bims-mikwok Biomed News
on Mitochondrial quality control
Issue of 2021‒11‒14
four papers selected by
Avinash N. Mukkala
University of Toronto


  1. Toxicol Appl Pharmacol. 2021 Oct 29. pii: S0041-008X(21)00384-7. [Epub ahead of print]433 115780
      Ischemia/Reperfusion (I/R) injury is clinically important in many surgical practice including kidney transplantation. It is known that mitochondria have a key role in the intracellular and extracellular signaling pathways of ischemia and reperfusion injury. In this respect, we pointed to explore the probable effects of isolated mitochondria transplantation from MSCs (mesenchymal stem cells), to alleviate ischemia/reperfusion-induced renal injury. Experiments were held on the 48 male Sprague Dawley rats. Groups were divided as Control (C1), I/R-Control (C2), Vehicle-1 (V1), Vehicle-2 (V2), Transplantation-1 (T1) and Transplantation-2 (T2) group. Unilaterally nephrectomy was performed in all groups. In the groups except the control, the left kidneys ischemized for 45 min and then reperfusion was carried out. According to the study groups, isolated mitochondria or vehicle infused into the renal cortex and rats were monitored for 48 h. Following that mentioned procedure, animals were sacrificed and biological samples were taken for physiological, histological and biochemical examinations. The results of present study show that mitochondrial transplantation promoted proliferation and regeneration of tubular cells after renal injury. Moreover, mitochondrial transplantation reduced mitochondrial dynamics-DRP-1 fission protein of tubular cells and reversed renal deficits. Mitochondrial transplantation diminished apoptotic markers including TUNEL and Caspase-3 levels in injured renal cells. Our results provide a direct link between mitochondria dysfunction and ischemia/reperfusion-induced renal injury and suggest a therapeutic effect of transplanting isolated mitochondria obtained from MSCs against renal injury.
    Keywords:  Ischemia-reperfusion; Kidney; Mesenchymal stem cell; Mitochondrial bioenergetic; Mitochondrial transplantation
    DOI:  https://doi.org/10.1016/j.taap.2021.115780
  2. Sci Rep. 2021 Nov 11. 11(1): 22106
      O-GlcNAcylation is a prevalent form of glycosylation that regulates proteins within the cytosol, nucleus, and mitochondria. The O-GlcNAc modification can affect protein cellular localization, function, and signaling interactions. The specific impact of O-GlcNAcylation on mitochondrial morphology and function has been elusive. In this manuscript, the role of O-GlcNAcylation on mitochondrial fission, oxidative phosphorylation (Oxphos), and the activity of electron transport chain (ETC) complexes were evaluated. In a cellular environment with hyper O-GlcNAcylation due to the deletion of O-GlcNAcase (OGA), mitochondria showed a dramatic reduction in size and a corresponding increase in number and total mitochondrial mass. Because of the increased mitochondrial content, OGA knockout cells exhibited comparable coupled mitochondrial Oxphos and ATP levels when compared to WT cells. However, we observed reduced protein levels for complex I and II when comparing normalized mitochondrial content and reduced linked activity for complexes I and III when examining individual ETC complex activities. In assessing mitochondrial fission, we observed increased amounts of O-GlcNAcylated dynamin-related protein 1 (Drp1) in cells genetically null for OGA and in glioblastoma cells. Individual regions of Drp1 were evaluated for O-GlcNAc modifications, and we found that this post-translational modification (PTM) was not limited to the previously characterized residues in the variable domain (VD). Additional modification sites are predicted in the GTPase domain, which may influence enzyme activity. Collectively, these results highlight the impact of O-GlcNAcylation on mitochondrial dynamics and ETC function and mimic the changes that may occur during glucose toxicity from hyperglycemia.
    DOI:  https://doi.org/10.1038/s41598-021-01512-y
  3. J Biol Chem. 2021 Oct 28. pii: S0021-9258(21)01164-9. [Epub ahead of print] 101358
      Preserving optimal mitochondrial function is critical in the heart, which is the most ATP-avid organ in the body. Recently, we showed that global deficiency of the nuclear receptor RORα in the "staggerer" (RORαsg/sg) mouse exacerbates angiotensin II-induced cardiac hypertrophy and compromises cardiomyocyte mitochondrial function. However, the mechanisms underlying these observations have not been defined previously. Here we used pharmacological and genetic gain- and loss-of-function tools to demonstrate that RORα regulates cardiomyocyte mitophagy to preserve mitochondrial abundance and function. We found that RORαsg/sg cardiomyocyte mitochondria were less numerous and exhibited fewer mitophagy events than wild type (WT) controls. The hearts of our novel cardiomyocyte-specific RORα knockout (CMKO) mouse line demonstrated impaired contractile function, enhanced oxidative stress, increased apoptosis and reduced autophagic flux relative to Cre(-) littermates. We found that cardiomyocyte RORα was upregulated by hypoxia, a classical inducer of mitophagy. The loss of RORα blunted mitophagy and broadly compromised mitochondrial function in normoxic and hypoxic conditions in vivo and in vitro. We also show that RORα is a direct transcriptional regulator of the mitophagy mediator caveolin-3 in cardiomyocytes and that enhanced expression of RORα increases caveolin-3 abundance and enhances mitophagy. Finally, knockdown of RORα impairs cardiomyocyte mitophagy, compromises mitochondrial function, and induces apoptosis, but these defects could be rescued by caveolin-3 overexpression. Collectively, these findings reveal a novel role for RORα in regulating mitophagy through caveolin-3 and expand our currently limited understanding of the mechanisms underlying RORα-mediated cardioprotection.
    DOI:  https://doi.org/10.1016/j.jbc.2021.101358
  4. PLoS One. 2021 ;16(11): e0259903
      Mutations in the PINK1 and PRKN genes are the most common cause of early-onset familial Parkinson disease. These genes code for the PINK1 and Parkin proteins, respectively, which are involved in the degradation of dysfunctional mitochondria through mitophagy. An early step in PINK1 -Parkin mediated mitophagy is the ubiquitination of the mitofusin proteins MFN1 and -2. The ubiquitination of MFN1 and -2 in patient samples may therefore serve as a biomarker to determine the functional effects of PINK1 and PRKN mutations, and to screen idiopathic patients for potential mitophagy defects. We aimed to characterise the expression of the PINK1 -Parkin mitophagy machinery in peripheral blood mononuclear cells (PBMCs) and assess if these cells could serve as a platform to evaluate mitophagy via analysis of MFN1 and -2 ubiquitination. Mitophagy was induced through mitochondrial depolarisation by treatment with the protonophore CCCP and ubiquitinated MFN proteins were analysed by western blotting. In addition, PINK1 and PRKN mRNA and protein expression levels were characterised with reverse transcriptase quantitative PCR and western blotting, respectively. Whilst CCCP treatment led to MFN ubiquitination in primary fibroblasts, SH-SY5Y neuroblastoma cells and Jurkat leukaemic cells, treatment of PBMCs did not induce ubiquitination of MFN. PRKN mRNA and protein was readily detectable in PBMCs at comparable levels to those observed in Jurkat and fibroblast cells. In contrast, PINK1 protein was undetectable and PINK1 mRNA levels were remarkably low in control PBMCs. Our findings suggest that the PINK1 -Parkin mitophagy signalling pathway is not functional in PBMCs. Therefore, PBMCs are not a suitable biosample for analysis of mitophagy function in Parkinson disease patients.
    DOI:  https://doi.org/10.1371/journal.pone.0259903