bims-mimbat Biomed News
on Mitochondrial metabolism in brown adipose tissue
Issue of 2022‒06‒19
nine papers selected by
José Carlos de Lima-Júnior
University of California San Francisco


  1. Mol Metab. 2022 Jun 09. pii: S2212-8778(22)00095-3. [Epub ahead of print] 101526
      OBJECTIVE: Uncoupling protein 1 (UCP1) catalyses mitochondrial proton leak in brown adipose tissue to facilitate nutrient oxidation for heat production, and may combat metabolic disease if activated in humans. During the adrenergic stimulation of brown adipocytes, free fatty acids generated from lipolysis activate UCP1 via an unclear interaction. Here, we set out to characterise activator binding to purified UCP1 to clarify the activation process, discern novel activators and the potential to target UCP1.METHODS: We assessed ligand binding to purified UCP1 by protein thermostability shift analysis, which unlike many conventional approaches can inform on the binding of hydrophobic ligands to membrane proteins. A detailed activator interaction analysis and screening approach was carried out, supported by investigations of UCP1 activity in liposomes, isolated brown fat mitochondria and UCP1 expression-controlled cell lines.
    RESULTS: We reveal that fatty acids and other activators influence UCP1 through a specific destabilising interaction, behaving as transport substrates that shift the protein to a less stable conformation of a transport cycle. Through the detection of specific stability shifts in screens, we identify novel activators, including the over-the-counter drug ibuprofen, where ligand analysis indicates that UCP1 has a relatively wide structural specificity for interacting molecules. Ibuprofen successfully induced UCP1 activity in liposomes, isolated brown fat mitochondria and UCP1-expressing HEK293 cells but not in cultured brown adipocytes, suggesting drug delivery differs in each cell type.
    CONCLUSIONS: These findings clarify the nature of the activator-UCP1 interaction and demonstrate that the targeting of UCP1 in cells by approved drugs is in principle achievable as a therapeutic avenue, but requires variants with more effective delivery in brown adipocytes.
    Keywords:  Brown adipose tissue; Differential scanning fluorimetry; Energy expenditure; Ligand binding; Mitochondrial carrier; Proton transport; Thermal stability assay
    DOI:  https://doi.org/10.1016/j.molmet.2022.101526
  2. Trends Endocrinol Metab. 2022 Jun 10. pii: S1043-2760(22)00100-X. [Epub ahead of print]
      Owing to its unique capacity to clear macronutrients from circulation and use them to produce heat, thermogenic fat is capable of regulating glucose, lipids, and branched-chain amino acids (BCAA) circulatory levels. At the same time, its activity yields a higher energy expenditure, thereby conferring protection against cardiometabolic diseases. Our knowledge on the mechanisms of uptake and intracellular metabolism of such energy substrates into thermogenic fat has meaningfully evolved in recent years. This has allowed us to better understand how the thermogenic machinery processes those molecules to utilize them as substrates for heating up the body. Here, we discuss recent advances in the molecular and cellular regulatory process that governs the uptake and metabolism of such substrates within thermogenic fat.
    Keywords:  UCP1; brown adipose tissue; metabolism; thermogenesis
    DOI:  https://doi.org/10.1016/j.tem.2022.05.003
  3. J Exp Biol. 2022 Jun 13. pii: jeb.243860. [Epub ahead of print]
      Small mammals undergo thermoregulatory adjustments in response to changing environmental conditions. Whereas small heterothermic mammals can employ torpor to save energy in the cold, homeothermic species must increase heat production to defend normothermia through the recruitment of brown adipose tissue (BAT). Here, we studied thermoregulatory adaptation in an obligate homeotherm, the African striped mouse (Rhabdomys pumilio), captured from a subpopulation living in a mesic, temperate climate with marked seasonal differences. Basal metabolic rate (BMR), non-shivering thermogenesis (NST) and summit metabolic rate (MSUM) increased from summer to winter, with NST and MSUM already reaching maximal rates in autumn, suggesting seasonal preparation to the cold. Typical of rodents, cold-induced metabolic rates positively correlate with BAT mass. Analysis of cytochrome c oxidase (COX) activity and UCP1 content, however, demonstrate that thermogenic capacity declines with BAT mass. This resulted in seasonal differences in NST being driven by changes in BMR. The increase in BMR is supported by a comprehensive anatomical analysis of metabolically active organs, revealing increased mass proportions in the cold season. The thermoregulatory response of R. pumilio is associated with the maintenance of body weight throughout the year (48.3±1.4 g), contrasting large summer-winter mass reductions often observed in Holarctic rodents. Collectively, bioenergetic adaptation of this Afrotropical rodent involves seasonal organ adjustments influencing BMR, combined with a constant thermogenic capacity dictated by trade-offs in thermogenic properties of BAT. Arguably, this high degree of plasticity was a response to unpredictable cold spells throughout the year. Consequently, the reliance on such a resource intensive thermoregulatory strategy may expose more energetic vulnerability in changing environments of food scarcity and extreme weather conditions due to climate change, with major ramifications for survival of the species.
