports tumor cell proliferation, and its overexpression desensitizes cells to cisplatin. Interestingly, small modulators of ClpP activity, both activators and inhibitors, are able to impair oxidative phosphorylation in cancer cells and to induce apoptosis. This review provides an overview of the role of ClpP in regulating mitochondrial functionality, in supporting tumor cell proliferation and cisplatin resistance; finally, we discuss whether this protease could represent a new prognostic marker and therapeutic target for the treatment of cancer.
    Keywords:  ClpP activators; ClpP inhibitors; OXPHOS; mitochondrial protease ClpP; mitochondrial quality control
  16. Cell Rep. 2021 Jun 29. pii: S2211-1247(21)00704-X. [Epub ahead of print]35(13): 109328
      In this paper, we show that the essential Hsp90 co-chaperone Sgt1 is a member of a general protein quality control network that links folding and degradation through its participation in the degradation of misfolded proteins both in the cytosol and the endoplasmic reticulum (ER). Sgt1-dependent protein degradation acts in a parallel pathway to the ubiquitin ligase (E3) and ubiquitin chain elongase (E4), Hul5, and overproduction of Hul5 partly suppresses defects in cells with reduced Sgt1 activity. Upon proteostatic stress, Sgt1 accumulates transiently, in an Hsp90- and proteasome-dependent manner, with quality control sites (Q-bodies) of both yeast and human cells that co-localize with Vps13, a protein that creates organelle contact sites. Misfolding disease proteins, such as synphilin-1 involved in Parkinson's disease, are also sequestered to these compartments and require Sgt1 for their clearance.
    Keywords:  26S proteasome; Hsp90; Hul5; Sgt1; aging; chaperone; protein quality control; proteostasis
  17. Int J Mol Sci. 2021 Jun 04. pii: 6066. [Epub ahead of print]22(11):
      Over a thousand nucleus-encoded mitochondrial proteins are imported from the cytoplasm; however, mitochondrial (mt) DNA encodes for a small number of critical proteins and the entire suite of mt:tRNAs responsible for translating these proteins. Mitochondrial RNase P (mtRNase P) is a three-protein complex responsible for cleaving and processing the 5'-end of mt:tRNAs. Mutations in any of the three proteins can cause mitochondrial disease, as well as mutations in mitochondrial DNA. Great strides have been made in understanding the enzymology of mtRNase P; however, how the loss of each protein causes mitochondrial dysfunction and abnormal mt:tRNA processing in vivo has not been examined in detail. Here, we used Drosophila genetics to selectively remove each member of the complex in order to assess their specific contributions to mt:tRNA cleavage. Using this powerful model, we find differential effects on cleavage depending on which complex member is lost and which mt:tRNA is being processed. These data revealed in vivo subtleties of mtRNase P function that could improve understanding of human diseases.
    Keywords:  Drosophila; mitochondria; mtDNA; mtRNase P; tRNA
  18. Cells. 2021 Jun 30. pii: 1652. [Epub ahead of print]10(7):
      Intra-neuronal misfolding of monomeric tau protein to toxic β-sheet rich neurofibrillary tangles is a hallmark of Alzheimer's disease (AD). Tau pathology correlates not only with progressive dementia but also with microglia-mediated inflammation in AD. Amyloid-beta (Aβ), another pathogenic peptide involved in AD, has been shown to activate NLRP3 inflammasome (NOD-like receptor family, pyrin domain containing 3), triggering the secretion of proinflammatory interleukin-1β (IL1β) and interleukin-18 (IL18). However, the effect of tau protein on microglia concerning inflammasome activation, microglial polarization, and autophagy is poorly understood. In this study, human microglial cells (HMC3) were stimulated with the unaggregated and aggregated forms of the tau-derived PHF6 peptide (VQIVYK). Modulation of NLRP3 inflammasome was examined by qRT-PCR, immunocytochemistry, and Western blot. We demonstrate that fibrillar aggregates of VQIVYK upregulated the NLRP3 expression at both mRNA and protein levels in a dose- and time-dependent manner, leading to increased expression of IL1β and IL18 in HMC3 cells. Aggregated PHF6-peptide also activated other related inflammation and microglial polarization markers. Furthermore, we also report a time-dependent effect of the aggregated PHF6 on BECN1 (Beclin-1) expression and autophagy. Overall, the PHF6 model system-based study may help to better understand the complex interconnections between Alzheimer's PHF6 peptide aggregation and microglial inflammation, polarization, and autophagy.
