bims-mimeim Biomed News
on Mitochondria, metabolism and immunity
Issue of 2021‒02‒28
28 papers selected by
Matthew C. Sinton
University of Glasgow


  1. Metabolism. 2021 Feb 22. pii: S0026-0495(21)00031-7. [Epub ahead of print] 154731
      BACKGROUND: Ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3), also known as CD39L3, is the dominant ectonucleotidase expressed by beta cells in the islet of Langerhans and on nerves. NTPDase3 catalyzes the conversion of extracellular ATP and ADP to AMP and modulates purinergic signaling. Previous studies have shown that NTPDase3 decreases insulin release from beta-cells in vitro. This study aims to determine the impact of NTPDase3 in diet-induced obesity (DIO) and metabolism in vivo.METHODS: We developed global NTPDase3 deficient (Entpd3-/-) and islet beta-cell-specific NTPDase-3 deficient mice (Entpd3flox/flox,InsCre) using Ins1-Cre targeted gene editing to compare metabolic phenotypes with wildtype (WT) mice on a high-fat diet (HFD).
    RESULTS: Entpd3-/- mice exhibited similar growth rates compared to WT on chow diet. When fed HFD, Entpd3-/- mice demonstrated significant resistance to DIO. Entpd3-/- mice consumed more calories daily and exhibited less fecal calorie loss. Although Entpd3-/- mice had no increases in locomotor activity, the mice exhibited a significant increase in basal metabolic rate when on the HFD. This beneficial phenotype was associated with improved glucose tolerance, but not higher insulin secretion. In fact, Entpd3flox/flox,InsCre mice demonstrated similar metabolic phenotypes and insulin secretion compared to matched controls, suggesting that the expression of NTPDase3 in beta-cells was not the primary protective factor. Instead, we observed a higher expression of uncoupling protein 1 (UCP-1) in brown adipose tissue and an augmented browning in inguinal white adipose tissue with upregulation of UCP-1 and related genes involved in thermogenesis in Entpd3-/- mice.
    CONCLUSIONS: Global NTPDase3 deletion in mice is associated with resistance to DIO and obesity-associated glucose intolerance. This outcome is not driven by the expression of NTPDase3 in pancreatic beta-cells, but rather likely mediated through metabolic changes in adipocytes.
    Keywords:  NTPDase3; adipose tissue; ectonucleotidase; insulin resistance; obesity; purinergic signaling
    DOI:  https://doi.org/10.1016/j.metabol.2021.154731
  2. J Biol Chem. 2021 Feb 19. pii: S0021-9258(21)00213-1. [Epub ahead of print] 100440
      Obesity associates with inflammation, insulin resistance and higher blood lipids. It is unclear if immune responses facilitate lipid breakdown and release from adipocytes via lipolysis in a separate way from hormones or adrenergic signals. We found that an ancient component of ER stress, inositol-requiring protein 1 (IRE1), discriminates inflammation-induced adipocyte lipolysis versus lipolysis from adrenergic or hormonal stimuli. Our data show that inhibiting IRE1 kinase activity was sufficient to block adipocyte-autonomous lipolysis from multiple inflammatory ligands, including bacterial components, certain cytokines, and thapsigargin-induced ER stress. IRE1-mediated lipolysis was specific for inflammatory triggers since IRE1 kinase activity was dispensable for isoproterenol and cAMP-induced lipolysis in adipocytes and mouse adipose tissue. IRE1 RNase activity was not associated with inflammation-induced adipocyte lipolysis. Inhibiting IRE1 kinase activity blocked NF-κB activation, interleukin-6 secretion, and adipocyte-autonomous lipolysis from inflammatory ligands. Inflammation-induced lipolysis mediated by IRE1 occurred independently from changes in insulin signaling in adipocytes, suggesting that inflammation can promote IRE1-mediated lipolysis independent of adipocyte insulin resistance. We found no role for canonical unfolded protein responses or ABL kinases in linking ER stress to IRE1-mediated lipolysis. Adiponectin-Cre-mediated IRE1 knockout in mice showed that adipocyte IRE1 was required for inflammatory ligand-induced lipolysis in adipose tissue explants and that adipocyte IRE1 was required for approximately half of the increase in blood triglycerides after a bacterial endotoxin-mediated inflammatory stimulus in vivo. Together, our results show that IRE1 propagates an inflammation-specific lipolytic program independent from hormonal or adrenergic regulation. Targeting IRE1 kinase activity may benefit metabolic syndrome and inflammatory lipid disorders.
