bims-midtic Biomed News
on Mitochondrial dynamics and trafficking in cells
Issue of 2023‒11‒05
twenty papers selected by
Omkar Joshi, Turku Bioscience



  1. Adv Sci (Weinh). 2023 Nov 01. e2304885
      Excessive mitochondrial fission following ischemia and hypoxia relies on the formation of contacts between the endoplasmic reticulum and mitochondria (ER-Mito); however, the specific mechanisms behind this process remain unclear. Confocal microscopy and time course recording are used to investigate how ischemia and hypoxia affect the activation of dynamin-related protein 1 (Drp1), a protein central to mitochondrial dynamics, ER-Mito interactions, and the consequences of modifying the expression of Drp1, shroom (Shrm) 4, and inverted formin (INF) 2 on ER-Mito contact establishment. Both Drp1 activation and ER-Mito contact initiation cause excessive mitochondrial fission and dysfunction under ischemic-hypoxic conditions. The activated form of Drp1 aids in ER-Mito contact initiation by recruiting Shrm4 and promoting actin bundling between the ER and mitochondria. This process relies on the structural interplay between INF2 and scattered F-actin on the ER. This study uncovers new roles of cytoplasmic Drp1, providing valuable insights for devising strategies to manage mitochondrial imbalances in the context of ischemic-hypoxic injury.
    Keywords:  Drp1; ER-Mito contact; actin bundling; mitochondrial fission; shrm4
    DOI:  https://doi.org/10.1002/advs.202304885
  2. Semin Cell Dev Biol. 2023 Oct 31. pii: S1084-9521(23)00203-3. [Epub ahead of print]
      If mitochondria are the powerhouses of the cell, then mitochondrial dynamics are the power grid that regulates how that energy output is directed and maintained in response to unique physiological demands. Fission and fusion dynamics are highly regulated processes that fine-tune the mitochondrial networks of cells to enable appropriate responses to intrinsic and extrinsic stimuli, thereby maintaining cellular and organismal homeostasis. These dynamics shape many aspects of an organism's healthspan including development, longevity, stress resistance, immunity, and response to disease. In this review, we discuss the latest findings regarding the mechanisms and roles of mitochondrial dynamics by focussing on the nematode Caenorhabditis elegans. Whole live-animal studies in C. elegans have enabled a true organismal-level understanding of the impact that mitochondrial dynamics play in homeostasis over a lifetime.
    Keywords:  Development; Disease; Fission; Fusion; Longevity; Quality-control
    DOI:  https://doi.org/10.1016/j.semcdb.2023.10.006
  3. J Cell Biol. 2023 Dec 04. pii: e202305032. [Epub ahead of print]222(12):
      Live super-resolution microscopy has allowed for new insights into recently identified mitochondria-lysosome contact sites, which mediate crosstalk between mitochondria and lysosomes, including co-regulation of Rab7 GTP hydrolysis and Drp1 GTP hydrolysis. Here, we highlight recent findings and future perspectives on this dynamic pathway and its roles in health and disease.
    DOI:  https://doi.org/10.1083/jcb.202305032
  4. bioRxiv. 2023 Oct 20. pii: 2023.10.19.563195. [Epub ahead of print]
      Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α. Mitochondrial damage triggers TRIM5α's auto-ubiquitination and its interaction with ubiquitin-binding autophagy adaptors including NDP52, optineurin, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1. TRIM5α with intact ubiquitination function is required for the proper accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Additionally, we show that TRIM5α can directly recruit autophagy initiation machinery to damaged mitochondria. Our data support a model in which TRIM5α provides a self-amplifying, mitochondria-localized, ubiquitin-based, assembly platform for TBK1 and mitophagy adaptors that is ultimately required to recruit the core autophagy machinery.