    Keywords:  Alzheimer’s disease; HMC3; NLRP3; PHF6; autophagy; microglia; tau
  19. Am J Physiol Cell Physiol. 2021 06 30.
      Mitochondrial Transplantation is emerging as a novel cellular biotherapy to alleviate mitochondrial damage and dysfunction. Mitochondria play a crucial role in establishing cellular homeostasis and providing cell with the energy necessary to accomplish its function. Owing to its endosymbiotic origin, mitochondria share many features with their bacterial ancestors. Unlike the nuclear DNA, which is packaged into nucleosomes and protected from adverse environmental effects; mitochondrial DNA are more prone to harsh environmental effects, in particular that of the reactive oxygen species (ROS). Mitochondrial damage and dysfunction are implicated in many diseases ranging from metabolic diseases to cardiovascular and neurodegenerative diseases, among others. While it was once thought that transplantation of mitochondria would not be possible due to its semi-autonomous nature and reliance on the nucleus, recent advances have shown that it is possible to transplant viable functional intact mitochondria from autologous, allogenic, and xenogeneic sources into different cell types. Moreover, current research suggests that the transplantation could positively modulate bioenergetics and improve disease outcome. Mitochondrial transplantation techniques and consequences of transplantation in cardiomyocytes are the theme of this review. First, we outline the different mitochondrial isolation and transfer techniques. Second, we detail the consequences of mitochondrial transplantation in the cardiovascular system, more specifically in the context of cardiomyopathies and ischemia. Lastly, we elaborate our vision on how mitochondrial transplantation may mitigate other cardiac conditions secondary to mitochondrial damage and dysfunction, such as atherosclerosis and ST-elevated myocardial infarction.
    Keywords:  Bioenergetics; Ischemia Reperfusion Injury; Mitochondiral transplantation; Mitochondrial Cardiomyopathy; Mitochondrial Transfer
  20. Front Mol Biosci. 2021 ;8 671274
      Alzheimer's disease (AD), the most prevalent form of dementia, affects globally more than 30 million people suffering from cognitive deficits and neuropsychiatric symptoms. Substantial evidence for the involvement of mitochondrial dysfunction in the development and/or progression of AD has been shown in addition to the pathological hallmarks amyloid beta (Aβ) and tau. Still, the selective vulnerability and associated selective mitochondrial dysfunction cannot even be resolved to date. We aimed at optically quantifying mitochondrial function on a single-cell level in primary hippocampal neuron models of AD, unraveling differential involvement of cell and mitochondrial populations in amyloid precursor protein (APP)-associated mitochondrial dysfunction. NADH lifetime imaging is a highly sensitive marker-free method with high spatial resolution. However, deciphering cellular bioenergetics of complex cells like primary neurons has still not succeeded yet. To achieve this, we combined highly sensitive NADH lifetime imaging with respiratory inhibitor treatment, allowing characterization of mitochondrial function down to even the subcellular level in primary neurons. Measuring NADH lifetime of the same neuron before and after respiratory treatment reveals the metabolic delta, which can be taken as a surrogate for cellular redox capacity. Correlating NADH lifetime delta with overexpression strength of Aβ-related proteins on the single-cell level, we could verify the important role of intracellular Aβ-mediated mitochondrial toxicity. Subcellularly, we could demonstrate a higher respiration in neuronal somata in general than dendrites, but a similar impairment of somatic and dendritic mitochondria in our AD models. This illustrates the power of NADH lifetime imaging in revealing mitochondrial function on a single and even subcellular level and its potential to shed light into bioenergetic alterations in neuropsychiatric diseases and beyond.
    Keywords:  Alzheimer’s disease; NADH; amyloid beta; energy metabolism; mitochondria; redox imaging
  21. Front Aging Neurosci. 2021 ;13 682633
      Immune surveillance is an essential process that safeguards the homeostasis of a healthy brain. Among the increasing diversity of immune cells present in the central nervous system (CNS), microglia have emerged as a prominent leukocyte subset with key roles in the support of brain function and in the control of neuroinflammation. In fact, impaired microglial function is associated with the development of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Interestingly, these pathologies are also typified by protein aggregation and proteostasis dysfunction at the level of the endoplasmic reticulum (ER). These processes trigger activation of the unfolded protein response (UPR), which is a conserved signaling network that maintains the fidelity of the cellular proteome. Remarkably, beyond its role in protein folding, the UPR has also emerged as a key regulator of the development and function of immune cells. However, despite this evidence, the contribution of the UPR to immune cell homeostasis, immune surveillance, and neuro-inflammatory processes remains largely unexplored. In this review, we discuss the potential contribution of the UPR in brain-associated immune cells in the context of neurodegenerative diseases.