    Keywords:  ER stress; adipocyte; cytokine; endocrinology; immunometabolism; inflammation; lipid; lipolysis; metabolic syndrome; obesity
    DOI:  https://doi.org/10.1016/j.jbc.2021.100440
  3. Biochim Biophys Acta Mol Cell Biol Lipids. 2021 Feb 22. pii: S1388-1981(21)00035-4. [Epub ahead of print] 158909
      Scavenger receptor class B type 1 (SR-B1) is a membrane lipoprotein receptor/lipid transporter involved in the pathogenesis of atherosclerosis, but its role in obesity and fatty liver development is unclear. Here, we determined the effects of SR-B1 deficiency on plasma metabolic and inflammatory parameters as well as fat deposition in adipose tissue and liver during obesity. To induce obesity, we performed high-fat diet (HFD) exposure for 12 weeks in male SR-B1 knock-out (SR-B1-/-, n = 14) and wild-type (WT, n = 12) mice. Compared to HFD-fed WT mice, plasma from HFD-fed SR-B1-/- animals exhibited increased total cholesterol, triglycerides (TG) and TNF-α levels. In addition, hypertrophied adipocytes and macrophage-containing crown-like structures (CLS) were observed in adipose tissue from HFD-fed SR-B1 deficient mice. Remarkably, liver from obese SR-B1-/- mice showed attenuated TG content, dysregulation in hepatic peroxisome proliferator-activated receptors (PPARs) expression, increased hepatic TG secretion, and altered hepatic fatty acid (FA) composition. In conclusion, we show that SR-B1 deficiency alters the metabolic environment of obese mice through modulation of liver and adipose tissue lipid accumulation. Our findings provide the basis for further elucidation of SR-B1's role in obesity and fatty liver, two major public health issues that increase the risk of advanced chronic diseases and overall mortality.
    Keywords:  Adipose tissue; Fatty liver; Lipid metabolism; Obesity; SR-B1
    DOI:  https://doi.org/10.1016/j.bbalip.2021.158909
  4. Nat Commun. 2021 02 22. 12(1): 1209
      Fructose intake has increased substantially throughout the developed world and is associated with obesity, type 2 diabetes and non-alcoholic fatty liver disease. Currently, our understanding of the metabolic and mechanistic implications for immune cells, such as monocytes and macrophages, exposed to elevated levels of dietary fructose is limited. Here, we show that fructose reprograms cellular metabolic pathways to favour glutaminolysis and oxidative metabolism, which are required to support increased inflammatory cytokine production in both LPS-treated human monocytes and mouse macrophages. A fructose-dependent increase in mTORC1 activity drives translation of pro-inflammatory cytokines in response to LPS. LPS-stimulated monocytes treated with fructose rely heavily on oxidative metabolism and have reduced flexibility in response to both glycolytic and mitochondrial inhibition, suggesting glycolysis and oxidative metabolism are inextricably coupled in these cells. The physiological implications of fructose exposure are demonstrated in a model of LPS-induced systemic inflammation, with mice exposed to fructose having increased levels of circulating IL-1β after LPS challenge. Taken together, our work underpins a pro-inflammatory role for dietary fructose in LPS-stimulated mononuclear phagocytes which occurs at the expense of metabolic flexibility.
    DOI:  https://doi.org/10.1038/s41467-021-21461-4
  5. J Lipid Res. 2021 Feb 23. pii: S0022-2275(21)00033-X. [Epub ahead of print] 100052
      High-fat (HF)-diet-induced obesity accompanies multiple metabolic disorders including insulin resistance, glucose intolerance, oxidative stress and inflammation, resulting in the initiation of cell death programs. Previously, we demonstrated murine germline knockout of calcium-independent phospholipase A2γ (iPLA2γ) prevented HF-diet-induced weight gain, attenuated insulin resistance, and decreased mitochondrial permeability transition pore (mPTP) opening leading to alterations in bioenergetics. To gain insight into the specific roles of hepatic iPLA2γ in mitochondrial function and cell death under metabolic stress, we generated a hepatocyte-specific iPLA2γ-knockout (HEPiPLA2γKO). Using this model, we compared the effects of HF-diet on wild-type vs. HEPiPLA2γKO mice in the eicosanoid production and mitochondrial bioenergetics. HEPiPLA2γKO mice exhibited higher glucose clearance rates than WT controls. Importantly, HF-diet induced the accumulation of 12-hydroxyeicosatetraenoic acid (12-HETE) in WT liver which was decreased in HEPiPLA2γKO. Furthermore, HF-feeding markedly increased Ca2+ sensitivity and resistance to ADP-mediated inhibition of mPTP opening in WT mice. In contrast, ablation of iPLA2γ prevented the HF-induced hypersensitivity of mPTP opening to calcium and maintained ADP-mediated resistance to mPTP opening. Respirometry revealed that ADP-stimulated mitochondrial respiration was significantly reduced by exogenous 12-HETE. Finally, HEPiPLA2γKO hepatocytes were resistant to calcium ionophore-induced lipoxygenase-mediated LDH release. Collectively, these results demonstrate that HF-diet increases iPLA2γ-mediated hepatic 12-HETE production leading to mitochondrial dysfunction and hepatic cell death.
    Keywords:  cell death; diet and dietary lipids; eicosanoids; hepatocyte; hydroxyeicosatetraenoic acids; mitochondria; mitochondrial permeability transition pore; mitochondrial respiration; obesity; phospholipases A(2)
    DOI:  https://doi.org/10.1016/j.jlr.2021.100052
  6. Cell Rep. 2021 Feb 23. pii: S2211-1247(21)00080-2. [Epub ahead of print]34(8): 108767
      Although induction of ferroptosis, an iron-dependent form of non-apoptotic cell death, has emerged as an anticancer strategy, the metabolic basis of ferroptotic death remains poorly elucidated. Here, we show that glucose determines the sensitivity of human pancreatic ductal carcinoma cells to ferroptosis induced by pharmacologically inhibiting system xc-. Mechanistically, SLC2A1-mediated glucose uptake promotes glycolysis and, thus, facilitates pyruvate oxidation, fuels the tricyclic acid cycle, and stimulates fatty acid synthesis, which finally facilitates lipid peroxidation-dependent ferroptotic death. Screening of a small interfering RNA (siRNA) library targeting metabolic enzymes leads to identification of pyruvate dehydrogenase kinase 4 (PDK4) as the top gene responsible for ferroptosis resistance. PDK4 inhibits ferroptosis by blocking pyruvate dehydrogenase-dependent pyruvate oxidation. Inhibiting PDK4 enhances the anticancer activity of system xc- inhibitors in vitro and in suitable preclinical mouse models (e.g., a high-fat diet diabetes model). These findings reveal metabolic reprogramming as a potential target for overcoming ferroptosis resistance.