    DOI:  https://doi.org/10.1101/2023.10.19.563195
  5. Trends Cell Biol. 2023 Oct 30. pii: S0962-8924(23)00208-8. [Epub ahead of print]
      Mitochondria perform crucial functions in cellular metabolism, protein and lipid biogenesis, quality control, and signaling. The systematic analysis of protein complexes and interaction networks provided exciting insights into the structural and functional organization of mitochondria. Most mitochondrial proteins do not act as independent units, but are interconnected by stable or dynamic protein-protein interactions. Protein translocases are responsible for importing precursor proteins into mitochondria and form central elements of several protein interaction networks. These networks include molecular chaperones and quality control factors, metabolite channels and respiratory chain complexes, and membrane and organellar contact sites. Protein translocases link the distinct networks into an overarching network, the mitochondrial import network (MitimNet), to coordinate biogenesis, membrane organization and function of mitochondria.
    Keywords:  cell organelles; energetics; metabolism; mitochondria; morphology; protein assembly; protein networks; protein sorting
    DOI:  https://doi.org/10.1016/j.tcb.2023.10.004
  6. Nat Commun. 2023 Oct 30. 14(1): 6900
      Inter-organelle contact and communication between mitochondria and sarco/endoplasmic reticulum (SR/ER) maintain cellular homeostasis and are profoundly disturbed during tissue ischemia. We tested the hypothesis that the formin Diaphanous-1 (DIAPH1), which regulates actin dynamics, signal transduction and metabolic functions, contributes to these processes. We demonstrate that DIAPH1 interacts directly with Mitofusin-2 (MFN2) to shorten mitochondria-SR/ER distance, thereby enhancing mitochondria-ER contact in cells including cardiomyocytes, endothelial cells and macrophages. Solution structure studies affirm the interaction between the Diaphanous Inhibitory Domain and the cytosolic GTPase domain of MFN2. In male rodent and human cardiomyocytes, DIAPH1-MFN2 interaction regulates mitochondrial turnover, mitophagy, and oxidative stress. Introduction of synthetic linker construct, which shorten the mitochondria-SR/ER distance, mitigated the molecular and functional benefits of DIAPH1 silencing in ischemia. This work establishes fundamental roles for DIAPH1-MFN2 interaction in the regulation of mitochondria-SR/ER contact networks. We propose that targeting pathways that regulate DIAPH1-MFN2 interactions may facilitate recovery from tissue ischemia.
    DOI:  https://doi.org/10.1038/s41467-023-42521-x
  7. J Cell Biol. 2024 Jan 01. pii: e202305086. [Epub ahead of print]223(1):
      Cell type-specific use of the same DNA blueprint generates diverse cell types. Such diversity must also be executed via differential deployment of the same subcellular machinery. However, our understanding of the size, distribution, and dynamics of subcellular machinery in native tissues and their connection to cellular diversity remains limited. We generate and characterize an inducible tricolor reporter mouse, dubbed "Kaleidoscope," for simultaneous imaging of lysosomes, mitochondria, and microtubules in any cell type and at a single-cell resolution. The expected subcellular compartments are labeled in culture and in tissues with no impact on cellular and organismal viability. Quantitative and live imaging of the tricolor reporter captures cell type-specific organelle features and kinetics in the lung, as well as their changes after Sendai virus infection. Yap/Taz mutant lung epithelial cells undergo accelerated lamellar body maturation, a subcellular manifestation of their molecular defects. A comprehensive toolbox of reporters for all subcellular structures is expected to transform our understanding of cell biology in tissues.
