bims-mikwok Biomed News
on Mitochondrial quality control
Issue of 2021‒10‒31
fifteen papers selected by
Avinash N. Mukkala
University of Toronto


  1. J Biol Chem. 2021 Oct 21. pii: S0021-9258(21)01145-5. [Epub ahead of print] 101339
      Mitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and post-translational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins. Clearance of bulk mitochondria occurs via a selective form of autophagy termed mitophagy. In yeast and some developing metazoan cells (e.g. oocytes and reticulocytes), mitochondria are largely removed by ubiquitin-independent mechanisms. In such cases the regulation of mitophagy is mediated via phosphorylation of mitochondria-anchored autophagy receptors. On the other hand, ubiquitin-dependent recruitment of cytosolic autophagy receptors occurs in situations of cellular stress or disease, where dysfunctional mitochondria would cause oxidative damage. In mammalian cells, a well-studied ubiquitin-dependent mitophagy pathway induced by mitochondrial depolarization is regulated by the mitochondrial protein kinase PINK1 that upon activation recruits the ubiquitin ligase parkin. Here we review mechanisms of mitophagy with an emphasis on post-translational modifications that regulate various mitophagy pathways. We describe the autophagy components involved with particular emphasis on post-translational modifications. We detail the phosphorylations mediated by PINK1 and parkin-mediated ubiquitylations of mitochondrial proteins that can be modulated by deubiquitylating enzymes. We also discuss the role of accessory factors regulating mitochondrial fission/fusion and the interplay with pro- and anti-apoptotic Bcl-2 family members. Comprehensive knowledge of the processes of mitophagy is essential for the understanding of vital mitochondrial turnover in health and disease.
    Keywords:  autophagy; mitochondria; phosphorylation; protein kinase PINK1; ubiquitin ligase parkin; ubiquitylation
    DOI:  https://doi.org/10.1016/j.jbc.2021.101339
  2. Nucleic Acid Ther. 2021 Oct 25.
      Mitochondria are highly dynamic organelles that produce ATP and maintain metabolic, catabolic, and redox homeostasis. Mitochondria owe this dynamic nature to their constant fission and fusion-processes that are regulated, in part, by fusion factors (MFN1 and MFN2) and fission factors (DRP1, FIS1, MFF, MIEF1, MIEF2) located on the outer mitochondrial membrane. While mitochondrial fusion and fission are known to influence mitochondrial morphology and function, a key question is whether rebalancing mitochondrial morphology can ameliorate mitochondrial dysfunction in the context of mitochondrial pathology. In this study, we used antisense oligonucleotides (ASOs) to systematically evaluate the effects of fusion and fission factors in vitro. Free uptake by cells of fusion or fission factor ASOs caused robust decreases in target gene expression and altered a variety of mitochondrial parameters, including mitochondrial size and respiration, which were dose dependent. In Mfn1 knockout mouse embryonic fibroblasts (MEFs) and MFN2-R94Q (Charcot-Marie-Tooth Type 2 Disease-associated mutation) MEFs, two cellular models of mitochondrial dysfunction, we found that ASO-mediated silencing of only Drp1 restored mitochondrial morphology and enhanced mitochondrial respiration. Together, these data demonstrate in vitro proof-of-concept for rebalancing mitochondrial morphology to rescue function using ASOs and suggest that ASO-mediated modulation of mitochondrial dynamics may be a viable therapeutic approach to restore mitochondrial homeostasis in diseases driven by mitochondrial dysfunction.
    Keywords:  antisense; mitochondria; mitochondrial dynamics; oligonucleotides
    DOI:  https://doi.org/10.1089/nat.2021.0029
  3. Int J Biochem Cell Biol. 2021 Oct 22. pii: S1357-2725(21)00182-5. [Epub ahead of print] 106101
      Mitochondria change their shape, size and number, in response to cellular demand, through mitochondrial dynamics. The interaction between mitochondria and the ER, through ER-mitochondrial contact sites, is crucial in mitochondrial dynamics. Several protein complexes tethering mitochondria to the ER include proteins involved in fission or fusion but also proteins involved in calcium homeostasis, which is known to affect mitochondrial dynamics. The formation of these contact sites are especially important for mitochondrial fission as these contact sites induce both outer and inner membrane constriction, prior to recruitment of Drp1. While the exact molecular mechanisms behind these constrictions remain uncertain, several hypotheses have been proposed. In this review, we discuss the involvement of tethering complexes in mitochondrial dynamics and provide an overview of the current knowledge and hypotheses on the constriction of the outer and inner mitochondrial membrane at ER-mitochondrial contact sites.