    Keywords:  PDK4; cancer; fatty acid; ferroptosis; glucose; glycolysis; metabolism; pyruvate oxidation; resistance; therapy
    DOI:  https://doi.org/10.1016/j.celrep.2021.108767
  7. Cell Signal. 2021 Feb 22. pii: S0898-6568(21)00047-4. [Epub ahead of print] 109959
      Insulin is the main anabolic hormone secreted by β-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic β-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D.
    Keywords:  Adipocytes; Hepatocytes; Insulin resistance; Skeletal muscle cells; Sphingolipids; Type 2 diabetes
    DOI:  https://doi.org/10.1016/j.cellsig.2021.109959
  8. Nat Metab. 2021 Feb;3(2): 228-243
      Obesity is a major risk factor for cardiometabolic diseases. Nevertheless, a substantial proportion of individuals with obesity do not suffer cardiometabolic comorbidities. The mechanisms that uncouple adiposity from its cardiometabolic complications are not fully understood. Here, we identify 62 loci of which the same allele is significantly associated with both higher adiposity and lower cardiometabolic risk. Functional analyses show that the 62 loci are enriched for genes expressed in adipose tissue, and for regulatory variants that influence nearby genes that affect adipocyte differentiation. Genes prioritized in each locus support a key role of fat distribution (FAM13A, IRS1 and PPARG) and adipocyte function (ALDH2, CCDC92, DNAH10, ESR1, FAM13A, MTOR, PIK3R1 and VEGFB). Several additional mechanisms are involved as well, such as insulin-glucose signalling (ADCY5, ARAP1, CREBBP, FAM13A, MTOR, PEPD, RAC1 and SH2B3), energy expenditure and fatty acid oxidation (IGF2BP2), browning of white adipose tissue (CSK, VEGFA, VEGFB and SLC22A3) and inflammation (SH2B3, DAGLB and ADCY9). Some of these genes may represent therapeutic targets to reduce cardiometabolic risk linked to excess adiposity.
    DOI:  https://doi.org/10.1038/s42255-021-00346-2
  9. Am J Physiol Endocrinol Metab. 2021 Feb 22.
      Fibroblast growth factor-21 (FGF21) is a hormonal regulator of metabolism; it promotes glucose oxidation and the thermogenic capacity of adipose tissues. The levels of β-klotho (KLB), the co-receptor required for FGF21 action, are decreased in brown (BAT) and white (WAT) adipose tissues during obesity, diabetes and lipodystrophy. Reduced β-klotho levels have been proposed to account for FGF21 resistance in these conditions. In this study, we explored whether down-regulation of β-klotho affects metabolic regulation and the thermogenic responsiveness of adipose tissues using mice with total (KLB-KO) or partial (KLB-heterozygotes) ablation of β-klotho. We herein show that KLB gene dosage was inversely associated with adiposity in mice. Upon cold exposure, impaired browning of subcutaneous WAT and milder alterations in BAT were associated with reduced KLB gene dosage in mice. Cultured brown and beige adipocytes from mice with total or partial ablation of the KLB gene showed reduced thermogenic responsiveness to β3-adrenergic activation by treatment with CL316,243, indicating that these effects were cell-autonomous. Deficiency in FGF21 mimicked the KLB-reduction-induced impairment of thermogenic responsiveness in brown and beige adipocytes. These results indicate that the levels of KLB in adipose tissues determine their thermogenic capacity to respond to cold and/or adrenergic stimuli. Moreover, an autocrine action of FGF21 in brown and beige adipocytes may account for the ability of the KLB level to influence thermogenic responsiveness.
    Keywords:  brown adipose tissue; browning; fibroblast growth factor 21; thermogenesis; β-klotho
    DOI:  https://doi.org/10.1152/ajpendo.00270.2020
  10. Cell Metab. 2021 Feb 17. pii: S1550-4131(21)00057-7. [Epub ahead of print]
      Mitochondrial respiration is critical for cell proliferation. In addition to producing ATP, respiration generates biosynthetic precursors, such as aspartate, an essential substrate for nucleotide synthesis. Here, we show that in addition to depleting intracellular aspartate, electron transport chain (ETC) inhibition depletes aspartate-derived asparagine, increases ATF4 levels, and impairs mTOR complex I (mTORC1) activity. Exogenous asparagine restores proliferation, ATF4 and mTORC1 activities, and mTORC1-dependent nucleotide synthesis in the context of ETC inhibition, suggesting that asparagine communicates active respiration to ATF4 and mTORC1. Finally, we show that combination of the ETC inhibitor metformin, which limits tumor asparagine synthesis, and either asparaginase or dietary asparagine restriction, which limit tumor asparagine consumption, effectively impairs tumor growth in multiple mouse models of cancer. Because environmental asparagine is sufficient to restore tumor growth in the context of respiration impairment, our findings suggest that asparagine synthesis is a fundamental purpose of tumor mitochondrial respiration, which can be harnessed for therapeutic benefit to cancer patients.