    Keywords:  ER stress; UPR; immune system; inflammation; microglia; neurodegeneration; neuroinflammation; protein misfolding
  22. EMBO Rep. 2021 Jun 30. e52905
      Planarians are able to stand long periods of starvation by maintaining adult stem cell pools and regenerative capacity. The molecular pathways that are needed for the maintenance of regeneration during starvation are not known. Here, we show that down-regulation of chaperonin TRiC/CCT subunits abrogates the regeneration capacity of planarians during starvation, but TRiC/CCT subunits are dispensable for regeneration in fed planarians. Under starvation, they are required to maintain mitotic fidelity and for blastema formation. We show that TRiC subunits modulate the unfolded protein response (UPR) and are required to maintain ATP levels in starved planarians. Regenerative defects in starved CCT-depleted planarians can be rescued by either chemical induction of mild endoplasmic reticulum stress, which leads to induction of the UPR, or by the supplementation of fatty acids. Together, these results indicate that CCT-dependent UPR induction promotes regeneration of planarians under food restriction.
    Keywords:  ER stress; chaperonin; hematopoietic stem cell; planarian; starvation
  23. Int J Mol Sci. 2021 Jun 03. pii: 6054. [Epub ahead of print]22(11):
      Mitochondria are membrane organelles present in almost all eukaryotic cells. In addition to their well-known role in energy production, mitochondria regulate central cellular processes, including calcium homeostasis, Reactive Oxygen Species (ROS) generation, cell death, thermogenesis, and biosynthesis of lipids, nucleic acids, and steroid hormones. Glucocorticoids (GCs) regulate the mitochondrially encoded oxidative phosphorylation gene expression and mitochondrial energy metabolism. The identification of Glucocorticoid Response Elements (GREs) in mitochondrial sequences and the detection of Glucocorticoid Receptor (GR) in mitochondria of different cell types gave support to hypothesis that mitochondrial GR directly regulates mitochondrial gene expression. Numerous studies have revealed changes in mitochondrial gene expression alongside with GR import/export in mitochondria, confirming the direct effects of GCs on mitochondrial genome. Further evidence has made clear that mitochondrial GR is involved in mitochondrial function and apoptosis-mediated processes, through interacting or altering the distribution of Bcl2 family members. Even though its exact translocation mechanisms remain unknown, data have shown that GR chaperones (Hsp70/90, Bag-1, FKBP51), the anti-apoptotic protein Bcl-2, the HDAC6- mediated deacetylation and the outer mitochondrial translocation complexes (Tom complexes) co-ordinate GR mitochondrial trafficking. A role of mitochondrial GR in stress and depression as well as in lung and hepatic inflammation has also been demonstrated.
    Keywords:  apoptosis; glucocorticoid receptor; glucocorticoids; mitochondria; mitochondrial glucocorticoid receptor; stress
  24. Mol Biol Cell. 2021 Jun 30. mbcE21010014
      Heat shock factor 1 (Hsf1) activation is responsible for increasing the abundance of protein folding chaperones and degradation machinery in response to proteotoxic conditions that give rise to misfolded or aggregated proteins. Here, we systematically explored the link between concurrent protein synthesis and proteotoxic stress in the budding yeast, S. cerevisiae. Consistent with prior work, inhibiting protein synthesis before inducing proteotoxic stress prevents Hsf1 activation, which we demonstrated across a broad array of stresses and validate using orthogonal means of blocking protein synthesis. However, other stress-dependent transcription pathways remained activatable under conditions of translation inhibition. Titrating the protein denaturant ethanol to a higher concentration results in Hsf1 activation in the absence of translation, suggesting extreme protein folding stress can induce proteotoxicity independent of protein synthesis. Furthermore, we demonstrate this connection under physiological conditions where protein synthesis occurs naturally at reduced rates. We find that disrupting the assembly or subcellular localization of newly synthesized proteins is sufficient to activate Hsf1. Thus, new proteins appear to be especially sensitive to proteotoxic conditions, and we propose that their aggregation may represent the bulk of the signal that activates Hsf1 in the wake of these insults.