    Keywords:  ER-mitochondrial contact; Mitochondrial dynamics; Mitochondrial membrane constriction
    DOI:  https://doi.org/10.1016/j.biocel.2021.106101
  4. Mol Cell. 2021 Oct 15. pii: S1097-2765(21)00800-5. [Epub ahead of print]
      Cell state changes are associated with proteome remodeling to serve newly emergent cell functions. Here, we show that NGN2-driven conversion of human embryonic stem cells to induced neurons (iNeurons) is associated with increased PINK1-independent mitophagic flux that is temporally correlated with metabolic reprogramming to support oxidative phosphorylation. Global multiplex proteomics during neurogenesis revealed large-scale remodeling of functional modules linked with pluripotency, mitochondrial metabolism, and proteostasis. Differentiation-dependent mitophagic flux required BNIP3L and its LC3-interacting region (LIR) motif, and BNIP3L also promoted mitophagy in dopaminergic neurons. Proteomic analysis of ATG12-/- iNeurons revealed accumulation of endoplasmic reticulum, Golgi, and mitochondria during differentiation, indicative of widespread organelle remodeling during neurogenesis. This work reveals broad organelle remodeling of membrane-bound organelles during NGN2-driven neurogenesis via autophagy, identifies BNIP3L's central role in programmed mitophagic flux, and provides a proteomic resource for elucidating how organelle remodeling and autophagy alter the proteome during changes in cell state.
    Keywords:  autophagy; iNeurons; mitophagy; proteomics
    DOI:  https://doi.org/10.1016/j.molcel.2021.10.001
  5. Mol Biol Cell. 2021 Oct 27. mbcE21060286
      Drp1 is a key regulator of mitochondrial fission, a large cytoplasmic GTPase recruited to the mitochondrial surface via transmembrane adaptors to initiate scission. While Brownian motion likely accounts for the local interactions between Drp1 and the mitochondrial adaptors, how this essential enzyme is targeted from more distal regions like the cell periphery remains unknown. Based on proteomic interactome screening and cell-based studies, we report that GIPC mediates the actin-based retrograde transport of Drp1 towards the perinuclear mitochondria to enhance fission. Drp1 interacts with GIPC through its atypical C-terminal PDZ-binding motif. Loss of this interaction abrogates Drp1 retrograde transport resulting in cytoplasmic mislocalization and reduced fission despite retaining normal intrinsic GTPase activity. Functionally, we demonstrate that GIPC potentiates the Drp1-driven proliferative and migratory capacity in cancer cells. Together, these findings establish a direct molecular link between altered GIPC expression and Drp1 function in cancer progression and metabolic disorders.
    DOI:  https://doi.org/10.1091/mbc.E21-06-0286
  6. J Cell Biol. 2021 Nov 01. pii: e202104100. [Epub ahead of print]220(11):
      Mitochondrial functions are tightly regulated by nuclear activity, requiring extensive communication between these organelles. One way by which organelles can communicate is through contact sites, areas of close apposition held together by tethering molecules. While many contacts have been characterized in yeast, the contact between the nucleus and mitochondria was not previously identified. Using fluorescence and electron microscopy in S. cerevisiae, we demonstrate specific areas of contact between the two organelles. Using a high-throughput screen, we uncover a role for the uncharacterized protein Ybr063c, which we have named Cnm1 (contact nucleus mitochondria 1), as a molecular tether on the nuclear membrane. We show that Cnm1 mediates contact by interacting with Tom70 on mitochondria. Moreover, Cnm1 abundance is regulated by phosphatidylcholine, enabling the coupling of phospholipid homeostasis with contact extent. The discovery of a molecular mechanism that allows mitochondrial crosstalk with the nucleus sets the ground for better understanding of mitochondrial functions in health and disease.