    Keywords:  asparaginase; asparagine; cancer metabolism; cancer treatment; dietary restriction; metformin; respiration
    DOI:  https://doi.org/10.1016/j.cmet.2021.02.001
  11. Elife. 2021 Feb 22. pii: e64611. [Epub ahead of print]10
      Metabolic reprogramming between resistance and tolerance occurs within the immune system in response to sepsis. While metabolic tissues such as the liver are subjected to damage during sepsis, how their metabolic and energy reprogramming ensures survival is unclear. Employing comprehensive metabolomic, lipidomic, and transcriptional profiling in a mouse model of sepsis, we show that hepatocyte lipid metabolism, mitochondrial tricarboxylic acid (TCA) energetics, and redox balance are significantly reprogrammed after cecal ligation and puncture (CLP). We identify increases in TCA cycle metabolites citrate, cis-aconitate, and itaconate with reduced fumarate and triglyceride accumulation in septic hepatocytes. Transcriptomic analysis of liver tissue supports and extends the hepatocyte findings. Strikingly, the administration of the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate reverses dysregulated hepatocyte metabolism and mitochondrial dysfunction. In summary, our data indicate that sepsis promotes hepatic metabolic dysfunction and that targeting the mitochondrial PDC/PDK energy homeostat rebalances transcriptional and metabolic manifestations of sepsis within the liver.
    Keywords:  immunology; inflammation; liver; metabolism; mouse; sepsis; steatosis
    DOI:  https://doi.org/10.7554/eLife.64611
  12. Commun Biol. 2021 Feb 24. 4(1): 248
      βA3/A1-crystallin, a lens protein that is also expressed in astrocytes, is produced as βA3 and βA1-crystallin isoforms by leaky ribosomal scanning. In a previous human proteome high-throughput array, we found that βA3/A1-crystallin interacts with protein tyrosine phosphatase 1B (PTP1B), a key regulator of glucose metabolism. This prompted us to explore possible roles of βA3/A1-crystallin in metabolism of retinal astrocytes. We found that βA1-crystallin acts as an uncompetitive inhibitor of PTP1B, but βA3-crystallin does not. Loss of βA1-crystallin in astrocytes triggers metabolic abnormalities and inflammation. In CRISPR/cas9 gene-edited βA1-knockdown (KD) mice, but not in βA3-knockout (KO) mice, the streptozotocin (STZ)-induced diabetic retinopathy (DR)-like phenotype is exacerbated. Here, we have identified βA1-crystallin as a regulator of PTP1B; loss of this regulation may be a new mechanism by which astrocytes contribute to DR. Interestingly, proliferative diabetic retinopathy (PDR) patients showed reduced βA1-crystallin and higher levels of PTP1B in the vitreous humor.
    DOI:  https://doi.org/10.1038/s42003-021-01763-5
  13. Front Pediatr. 2020 ;8 612279
      Brown adipose tissue (BAT) is a thermogenic organ owing to its unique expression of uncoupling protein 1 (UCP1), which is a proton channel in the inner mitochondrial membrane used to dissipate the proton gradient and uncouple the electron transport chain to generate heat instead of adenosine triphosphate. The discovery of metabolically active BAT in human adults, especially in lean people after cold exposure, has provoked the "thermogenic anti-obesity" idea to battle weight gain. Because BAT can expend energy through UCP1-mediated thermogenesis, the molecular mechanisms regulating UCP1 expression have been extensively investigated at both transcriptional and posttranscriptional levels. Of note, the 3'-untranslated region (3'-UTR) of Ucp1 mRNA is differentially processed between mice and humans that quantitatively affects UCP1 synthesis and thermogenesis. Here, we summarize the regulatory mechanisms underlying UCP1 expression, report the number of poly(A) signals identified or predicted in Ucp1 genes across species, and discuss the potential and caution in targeting UCP1 for enhancing thermogenesis and metabolic fitness.
    Keywords:  alternative polyadenylation; brown adipose tissue; thermogenesis; transcriptional control; translational control; uncoupling protein 1
    DOI:  https://doi.org/10.3389/fped.2020.612279
  14. J Autoimmun. 2021 Feb 22. pii: S0896-8411(21)00019-6. [Epub ahead of print]119 102611
      OBJECTIVES: Sjögren's syndrome (SS) is an autoimmune disease caused by inflammation of the exocrine gland. The pathological hallmark of SS is the infiltration of lymphocytes into the salivary glands. Increased infiltration of T and B cells into salivary glands exacerbates symptoms of SS. Several recent studies have identified the role of gut microbiota in SS. Butyrate, one of the metabolites of the gut microbiota, regulates T cells; however, its effects on B cells and SS remain unknown. This study determined the therapeutic effect of butyrate on regulating B cells in SS.METHODS: Various concentrations of butyrate were intraperitoneally injected three times per week in NOD/ShiLtJ (NOD) mice, the prototype animal model for SS, and observed for more than 10 weeks. Whole salivary flow rate and the histopathology of salivary glands were investigated. Human submandibular gland (HSG) cells and B cells in mouse spleen were used to confirm the anti-inflammatory and immunomodulatory effects of butyrate.