    Keywords:  Basal metabolism; Climate unpredictability; Phenotypic plasticity; Seasonality; Summit metabolism; non-shivering thermogenesis
    DOI:  https://doi.org/10.1242/jeb.243860
  4. Commun Biol. 2022 Jun 14. 5(1): 584
      Beige adipocytes are induced by cold temperatures or β3-adrenergic receptor (Adrb3) agonists. They create heat through glucose and fatty acid (FA) oxidation, conferring metabolic benefits. The distinct and shared mechanisms by which these treatments induce beiging are unknown. Here, we perform single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) on adipose tissue from mice exposed to cold or an Adrb3 agonist to identify cellular and chromatin accessibility dynamics during beiging. Both stimuli induce chromatin remodeling that influence vascularization and inflammation in adipose. Beige adipocytes from cold-exposed mice have increased accessibility at genes regulating glycolytic processes, whereas Adrb3 activation increases cAMP responses. While both thermogenic stimuli increase accessibility at genes regulating thermogenesis, lipogenesis, and beige adipocyte development, the kinetics and magnitudes of the changes are distinct for the stimuli. Accessibility changes at lipogenic genes are linked to functional changes in lipid composition of adipose. Both stimuli tend to decrease the proportion of palmitic acids, a saturated FA in adipose. However, Adrb3 activation increases the proportion of monounsaturated FAs, whereas cold increases the proportion of polyunsaturated FAs. These findings reveal common and distinct mechanisms of cold and Adrb3 induced beige adipocyte biogenesis, and identify unique functional consequences of manipulating these pathways in vivo.
    DOI:  https://doi.org/10.1038/s42003-022-03531-5
  5. Diabetes. 2022 Jun 16. pii: db210999. [Epub ahead of print]
      Brown and beige adipocytes dissipate energy in a non-shivering thermogenesis manner, exerting beneficial effects on metabolic homeostasis. CHCHD10 is a nuclear-encoded mitochondrial protein involved in cristae organization; however, its role in thermogenic adipocytes remains unknown. Herein, we identify CHCHD10 as a novel regulator for adipocyte thermogenesis. CHCHD10 is dramatically upregulated during thermogenic adipocytes activation by PPARγ-PGC1α, and positively correlated with UCP1 expression in the adipose tissues from human and mice. We generate adipocyte-specific Chchd10 knockout mice (Chchd10-AKO) and find that depleting CHCHD10 leads to impaired UCP1-dependent thermogenesis and energy expenditure in the fasting state, with no effect in fed state. Lipolysis in adipocytes is disrupted by CHCHD10 deficiency, while augmented lipolysis via ATGL overexpression recovers adipocyte thermogenesis in Chchd10-AKO mice. Consistently, overexpression of Chchd10 activates thermogenic adipocytes. Mechanistically, CHCHD10 deficiency results in the disorganization of mitochondrial cristae, leading to impairment of oxidative phosphorylation complex assembly in mitochondria, which in turn inhibits ATP generation. Decreased ATP results in downregulation of lipolysis by reducing nascent protein synthesis of ATGL, thereby suppressing adipocyte thermogenesis. As a result, Chchd10-AKO mice are prone to develop high-fat diet-induced metabolic disorders. Together, our findings reveal essential role of CHCHD10 in regulating lipolysis and thermogenic program in adipocytes.
    DOI:  https://doi.org/10.2337/db21-0999
  6. Nat Commun. 2022 Jun 13. 13(1): 3394
      The thyroid hormone (TH)-controlled recruitment process of brown adipose tissue (BAT) is not fully understood. Here, we show that long-term treatment of T3, the active form of TH, increases the recruitment of thermogenic capacity in interscapular BAT of male mice through hyperplasia by promoting the TH receptor α-mediated adipocyte progenitor cell proliferation. Our single-cell analysis reveals the heterogeneous nature and hierarchical trajectory within adipocyte progenitor cells of interscapular BAT. Further analyses suggest that T3 facilitates cell state transition from a more stem-like state towards a more committed adipogenic state and promotes cell cycle progression towards a mitotic state in adipocyte progenitor cells, through mechanisms involving the action of Myc on glycolysis. Our findings elucidate the mechanisms underlying the TH action in adipocyte progenitors residing in BAT and provide a framework for better understanding of the TH effects on hyperplastic growth and adaptive thermogenesis in BAT depot at a single-cell level.