    DOI:  https://doi.org/10.1083/jcb.202305086
  8. bioRxiv. 2023 Oct 22. pii: 2023.10.22.563469. [Epub ahead of print]
      Chronic kidney disease (CKD) is often associated with protein-energy wasting (PEW), which is characterized by a reduction in muscle mass and strength. Although mitochondrial dysfunction and oxidative stress have been implicated to play a role in the pathogenesis of muscle wasting, the underlying mechanisms remain unclear. In this study, we used transcriptomics, metabolomics analyses and mouse gene manipulating approaches to investigate the effects of mitochondrial plasticity and oxidative stress on muscle wasting in mouse CKD models. Our results showed that the expression of oxidative stress response genes was increased, and that of oxidative phosphorylation genes was decreased in the muscles of mice with CKD. This was accompanied by reduced oxygen consumption rates, decreased levels of mitochondrial electron transport chain proteins, and increased cellular oxidative damage. Excessive mitochondrial fission was also observed, and we found that the activation of ROCK1 was responsible for this process. Inducible expression of muscle-specific constitutively active ROCK1 (mROCK1 ca ) exacerbated mitochondrial fragmentation and muscle wasting in CKD mice. Conversely, ROCK1 depletion (ROCK1-/-) alleviated these phenomena. Mechanistically, ROCK1 activation promoted the recruitment of Drp1 to mitochondria, thereby facilitating fragmentation. Notably, the pharmacological inhibition of ROCK1 mitigated muscle wasting by suppressing mitochondrial fission and oxidative stress. Our findings demonstrate that ROCK1 participates in CKD-induced muscle wasting by promoting mitochondrial fission and oxidative stress, and pharmacological suppression of ROCK1 could be a therapeutic strategy for combating muscle wasting in CKD conditions.Translational Statement: Protein-energy wasting (PEW) is a prevalent issue among patients with chronic kidney disease (CKD) and is characterized by the loss of muscle mass. Our research uncovers a critical role that ROCK1 activation plays in muscle wasting induced by CKD. We found that ROCK1 is instrumental in causing mitochondrial fission, which leads to increased oxidative stress in muscle cells. By employing a pharmacological inhibitor, hydroxyfasudil, we were able to effectively curb ROCK1 activity, which in turn mitigated muscle wasting by reducing both mitochondrial fission and oxidative stress. These findings suggest that pharmacological inhibition of ROCK1 presents a promising therapeutic strategy for combating the muscle wasting associated with CKD.
    DOI:  https://doi.org/10.1101/2023.10.22.563469
  9. Front Pharmacol. 2023 ;14 1243258
      Non-alcoholic steatohepatitis (NASH) is known to progress to cirrhosis and hepatocellular carcinoma in some patients. Although NASH is associated with abnormal mitochondrial function related to lipid metabolism, mechanisms for the development and effective treatments are still unclear. Therefore, new approaches to elucidate the pathophysiology are needed. In the previous study, we generated liver organoids from different stages of NASH model mice that could recapitulate the part of NASH pathology. In the present study, we investigated the relationship between mitochondrial function and NASH disease by comparing NASH liver organoids (NLO) and control liver organoids (CLO). Compared with CLO, mitochondrial and organoid morphology was abnormal in NLO, with increased expression of mitochondrial mitogen protein, DRP1, and mitochondria-derived reactive oxygen species (ROS) production. Treatment of NLO with a DPR1 inhibitor, Mdivi-1 resulted in the improvement of morphology and the decreased expression of fibrosis-related markers, Col1a1 and Acta2. In addition, treatment of NASH model mice with Mdivi-1 showed a decrease in fatty liver. Mdivi-1 treatment also prevented fibrosis and ROS production in the liver. These results indicate that NLO undergoes enhanced metabolism and abnormal mitochondrial morphology compared with CLO. It was also suggested that Mdivi-1 may be useful as a therapeutic agent to ameliorate NASH pathology.