    RESULTS: Butyrate increased salivary flow rate in NOD mice and reduced inflammation of salivary gland tissues. It also regulated cell death and the expression of circadian-clock-related genes in HSG cells. Butyrate induced B cell regulation by increasing IL-10-producing B (B10) cells and decreasing IL-17-producing B cells, through the circadian clock genes RAR-related orphan receptor alpha and nuclear receptor subfamily 1 group D member 1.
    CONCLUSION: The findings of this study imply that butyrate may ameliorate SS via reciprocal regulation of IL-10- and IL-17-producing B cells.
    Keywords:  B cells; Sjögren's syndrome; Sodium butyrate
    DOI:  https://doi.org/10.1016/j.jaut.2021.102611
  15. Cancer Biol Med. 2021 Feb 15. 18(1): 172-183
      Objective: Macrophages are a major component of the tumor microenvironment. M1 macrophages secrete pro-inflammatory factors that inhibit tumor growth and development, whereas tumor-associated macrophages (TAMs) mainly exhibit an M2 phenotype. Our previous studies have shown that the interleukin-33/ST2 (IL-33/ST2) axis is essential for activation of the M1 phenotype. This study investigates the role of the IL-33/ST2 axis in TAMs, its effects on tumor growth, and whether it participates in the mutual conversion between the M1 and M2 phenotypes.Methods: Bone marrow-derived macrophages were extracted from wildtype, ST2 knockout (ST2-/-), and Il33-overexpressing mice and differentiated with IL-4. The mitochondrial and lysosomal number and location, and the expression of related proteins were used to analyze mitophagy. Oxygen consumption rates and glucose and lactate levels were measured to reveal metabolic changes.
    Results: The IL-33/ST2 axis was demonstrated to play an important role in the metabolic conversion of macrophages from OXPHOS to glycolysis by altering mitophagy levels. The IL-33/ST2 axis promoted enhanced cell oxidative phosphorylation, thereby further increasing M2 polarization gene expression and ultimately promoting tumor growth (P < 0.05) (Figure 4). This metabolic shift was not due to mitochondrial damage, because the mitochondrial membrane potential was not significantly altered by IL-4 stimulation or ST2 knockout; however, it might be associated with the mTOR activity.
    Conclusions: These results clarify the interaction between the IL-33/ST2 pathway and macrophage polarization, and may pave the way to the development of new cancer immunotherapies targeting the IL-33/ST2 axis.
    Keywords:  IL-33/ST2; glucose metabolism; macrophage polarization; mitophagy; tumor microenvironment
    DOI:  https://doi.org/10.20892/j.issn.2095-3941.2020.0211
  16. Cell Death Dis. 2021 Feb 26. 12(2): 215
      Mitochondria are essential cellular organelles that are involved in regulating cellular energy, metabolism, survival, and proliferation. To some extent, cancer is a genetic and metabolic disease that is closely associated with mitochondrial dysfunction. Hypoxia-inducible factors (HIFs), which are major molecules that respond to hypoxia, play important roles in cancer development by participating in multiple processes, such as metabolism, proliferation, and angiogenesis. The Warburg phenomenon reflects a pseudo-hypoxic state that activates HIF-1α. In addition, a product of the Warburg effect, lactate, also induces HIF-1α. However, Warburg proposed that aerobic glycolysis occurs due to a defect in mitochondria. Moreover, both HIFs and mitochondrial dysfunction can lead to complex reprogramming of energy metabolism, including reduced mitochondrial oxidative metabolism, increased glucose uptake, and enhanced anaerobic glycolysis. Thus, there may be a connection between HIFs and mitochondrial dysfunction. In this review, we systematically discuss the crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Above all, the stability and activity of HIFs are closely influenced by mitochondrial dysfunction related to tricarboxylic acid cycle, electron transport chain components, mitochondrial respiration, and mitochondrial-related proteins. Furthermore, activation of HIFs can lead to mitochondrial dysfunction by affecting multiple mitochondrial functions, including mitochondrial oxidative capacity, biogenesis, apoptosis, fission, and autophagy. In general, the regulation of tumorigenesis and development by HIFs and mitochondrial dysfunction are part of an extensive and cooperative network.
    DOI:  https://doi.org/10.1038/s41419-021-03505-1
  17. Front Endocrinol (Lausanne). 2020 ;11 627076
      Sphingolipids are a class of essential lipids, functioning as both cell membrane constituents and signaling messengers. In the sphingolipid metabolic network, ceramides serve as the central hub that is hydrolyzed to sphingosine, followed by phosphorylation to sphingosine 1-phosphate (S1P) by sphingosine kinase (SphK). SphK is regarded as a "switch" of the sphingolipid rheostat, as it catalyzes the conversion of ceramide/sphingosine to S1P, which often exhibit opposing biological roles in the cell. Besides, SphK is an important signaling enzyme that has been implicated in the regulation of a wide variety of biological functions. In recent years, an increasing body of evidence has suggested a critical role of SphK in type 2 diabetes mellitus (T2D), although a certain level of controversy remains. Herein, we review recent findings related to SphK in the field of T2D research with a focus on peripheral insulin resistance and pancreatic β-cell failure. It is expected that a comprehensive understanding of the role of SphK and the associated sphingolipids in T2D will help to identify druggable targets for future anti-diabetes therapy.