    DOI:  https://doi.org/10.1083/jcb.202104100
  7. Nat Metab. 2021 Oct 25.
      We have previously suggested a central role for mitochondria in the observed sex differences in metabolic traits. However, the mechanisms by which sex differences affect adipose mitochondrial function and metabolic syndrome are unclear. Here we show that in both mice and humans, adipose mitochondrial functions are elevated in females and are strongly associated with adiposity, insulin resistance and plasma lipids. Using a panel of diverse inbred strains of mice, we identify a genetic locus on mouse chromosome 17 that controls mitochondrial mass and function in adipose tissue in a sex- and tissue-specific manner. This locus contains Ndufv2 and regulates the expression of at least 89 mitochondrial genes in females, including oxidative phosphorylation genes and those related to mitochondrial DNA content. Overexpression studies indicate that Ndufv2 mediates these effects by regulating supercomplex assembly and elevating mitochondrial reactive oxygen species production, which generates a signal that increases mitochondrial biogenesis.
    DOI:  https://doi.org/10.1038/s42255-021-00481-w
  8. Autophagy. 2021 Oct 25. 1-18
      Mitochondrial remodeling is dysregulated in metabolic diseases but the underlying mechanism is not fully understood. We report here that BDNF (brain derived neurotrophic factor) provokes mitochondrial fission and clearance in skeletal muscle via the PRKAA/AMPK-PINK1-PRKN/Parkin and PRKAA-DNM1L/DRP1-MFF pathways. Depleting Bdnf expression in myotubes reduced fatty acid-induced mitofission and mitophagy, which was associated with mitochondrial elongation and impaired lipid handling. Muscle-specific bdnf knockout (MBKO) mice displayed defective mitofission and mitophagy, and accumulation of dysfunctional mitochondria in the muscle when they were fed with a high-fat diet (HFD). These animals also have exacerbated body weight gain, increased intramyocellular lipid deposition, reduced energy expenditure, poor metabolic flexibility, and more insulin resistance. In contrast, consuming a BDNF mimetic (7,8-dihydroxyflavone) increased mitochondrial content, and enhanced mitofission and mitophagy in the skeletal muscles. Hence, BDNF is an essential myokine to maintain mitochondrial quality and function, and its repression in obesity might contribute to impaired metabolism.Abbreviation: 7,8-DHF: 7,8-dihydroxyflavone; ACACA/ACC: acetyl Coenzyme A carboxylase alpha; ACAD: acyl-Coenzyme A dehydrogenase family; ACADVL: acyl-Coenzyme A dehydrogenase, very long chain; ACOT: acyl-CoA thioesterase; CAMKK2: calcium/calmodulin-dependent protein kinase kinase 2, beta; BDNF: brain derived neurotrophic factor; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; CCL2/MCP-1: chemokine (C-C motif) ligand 2; CCL5: chemokine (C-C motif) ligand 5; CNS: central nervous system; CPT1B: carnitine palmitoyltransferase 1b, muscle; Cpt2: carnitine palmitoyltransferase 2; CREB: cAMP responsive element binding protein; DNM1L/DRP1: dynamin 1-like; E2: estrogen; EHHADH: enoyl-CoenzymeA hydratase/3-hydroxyacyl CoenzymeA dehydrogenase; ESR1/ER-alpha: estrogen receptor 1 (alpha); FA: fatty acid; FAO: fatty acid oxidation; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; FFA: free fatty acids; FGF21: fibroblast growth factor 21; FUNDC1: FUN14 domain containing 1; HADHA: hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha; HFD: high-fat diet; iWAT: inguinal white adipose tissues; MAP1LC3A/LC3A: microtubule-associated protein 1 light chain 3 alpha; MBKO; muscle-specific bdnf knockout; IL6/IL-6: interleukin 6; MCEE: methylmalonyl CoA epimerase; MFF: mitochondrial fission factor; NTRK2/TRKB: neurotrophic tyrosine kinase, receptor, type 2; OPTN: optineurin; PA: palmitic acid; PARL: presenilin associated, rhomboid-like; PDH: pyruvate dehydrogenase; PINK1: PTEN induced putative kinase 1; PPARGC1A/PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PRKAA/AMPK: protein kinase, AMP-activated, alpha 2 catalytic subunit; ROS: reactive oxygen species; TBK1: TANK-binding kinase 1; TG: triacylglycerides; TNF/TNFα: tumor necrosis factor; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like kinase 1.