    Keywords:  DRP1; NASH; ROS; fibrosis; liver; mitochondria; organoids
    DOI:  https://doi.org/10.3389/fphar.2023.1243258
  10. Front Physiol. 2023 ;14 1261204
      Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
    Keywords:  adipocyte; adipose tissue; metabolic syndrome; mitochondria; obesity
    DOI:  https://doi.org/10.3389/fphys.2023.1261204
  11. Biol Reprod. 2023 Oct 30. pii: ioad150. [Epub ahead of print]
      Non-obstructive azoospermia (NOA) affects more than 10% of infertile men with over 70% patients are idiopathic with uncharacterized molecular mechanisms which is referred as iNOA. In this study, we checked the morphology of Sertoli cell (SC) mitochondria in testis biopsies from patients with iNOA and patients with obstructive azoospermia (OA) who have normal spermiogenesis. The expression of 104 genes controlling mitochondria fission and fusion were analyzed in three gene expression datasets including a total of 60 patients with NOA. The levels of 7 candidate genes were detected in testis biopsies from 38 patients with iNOA and 24 patients with OA who have normal spermatogenesis by RT-qPCR. Cell viability, apoptosis, mitochondria membrane potential, ATP production, oxygen consumption and mitochondria morphology were examined in primary human SCs. Mouse spermatogonial stem cells (SSCs) were used to detect the cell supporting capacity of SCs. We observed that patients with iNOA had elongated mitochondria. MTFR2 and ATP5IF1 were downregulated, whereas BAK1 was upregulated in iNOA testis and SCs. SCs from patients with iNOA had reduced viability, mitochondria membrane potential, ATP production, oxygen consumption rate (OCR), glycolysis and increased apoptosis. Knockdown MTFR2 in SCs increased the mitochondria size. Knockdown ATP5IF1 did not change mitochondrial morphology but increased ATP hydrolysis. Overexpression of BAK1 reduced membrane potential and upregulated cell apoptosis. The dysregulation of all these three genes contributed to the dysfunction of SCs which provides a clue for iNOA treatment.
    Keywords:  Sertoli cell; fission; idiopathic non-obstructive azoospermia; mitochondria
    DOI:  https://doi.org/10.1093/biolre/ioad150
  12. J Fluoresc. 2023 Oct 28.
      Mitochondria transplantation has emerged as a successful therapeutic modality to treat several degenerative diseases. However, the biodistribution of transplanted mitochondria has not been well studied. We investigated the ex-vivo systemic biodistribution and therapeutic efficacy of intravenously transplanted graphene quantum dots (GQDs) conjugated to isolated mitochondria (Mt-GQDs) in diabetic rat tissues. The results revealed that Mt-GQDs facilitate the tracking of transplanted mitochondria without affecting their therapeutic efficacy. It is compelling to note that Mt-GQDs and isolated mitochondria show comparable therapeutic efficacies in decreasing blood glucose levels, oxidative stress, inflammatory gene expressions, and restoration of different mitochondrial functions in pancreatic tissues of diabetic rats. In addition, histological section examination under a fluorescence microscope demonstrated the localization of Mt-GQDs in multiple tissues of diabetic rats. In conclusion, this study indicates that Mt-GQDs provide an effective mitochondrial transplantation tracking modality.
    Keywords:  And Bioimaging; Diabetic rats; GQDs; Mitochondrial Transplantation; Mt-GQDs
    DOI:  https://doi.org/10.1007/s10895-023-03480-0
  13. Elife. 2023 Nov 01. pii: e84235. [Epub ahead of print]12
      Cardiac muscle has the highest mitochondrial density of any human tissue, but mitochondrial dysfunction is not a recognized cause of isolated cardiomyopathy. Here, we determined that the rare mitofusin (MFN) 2 R400Q mutation is 15-20× over-represented in clinical cardiomyopathy, whereas this specific mutation is not reported as a cause of MFN2 mutant-induced peripheral neuropathy, Charcot-Marie-Tooth disease type 2A (CMT2A). Accordingly, we interrogated the enzymatic, biophysical, and functional characteristics of MFN2 Q400 versus wild-type and CMT2A-causing MFN2 mutants. All MFN2 mutants had impaired mitochondrial fusion, the canonical MFN2 function. Compared to MFN2 T105M that lacked catalytic GTPase activity and exhibited normal activation-induced changes in conformation, MFN2 R400Q and M376A had normal GTPase activity with impaired conformational shifting. MFN2 R400Q did not suppress mitochondrial motility, provoke mitochondrial depolarization, or dominantly suppress mitochondrial respiration like MFN2 T105M. By contrast to MFN2 T105M and M376A, MFN2 R400Q was uniquely defective in recruiting Parkin to mitochondria. CRISPR editing of the R400Q mutation into the mouse Mfn2 gene induced perinatal cardiomyopathy with no other organ involvement; knock-in of Mfn2 T105M or M376V did not affect the heart. RNA sequencing and metabolomics of cardiomyopathic Mfn2 Q/Q400 hearts revealed signature abnormalities recapitulating experimental mitophagic cardiomyopathy. Indeed, cultured cardiomyoblasts and in vivo cardiomyocytes expressing MFN2 Q400 had mitophagy defects with increased sensitivity to doxorubicin. MFN2 R400Q is the first known natural mitophagy-defective MFN2 mutant. Its unique profile of dysfunction evokes mitophagic cardiomyopathy, suggesting a mechanism for enrichment in clinical cardiomyopathy.