    Keywords:  ceramide; insulin resistance; sphingolipid; sphingosine 1-phosphate; β-cell
    DOI:  https://doi.org/10.3389/fendo.2020.627076
  18. Front Immunol. 2020 ;11 594963
      When viruses infect cells, they almost invariably cause metabolic changes in the infected cell as well as in several host cell types that react to the infection. Such metabolic changes provide potential targets for therapeutic approaches that could reduce the impact of infection. Several examples are discussed in this review, which include effects on energy metabolism, glutaminolysis and fatty acid metabolism. The response of the immune system also involves metabolic changes and manipulating these may change the outcome of infection. This could include changing the status of herpesviruses infections from productive to latency. The consequences of viral infections which include coronavirus disease 2019 (COVID-19), may also differ in patients with metabolic problems, such as diabetes mellitus (DM), obesity, and endocrine diseases. Nutrition status may also affect the pattern of events following viral infection and examples that impact on the pattern of human and experimental animal viral diseases and the mechanisms involved are discussed. Finally, we discuss the so far few published reports that have manipulated metabolic events in-vivo to change the outcome of virus infection. The topic is expected to expand in relevance as an approach used alone or in combination with other therapies to shape the nature of virus induced diseases.
    Keywords:  diabetes; interferon; metabolic blockers; metabolism; obesity; short chain fatty acids; virus
    DOI:  https://doi.org/10.3389/fimmu.2020.594963
  19. Function (Oxf). 2021 ;2(2): zqab001
      Nonacholic fatty liver disease, or hepatic steatosis, is the most common liver disorder affecting the western world and currently has no pharmacologic cure. Thus, many investigations have focused on alternative strategies to treat or prevent hepatic steatosis. Our laboratory has shown that chronic heat treatment (HT) mitigates glucose intolerance, insulin resistance, and hepatic steatosis in rodent models of obesity. Here, we investigate the direct bioenergetic mechanism(s) surrounding the metabolic effects of HT on hepatic mitochondria. Utilizing mitochondrial proteomics and respiratory function assays, we show that one bout of acute HT (42°C for 20 min) in male C57Bl/6J mice (n = 6/group) triggers a hepatic mitochondrial heat shock response resulting in acute reductions in respiratory capacity, degradation of key mitochondrial enzymes, and induction of mitophagy via mitochondrial ubiquitination. We also show that chronic bouts of HT and recurrent activation of the heat shock response enhances mitochondrial quality and respiratory function via compensatory adaptations in mitochondrial organization, gene expression, and transport even during 4 weeks of high-fat feeding (n = 6/group). Finally, utilizing a liver-specific heat shock protein 72 (HSP72) knockout model, we are the first to show that HSP72, a protein putatively driving the HT metabolic response, does not play a significant role in the hepatic mitochondrial adaptation to acute or chronic HT. However, HSP72 is required for the reductions in blood glucose observed with chronic HT. Our data are the first to suggest that chronic HT (1) improves hepatic mitochondrial respiratory efficiency via mitochondrial remodeling and (2) reduces blood glucose in a hepatic HSP72-dependent manner.
    Keywords:  HSP72; autophagy; chaperone-mediated autophagy; liver; mitochondrial organization; mitophagy; redox; ubiquitin
    DOI:  https://doi.org/10.1093/function/zqab001
  20. Cell Immunol. 2021 Feb 13. pii: S0008-8749(21)00032-0. [Epub ahead of print]363 104313
      Chronic inflammation in patients with type 2 diabetes (T2D) is associated with T-cell dysfunction. Using a rodent model, we evaluated changes in metabolic profiles, inflammation status and the expression of T-cell function markers following high-fat diet (HFD)-feeding. In addition, we assessed the modulatory effects of treatment with low-dose aspirin (LDA) and its combination with metformin (LDA + Met) on these parameters. Notably, HFD-feeding induced metabolic disorders and aggravated inflammation. Most importantly, it was associated with decreased expression of CD69 on T-helper cells but had no effect on the expression of programmed cell death 1 (PD-1). Treatment with LDA monotherapy had no effect on metabolic profiles. However, its combination with metformin ameliorated the levels of inflammation and up-regulated the expression of CD69 although it had no therapeutic effect on the levels of PD-1 expression. Therefore, alleviating inflammation and lowering glucose levels in T2D may be an effective strategy to improve T-cell function in these patients.
    Keywords:  CD69; Inflammation; Low-dose aspirin; Metformin; PD-1; T-cell regulation; Type 2 diabetes mellitus