    Keywords:  BDNF; mitochondria; mitophagy; muscle; obesity
    DOI:  https://doi.org/10.1080/15548627.2021.1985257
  9. Biochem J. 2021 Oct 27. pii: BCJ20210508. [Epub ahead of print]
      Mitochondrial dysfunction is implicated in Parkinson disease (PD). Mutations in Parkin, an E3 ubiquitin ligase, can cause juvenile-onset Parkinsonism probably through impairment of mitophagy. Inhibition of the de-ubiquitinating enzyme USP30 may counter this effect to enhance mitophagy. Using different tools and cellular approaches, we wanted to independently confirm this claimed role for USP30. Pharmacological characterization of additional tool compounds that selectively inhibit USP30 are reported. The consequence of USP30 inhibition by these compounds, siRNA knockdown and overexpression of dominant-negative USP30 in the mitophagy pathway in different disease-relevant cellular models was explored. Knockdown and inhibition of USP30 showed increased p-Ser65-ubiquitin levels and mitophagy in neuronal cell models. Furthermore, patient-derived fibroblasts carrying pathogenic mutations in Parkin showed reduced p-Ser65-ubiquitin levels compared to wild-type cells, levels that could be restored using either USP30 inhibitor or dominant-negative USP30 expression. Our data provide additional support for USP30 inhibition as a regulator of the mitophagy pathway.
    Keywords:  Parkinsons disease; USP30; USP30 inhibitors; mitoKeima; mitophagy; p-Ser65-ubiquitin
    DOI:  https://doi.org/10.1042/BCJ20210508
  10. Cell Rep. 2021 Oct 26. pii: S2211-1247(21)01358-9. [Epub ahead of print]37(4): 109888
      Dysregulated inflammation dominated by chemokine expression is a key feature of disease following infection with the globally important human pathogens Zika virus (ZIKV) and dengue virus, but a mechanistic understanding of how pro-inflammatory responses are initiated is lacking. Mitophagy is a quality-control mechanism that regulates innate immune signaling and cytokine production through selective degradation of damaged mitochondria. Here, we demonstrate that ZIKV nonstructural protein 5 (NS5) antagonizes mitophagy by binding to the host protein Ajuba and preventing its translocation to depolarized mitochondria where it is required for PINK1 activation and downstream signaling. Consequent mitophagy suppression amplifies the production of pro-inflammatory chemokines through protein kinase R (PKR) sensing of mitochondrial RNA. In Ajuba-/- mice, ZIKV induces early expression of pro-inflammatory chemokines associated with significantly enhanced dissemination to tissues. This work identifies Ajuba as a critical regulator of mitophagy and demonstrates a role for mitophagy in limiting systemic inflammation following infection by globally important human viruses.
    Keywords:  PINK1; PKR; Parkin; Zika virus; chemokines; flavivirus; mitochondria; mitophagy; mtRNA; pathogenesis
    DOI:  https://doi.org/10.1016/j.celrep.2021.109888
  11. PLoS One. 2021 ;16(10): e0258833
      Ischemia reperfusion injury (IRI) is a critical problem in liver transplantation that can lead to life-threatening complications and substantially limit the utilization of livers for transplantation. However, because there are no early diagnostics available, fulminant injury may only become evident post-transplant. Mitochondria play a central role in IRI and are an ideal diagnostic target. During ischemia, changes in the mitochondrial redox state form the first link in the chain of events that lead to IRI. In this study we used resonance Raman spectroscopy to provide a rapid, non-invasive, and label-free diagnostic for quantification of the hepatic mitochondrial redox status. We show this diagnostic can be used to significantly distinguish transplantable versus non-transplantable ischemically injured rat livers during oxygenated machine perfusion and demonstrate spatial differences in the response of mitochondrial redox to ischemia reperfusion. This novel diagnostic may be used in the future to predict the viability of human livers for transplantation and as a tool to better understand the mechanisms of hepatic IRI.