    DOI:  https://doi.org/10.1038/s41467-022-31154-1
  7. Front Physiol. 2022 ;13 866590
      Adenine nucleotide translocases (ANTs) and uncoupling proteins (UCPs) are known to facilitate proton leak across the inner mitochondrial membrane. However, it remains to be unravelled whether UCP2/3 contribute to significant amount of proton leak in vivo. Reports are indicative of UCP2 dependent proton-coupled efflux of C4 metabolites from the mitochondrial matrix. Previous studies have suggested that UCP2/3 knockdown (KD) contributes to increased ANT-dependent proton leak. Here we investigated the hypothesis that interaction exists between the UCP2 and ANT2 proteins, and that such interaction is regulated by the cellular metabolic demand. Protein-protein interaction was evaluated using reciprocal co-immunoprecipitation and in situ proximity ligation assay. KD of ANT2 and UCP2 was performed by siRNA in human embryonic kidney cells 293A (HEK293A) cells. Mitochondrial and cellular respiration was measured by high-resolution respirometry. ANT2-UCP2 interaction was demonstrated, and this was dependent on cellular metabolism. Inhibition of ATP synthase promoted ANT2-UCP2 interaction whereas high cellular respiration, induced by adding the mitochondrial uncoupler FCCP, prevented interaction. UCP2 KD contributed to increased carboxyatractyloside (CATR) sensitive proton leak, whereas ANT2 and UCP2 double KD reduced CATR sensitive proton leak, compared to UCP2 KD. Furthermore, proton leak was reduced in double KD compared to UCP2 KD. In conclusion, our results show that there is an interaction between ANT2-UCP2, which appears to be dynamically regulated by mitochondrial respiratory activity. This may have implications in the regulation of mitochondrial efficiency or cellular substrate utilization as increased activity of UCP2 may promote a switch from glucose to fatty acid metabolism.
    Keywords:  adenine nucleotide translocase-2; mitochondria; protein interaction; proximity ligation assay; uncoupling protein-2
    DOI:  https://doi.org/10.3389/fphys.2022.866590
  8. Int J Obes (Lond). 2022 Jun 15.
      OBJECTIVES: To determine the role of armadillo repeat-containing X-linked protein 3 (ARMCX3) in the thermogenic plasticity of adipose tissue.METHODS: Adipose tissues were characterized in Armcx3-KO male mice. Armcx3 gene expression was analyzed in adipose tissue from mice exposed to thermogenic inducers (cold, β3-adenergic stimulus) and in differentiating brown and beige cells in culture. Analyses encompassed circulating metabolite and hormonal profiling, tissue characterization, histology, gene expression patterns, and immunoblot assays. Armcx3 gene expression was assessed in subcutaneous adipose tissue from lean individuals and individuals with obesity and was correlated with expression of marker genes of adipose browning. The effects of adenoviral-mediated overexpression of ARMCX3 on differentiating brown adipocyte gene expression and respiratory activity were determined.
    RESULTS: Male mice lacking ARMCX3 showed significant induction of white adipose tissue browning. In humans, ARMCX3 expression in subcutaneous adipose tissue was inversely correlated with the expression of marker genes of thermogenic activity, including CIDEA, mitochondrial transcripts, and creatine kinase-B. Armcx3 expression in adipose tissues was repressed by thermogenic activation (cold or β3-adrenergic stimulation) and was upregulated by obesity in mice and humans. Experimentally-induced increases in Armcx3 caused down-regulation of thermogenesis-related genes and reduced mitochondrial oxidative activity of adipocytes in culture, whereas siRNA-mediated Armcx3 knocking-down enhanced expression of thermogenesis-related genes.
    CONCLUSION: ARMCX3 is a novel player in the control of thermogenic adipose tissue plasticity that acts to repress acquisition of the browning phenotype and shows a direct association with indicators of obesity in mice and humans.
    DOI:  https://doi.org/10.1038/s41366-022-01169-1
  9. Life Sci Alliance. 2022 Oct;pii: e202201478. [Epub ahead of print]5(10):
      Ion fluxes across the inner mitochondrial membrane control mitochondrial volume, energy production, and apoptosis. TMBIM5, a highly conserved protein with homology to putative pH-dependent ion channels, is involved in the maintenance of mitochondrial cristae architecture, ATP production, and apoptosis. Here, we demonstrate that overexpressed TMBIM5 can mediate mitochondrial calcium uptake. Under steady-state conditions, loss of TMBIM5 results in increased potassium and reduced proton levels in the mitochondrial matrix caused by attenuated exchange of these ions. To identify the in vivo consequences of TMBIM5 dysfunction, we generated mice carrying a mutation in the channel pore. These mutant mice display increased embryonic or perinatal lethality and a skeletal myopathy which strongly correlates with tissue-specific disruption of cristae architecture, early opening of the mitochondrial permeability transition pore, reduced calcium uptake capability, and mitochondrial swelling. Our results demonstrate that TMBIM5 is an essential and important part of the mitochondrial ion transport system machinery with particular importance for embryonic development and muscle function.
    DOI:  https://doi.org/10.26508/lsa.202201478