    DOI:  https://doi.org/10.1016/j.cellimm.2021.104313
  21. Nature. 2021 Feb 24.
      Regulatory T cells (Treg cells) are essential for immune tolerance1, but also drive immunosuppression in the tumour microenvironment2. Therapeutic targeting of Treg cells in cancer will therefore require the identification of context-specific mechanisms that affect their function. Here we show that inhibiting lipid synthesis and metabolic signalling that are dependent on sterol-regulatory-element-binding proteins (SREBPs) in Treg cells unleashes effective antitumour immune responses without autoimmune toxicity. We find that the activity of SREBPs is upregulated in intratumoral Treg cells. Moreover, deletion of SREBP-cleavage-activating protein (SCAP)-a factor required for SREBP activity-in these cells inhibits tumour growth and boosts immunotherapy that is triggered by targeting the immune-checkpoint protein PD-1. These effects of SCAP deletion are associated with uncontrolled production of interferon-γ and impaired function of intratumoral Treg cells. Mechanistically, signalling through SCAP and SREBPs coordinates cellular programs for lipid synthesis and inhibitory receptor signalling in these cells. First, de novo fatty-acid synthesis mediated by fatty-acid synthase (FASN) contributes to functional maturation of Treg cells, and loss of FASN from Treg cells inhibits tumour growth. Second, Treg cells in tumours show enhanced expression of the PD-1 gene, through a process that depends on SREBP activity and signals via mevalonate metabolism to protein geranylgeranylation. Blocking PD-1 or SREBP signalling results in dysregulated activation of phosphatidylinositol-3-kinase in intratumoral Treg cells. Our findings show that metabolic reprogramming enforces the functional specialization of Treg cells in tumours, pointing to new ways of targeting these cells for cancer therapy.
    DOI:  https://doi.org/10.1038/s41586-021-03235-6
  22. Sci Adv. 2021 Feb;pii: eabe2771. [Epub ahead of print]7(9):
      Metabolism-mediated epigenetic changes represent an adapted mechanism for cellular signaling, in which lysine acetylation and methylation have been the historical focus of interest. We recently discovered a β-hydroxybutyrate-mediated epigenetic pathway that couples metabolism to gene expression. However, its regulatory enzymes and substrate proteins remain unknown, hindering its functional study. Here, we report that the acyltransferase p300 can catalyze the enzymatic addition of β-hydroxybutyrate to lysine (Kbhb), while histone deacetylase 1 (HDAC1) and HDAC2 enzymatically remove Kbhb. We demonstrate that p300-dependent histone Kbhb can directly mediate in vitro transcription. Moreover, a comprehensive analysis of Kbhb substrates in mammalian cells has identified 3248 Kbhb sites on 1397 substrate proteins. The dependence of histone Kbhb on p300 argues that enzyme-catalyzed acylation is the major mechanism for nuclear Kbhb. Our study thus reveals key regulatory elements for the Kbhb pathway, laying a foundation for studying its roles in diverse cellular processes.
    DOI:  https://doi.org/10.1126/sciadv.abe2771
  23. FEBS Lett. 2021 Feb 24.
      Microrchidia family CW-type zinc finger 2 (MORC2) is a recently identified chromatin modifier with an emerging role in cancer metastasis. However, its role in glucose metabolism, a hallmark of malignancy, remains to be explored. We found that MORC2 is a glucose-inducible gene and a target of c-Myc. Our meta-analysis revealed that MORC2 expression is positively correlated with the expression of enzymes involved in glucose metabolism in breast cancer patients. Furthermore, overexpression of MORC2 in MCF-7 and BT-549 cells augmented the expression and activity of a key glucose metabolism enzyme, lactate dehydrogenase A (LDHA). Conversely, selective knock down of MORC2 by siRNA markedly decreased LDHA expression and activity and in turn reduced cancer cell migration. Collectively, these findings provide evidence that MORC2, a glucose-inducible gene, modulates the migration of breast cancer cells through the MORC2-c-Myc-LDHA axis.
    Keywords:  Glucose Metabolism; LDHA; MORC2; c-Myc
    DOI:  https://doi.org/10.1002/1873-3468.14062
  24. Nat Rev Endocrinol. 2021 Feb 24.
      In mammals, the white adipocyte is a cell type that is specialized for storage of energy (in the form of triacylglycerols) and for energy mobilization (as fatty acids). White adipocyte metabolism confers an essential role to adipose tissue in whole-body homeostasis. Dysfunction in white adipocyte metabolism is a cardinal event in the development of insulin resistance and associated disorders. This Review focuses on our current understanding of lipid and glucose metabolic pathways in the white adipocyte. We survey recent advances in humans on the importance of adipocyte hypertrophy and on the in vivo turnover of adipocytes and stored lipids. At the molecular level, the identification of novel regulators and of the interplay between metabolic pathways explains the fine-tuning between the anabolic and catabolic fates of fatty acids and glucose in different physiological states. We also examine the metabolic alterations involved in the genesis of obesity-associated metabolic disorders, lipodystrophic states, cancers and cancer-associated cachexia. New challenges include defining the heterogeneity of white adipocytes in different anatomical locations throughout the lifespan and investigating the importance of rhythmic processes. Targeting white fat metabolism offers opportunities for improved patient stratification and a wide, yet unexploited, range of therapeutic opportunities.