  25. Front Immunol. 2021 ;12 682182
      The mitochondrial antiviral signaling protein (MAVS) is part of the cell's innate immune mechanism of defense. MAVS mRNA is bicistronic and can give rise to a full length-MAVS and a shorter isoform termed miniMAVS. In response to viral infections, viral RNA can be sensed by the cytosolic RNA sensors retinoic acid-inducible gene I (RIG-I) and/or melanoma differentiation-associated protein 5 (MDA5) and activate NF-κB through interaction with MAVS. MAVS can also sense cellular stress and activate an anti-oxidative stress (AOS) response through the activation of NF-κB. Because NF-κB is a main cellular transcription factor for HIV-1, we wanted to address what role MAVS plays in HIV-1 reactivation from latency in CD4 T cells. Our results indicate that RIG-I agonists required full length-MAVS whereas the AOS response induced by Dynasore through its catechol group can reactivate latent HIV-1 in a MAVS dependent manner through miniMAVS isoform. Furthermore, we uncover that PKC agonists, a class of latency-reversing agents, induce an AOS response in CD4 T cells and require miniMAVS to fully reactivate latent HIV-1. Our results indicate that the AOS response, through miniMAVS, can induce HIV-1 transcription in response to cellular stress and targeting this pathway adds to the repertoire of approaches to reactivate latent HIV-1 in 'shock-and-kill' strategies.
    Keywords:  Dynasore; HIV-1; MAVS; anti-oxidative stress response; latency; latency-reversal agents; reactive oxygen species; shock and kill
  26. Talanta. 2021 Oct 01. pii: S0039-9140(21)00513-0. [Epub ahead of print]233 122592
      Mitochondria, the main source of energy of cells, play a significant role in aerobic respiration process. Some stimulants can result in changes of mitochondrial microenvironments such as viscosity, pH and polarity. Abnormal changes of mitochondrial viscosity have been shown to relate to pathological activities and diseases. Therefore, it is critical to focus our attention on mitochondrial viscosity under different conditions. A novel organic water-soluble molecule called JLQL that could monitor viscosity was conveniently synthesized in two steps. The near-infrared sensor with maximum emission wavelength of 734.6 nm and the Stokes shift of 134.6 nm consisted of a fluorophore and a mitochondrial-targeting moiety as an acceptor group; the two were connected by a double bond. The fluorescence intensity of the sensor increased 175 times with the enhancement of viscosity of a PBS-glycerol system. The interference of other microenvironments such as pH and polarity and other interference analytes could be reduced. JLQL could sensitively and selectively differentiate different levels of mitochondrial viscosity induced by monensin or nystatin. Furthermore, the probe may provide an attractive way to monitor real-time changes of viscosity during mitophagy. Possessing the above properties, JLQL can potentially be employed as a powerful tool for the observation of mitochondrial viscosity.
    Keywords:  Mitochondria targeting; Mitochondrial autophagy; Near infrared fluorescence; Viscosity
  27. Trends Biochem Sci. 2021 Jun 29. pii: S0968-0004(21)00117-1. [Epub ahead of print]
      Recognition of DNA is an evolutionarily highly conserved mechanism of immunity. In mammals, the cGAS-STING pathway plays a central role in coupling DNA sensing to the execution of innate immune mechanisms, both in contexts of infection as well as in noninfectious settings of cellular stress and injury. The indiscriminate ability of double-stranded DNA (dsDNA) to activate cGAS challenges our understanding on how engagement of this pathway is prevented on genomic self-DNA under homeostatic conditions. Here, we review recent discoveries on the regulation of cGAS on chromatin and we discuss implications for cGAS-dependent inflammatory phenotypes. We close by highlighting emerging developments on the role of nuclear cGAS and related open questions for future research.
    Keywords:  DNA sensing; cGAS; chromatin; innate immunity
  28. Mol Biol Cell. 2021 Jun 30. mbcE21030104
      Aneuploid yeast cells are in a chronic state of proteotoxicity yet do not constitutively induce the cytosolic unfolded protein response (HSR) by Heat shock factor 1 (Hsf1). Here, we demonstrate that an active environmental stress response (ESR), a hallmark of aneuploidy across different models, suppresses Hsf1 induction in models of single chromosome gain. Furthermore, engineered activation of the ESR in the absence of stress was sufficient to suppress Hsf1 activation in euploid cells by subsequent heat shock while increasing thermotolerance and blocking formation of heat-induced protein aggregates. Suppression of the ESR in aneuploid cells resulted in longer cell doubling times and decreased viability in the presence of additional proteotoxicity. Lastly, we show that in euploids Hsf1 induction by heat shock is curbed by the ESR. Strikingly, we found a similar relationship between the ESR and the HSR using an inducible model of aneuploidy. Our work explains a long-standing paradox in the field and provides new insights into conserved mechanisms of proteostasis with potential relevance to cancers associated with aneuploidy.