    DOI:  https://doi.org/10.1371/journal.pone.0258833
  12. Am J Transplant. 2021 Oct 29.
      Early insults associated with cardiac transplantation increase the immunogenicity of donor microvascular endothelial cells (ECs), which interact with recipient alloreactive memory T-cells and promote responses leading to allograft rejection. Thus, modulating EC immunogenicity could potentially alter T-cell responses. Recent studies have shown modulating mitochondrial fusion/fission alters immune cell phenotype. Here, we assess whether modulating mitochondrial fusion/fission reduces EC immunogenicity and alters EC-T-cell interactions. By knocking down DRP1, a mitochondrial fission protein, or by using the small molecules M1, a fusion promoter, and Mdivi1, a fission inhibitor, we demonstrate that promoting mitochondrial fusion reduced EC immunogenicity to allogeneic CD8+ T-cells, shown by decreased T-cell cytotoxic proteins, decreased EC VCAM-1, MHC-I expression, and increased PD-L1 expression. Co-cultured T-cells also displayed decreased memory frequencies and Ki-67 proliferative index. For in-vivo significance, we used a novel murine brain-dead donor transplant model. Balb/c hearts pretreated with M1/Mdivi1 after brain-death induction were heterotopically transplanted into C57BL/6 recipients. We demonstrate that, in line with our in-vitro studies, M1/Mdivi1 pretreatment protected cardiac allografts from injury, decreased infiltrating T-cell production of cytotoxic proteins, and prolonged allograft survival. Collectively, our data show promoting mitochondrial fusion in donor ECs mitigates recipient T-cell responses and leads to significantly improved cardiac transplant survival.
    DOI:  https://doi.org/10.1111/ajt.16882
  13. Dev Cell. 2021 Oct 22. pii: S1534-5807(21)00809-1. [Epub ahead of print]
      In order to combat molecular damage, most cellular proteins undergo rapid turnover. We have previously identified large nuclear protein assemblies that can persist for years in post-mitotic tissues and are subject to age-related decline. Here, we report that mitochondria can be long lived in the mouse brain and reveal that specific mitochondrial proteins have half-lives longer than the average proteome. These mitochondrial long-lived proteins (mitoLLPs) are core components of the electron transport chain (ETC) and display increased longevity in respiratory supercomplexes. We find that COX7C, a mitoLLP that forms a stable contact site between complexes I and IV, is required for complex IV and supercomplex assembly. Remarkably, even upon depletion of COX7C transcripts, ETC function is maintained for days, effectively uncoupling mitochondrial function from ongoing transcription of its mitoLLPs. Our results suggest that modulating protein longevity within the ETC is critical for mitochondrial proteome maintenance and the robustness of mitochondrial function.
    Keywords:  age mosaicism; aging; electron transport chain; heterogeneity; long-lived proteins; mitochondria; muscle; neurons; protein homeostasis; supercomplexes
    DOI:  https://doi.org/10.1016/j.devcel.2021.10.008
  14. Physiol Rev. 2021 10 26.
      The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer, and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport, and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.
    Keywords:  calcium; energetics; metabolism; mitochondria; oxidative phosphorylation
    DOI:  https://doi.org/10.1152/physrev.00041.2020
  15. Sci Rep. 2021 Oct 26. 11(1): 21134
      The sarcomere protein titin is a major determinant of cardiomyocyte stiffness and ventricular distensibility. The constant mechanical stress on titin requires well-controlled protein quality control, the exact mechanisms of which have not yet been fully elucidated. Here, we analyzed E3-ligases potentially responsible for cardiac titin ubiquitination and specifically studied the involvement of the autophagosomal system in titin degradation. Pharmacological inhibition of autophagy and the proteasome in cultured primary rat cardiomyocytes significantly elevated titin ubiquitination and increased titin degradation. Using in-vitro pull down assays we identified binding of E3-ligases MuRF1-3, CHIP and Fbx32 to several titin domains. Immunofluorescence analysis showed sarcomeric localization of the E3-ligases. siRNA-mediated knock-down of the E3-ligases MuRF-1, -3 and a combination of CHIP/Fbx32 significantly reduced autophagy-related titin ubiquitination, whereas knock-down of MuRF-2 and -3 reduced proteasome-related titin ubiquitination. We demonstrated that the proteasomal and the autophagosomal-lysosomal system participate in degradation of the titin filament. We found that ubiquitination and degradation of titin are partially regulated by E3-ligases of the MuRF family. We further identified CHIP and Fbx32 as E3-ligases involved in titin ubiquitination.
    DOI:  https://doi.org/10.1038/s41598-021-00618-7