    DOI:  https://doi.org/10.1038/s41574-021-00471-8
  25. J Biol Chem. 2021 Feb 22. pii: S0021-9258(21)00225-8. [Epub ahead of print] 100452
      The development of thermogenic adipocytes concurs with mitochondrial biogenesis, an iron-dependent pathway. Iron regulatory proteins (IRP) 1 and 2 are RNA-binding proteins that regulate intracellular iron homeostasis. IRPs bind to the iron-response element (IRE) of their target mRNAs, balancing iron uptake and deposition at the post-transcriptional levels. However, IRP/IRE-dependent of iron regulation in adipocytes is largely unknown. We hypothesized that iron demands are higher in brown/beige adipocytes than white adipocytes to maintain the thermogenic mitochondrial capacity. To test this hypothesis, we investigated the IRP/IRE regulatory system in different depots of adipose tissue. Our results revealed that 1) IRP/IRE interaction was increased in proportional to the thermogenic function of the adipose depot, 2) adipose iron content was increased in adipose tissue browning upon β3-adrenoceptor stimulation, while decreased in thermoneutral conditions, and 3) modulation of iron content was linked with mitochondrial biogenesis. Moreover, the iron requirement was higher in HIB1B brown adipocytes than 3T3-L1 white adipocytes during differentiation. The reduction of the labile iron pool (LIP) suppressed the differentiation of brown/beige adipocytes and mitochondrial biogenesis. Using the 59Fe-Tf, we also demonstrated that thermogenic stimuli triggered cell-autonomous iron uptake and mitochondrial compartmentalization as well as enhanced mitochondrial respiration. Collectively, our work demonstrated that IRP/IRE signaling and subsequent adaptation in iron metabolism is a critical determinant for the thermogenic function of adipocytes.
    Keywords:  Iron regulatory proteins; Iron-response element; Uncoupling protein; adipose iron; brown fat; iron homeostasis; labile iron pool; mitochondria; thermogenesis
    DOI:  https://doi.org/10.1016/j.jbc.2021.100452
  26. Front Immunol. 2020 ;11 614697
      It is widely accepted that infection and immune response incur significant metabolic demands, yet the respective demands of specific immune responses to live pathogens have not been well delineated. It is also established that upon activation, metabolic pathways undergo shifts at the cellular level. However, most studies exploring these issues at the systemic or cellular level have utilized pathogen associated molecular patterns (PAMPs) that model sepsis, or model antigens at isolated time points. Thus, the dynamics of pathogenesis and immune response to a live infection remain largely undocumented. To better quantitate the metabolic demands induced by infection, we utilized a live pathogenic infection model. Mice infected with Listeria monocytogenes were monitored longitudinally over the course of infection through clearance. We measured systemic metabolic phenotype, bacterial load, innate and adaptive immune responses, and cellular metabolic pathways. To further delineate the role of adaptive immunity in the metabolic phenotype, we utilized two doses of bacteria, one that induced both sickness behavior and protective (T cell mediated) immunity, and the other protective immunity alone. We determined that the greatest impact to systemic metabolism occurred during the early immune response, which coincided with the greatest shift in innate cellular metabolism. In contrast, during the time of maximal T cell expansion, systemic metabolism returned to resting state. Taken together, our findings demonstrate that the timing of maximal metabolic demand overlaps with the innate immune response and that when the adaptive response is maximal, the host has returned to relative metabolic homeostasis.
    Keywords:  Listeria (L.) monocytogenes; immunometabolism; life history theory; metabolic phenotype; sickness behavior
    DOI:  https://doi.org/10.3389/fimmu.2020.614697
  27. Front Immunol. 2020 ;11 623989
      Accumulating evidence has shown that nutrient metabolism is closely associated with the differentiation and functions of various immune cells. Cellular metabolism, including aerobic glycolysis, fatty acid oxidation, and oxidative phosphorylation, plays a key role in germinal center (GC) reaction, B-cell trafficking, and T-cell-fate decision. Furthermore, a quiescent metabolic status consolidates T-cell-dependent immunological memory. Therefore, dietary interventions such as calorie restriction, time-restricted feeding, and fasting potentially manipulate immune cell functions. For instance, intermittent fasting prevents the development of experimental autoimmune encephalomyelitis. Meanwhile, the fasting response diminishes the lymphocyte pool in gut-associated lymphoid tissue to minimize energy expenditure, leading to the attenuation of Immunoglobulin A (IgA) response. The nutritional status also influences the dynamics of several immune cell subsets. Here, we describe the current understanding of the significance of immunometabolism in the differentiation and functionality of lymphocytes and macrophages. The underlying molecular mechanisms also are discussed. These experimental observations could offer new therapeutic strategies for immunological disorders like autoimmunity.
    Keywords:  AMPK; GCN2; calorie restriction; dietary intervention; fasting; mTOR; metabolic rewiring
    DOI:  https://doi.org/10.3389/fimmu.2020.623989
  28. Nat Metab. 2021 Feb;3(2): 211-227
      Proregenerative responses are required for the restoration of nervous-system functionality in demyelinating diseases such as multiple sclerosis (MS). Yet, the limiting factors responsible for poor CNS repair are only partially understood. Here, we test the impact of a Western diet (WD) on phagocyte function in a mouse model of demyelinating injury that requires microglial innate immune function for a regenerative response to occur. We find that WD feeding triggers an ageing-related, dysfunctional metabolic response that is associated with impaired myelin-debris clearance in microglia, thereby impairing lesion recovery after demyelination. Mechanistically, we detect enhanced transforming growth factor beta (TGFβ) signalling, which suppresses the activation of the liver X receptor (LXR)-regulated genes involved in cholesterol efflux, thereby inhibiting phagocytic clearance of myelin and cholesterol. Blocking TGFβ or promoting triggering receptor expressed on myeloid cells 2 (TREM2) activity restores microglia responsiveness and myelin-debris clearance after demyelinating injury. Thus, we have identified a druggable microglial immune checkpoint mechanism regulating the microglial response to injury that promotes remyelination.
    DOI:  https://doi.org/10.1038/s42255-021-00341-7