  29. J Adv Res. 2021 Jul;31 35-47
      Introduction: Incidents of myocardial infarction and sudden cardiac arrest vary with time of the day, but the mechanism for this effect is not clear. We hypothesized that diurnal changes in the ability of cardiac mitochondria to control calcium homeostasis dictate vulnerability to cardiovascular events.Objectives: Here we investigate mitochondrial calcium dynamics, respiratory function, and reactive oxygen species (ROS) production in mouse heart during different phases of wake versus sleep periods.
    Methods: We assessed time-of-the-day dependence of calcium retention capacity of isolated heart mitochondria from young male C57BL6 mice. Rhythmicity of mitochondrial-dependent oxygen consumption, ROS production and transmembrane potential in homogenates were explored using the Oroboros O2k Station equipped with a fluorescence detection module. Changes in expression of essential clock and calcium dynamics genes/proteins were also determined at sleep versus wake time points.
    Results: Our results demonstrate that cardiac mitochondria exhibit higher calcium retention capacity and higher rates of calcium uptake during sleep period. This was associated with higher expression of clock gene Bmal1, lower expression of per2, greater expression of MICU1 gene (mitochondrial calcium uptake 1), and lower expression of the mitochondrial transition pore regulator gene cyclophilin D. Protein levels of mitochondrial calcium uniporter (MCU), MICU2, and sodium/calcium exchanger (NCLX) were also higher at sleep onset relative to wake period. While complex I and II-dependent oxygen utilization and transmembrane potential of cardiac mitochondria were lower during sleep, ROS production was increased presumably due to mitochondrial calcium sequestration.
    Conclusions: Taken together, our results indicate that retaining mitochondrial calcium in the heart during sleep dissipates membrane potential, slows respiratory activities, and increases ROS levels, which may contribute to increased vulnerability to cardiac stress during sleep-wake transition. This pronounced daily oscillations in mitochondrial functions pertaining to stress vulnerability may at least in part explain diurnal prevalence of cardiac pathologies.
    Keywords:  Calcium dynamics; Clock genes; Diurnal; Heart; Hydrogen peroxide; Mitochondria function
  30. Elife. 2021 Jul 01. pii: e69099. [Epub ahead of print]10
      The voltage-gated potassium channel Kv1.3 plays an apparent dual physiological role by participating in activation and proliferation of leukocytes as well as promoting apoptosis in several types of tumor cells. Therefore, Kv1.3 is considered a potential pharmacological target for immunodeficiency and cancer. Different cellular locations of Kv1.3, at the plasma membrane or the mitochondria, could be responsible for such duality. While plasma membrane Kv1.3 facilitates proliferation, the mitochondrial channel modulates apoptotic signaling. Several molecular determinants of Kv1.3 drive the channel to the cell surface, but no information is available about its mitochondrial targeting. Caveolins, which are able to modulate cell survival, participate in the plasma membrane targeting of Kv1.3. The channel, via a caveolin-binding domain (CDB), associates with caveolin 1 (Cav1), which localizes Kv1.3 to lipid raft membrane microdomains. The aim of our study was to understand the role of such interactions not only for channel targeting but also for cell survival in mammalian cells. By using a caveolin association-deficient channel (Kv1.3 CDBless), we demonstrate here that while the Kv1.3-Cav1 interaction is responsible for the channel localization in the plasma membrane, a lack of such interaction accumulates Kv1.3 in the mitochondria. Kv1.3 CDBless severely affects mitochondrial physiology and cell survival, indicating that a functional link of Kv1.3 with Cav1 within the mitochondria modulates the pro-apoptotic effects of the channel. Therefore, the balance exerted by these two complementary mechanisms fine-tune the physiological role of Kv1.3 during cell survival or apoptosis. Our data highlight an unexpected role for the mitochondrial caveolin-Kv1.3 axis during cell survival and apoptosis.
    Keywords:  apoptosis; cancer biology; cell biology; human; ion channels; leukocytes; mouse; xenopus