    Keywords:  cardiomyopathy; developmental biology; heart; mitochondria; mitofusins; mouse
    DOI:  https://doi.org/10.7554/eLife.84235
  14. Small. 2023 Nov 02. e2305923
      Emerging evidence has demonstrated the significant contribution of mitochondrial metabolism dysfunction to promote cancer development and progression. Aberrant expression of mitochondrial genome (mtDNA)-encoded proteins widely involves mitochondrial metabolism dysfunction, and targeted regulation of their expression can be an effective strategy for cancer therapy, which however is challenged due to the protection by the mitochondrial double membrane. Herein, a mitochondria-targeted RNAi nanoparticle (NP) platform for effective regulation of mitochondrial metabolism and breast cancer (BCa) therapy is developed. This nanoplatform is composed of a hydrophilic polyethylene glycol (PEG) shell, a hydrophobic poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) core, and charged-mediated complexes of mitochondria-targeting and membrane-penetrating peptide amphiphile (MMPA) and small interfering RNA (siRNA) embedded in the core. After tumor accumulation and internalization by tumor cells, these NPs can respond to the endosomal pH to expose the MMPA/siRNA complexes, which can specifically transport siRNA into the mitochondria to down-regulate mtDNA-encoded protein expression (e.g., ATP6 and CYB). More importantly, because ATP6 down-regulation can suppress ATP production and enhance reactive oxygen species (ROS) generation to induce mitochondrial damage and mtDNA leakage into tumor tissues, the NPs can combinatorially inhibit tumor growth via suppressing ATP production and repolarizing tumor-associated macrophages (TAMs) into tumor-inhibiting M1-like macrophages by mtDNA.
    Keywords:  cancer therapy; gene regulation; mitochondria-targeting; mitochondrial metabolism; nanoparticles (NPs)
    DOI:  https://doi.org/10.1002/smll.202305923
  15. Expert Opin Drug Deliv. 2023 Nov 03.
      INTRODUCTION: Ischemic stroke-induced mitochondrial dysfunction in brain endothelial cells (BECs) leads to breakdown of the blood-brain barrier (BBB) causing long-term neurological dysfunction. Restoration of mitochondrial function in injured BECs is a promising therapeutic strategy to alleviate stroke-induced damage. Mounting evidence demonstrate that selected subsets of cell-derived extracellular vehicles (EVs), such as exosomes (EXOs) and microvesicles (MVs), contain functional mitochondrial components. Therefore, development of BEC-derived mitochondria-containing EVs for delivery to the BBB will (1) alleviate mitochondrial dysfunction and limit long-term neurological dysfunction in ischemic stroke and (2) provide an alternative therapeutic option for treating numerous other diseases associated with mitochondrial dysfunction.AREA COVERED: This review will discuss (1) how EV subsets package different types of mitochondrial components during their biogenesis, (2) mechanisms of EV internalization and functional mitochondrial responses in the recipient cells, and (3) EV biodistribution and pharmacokinetics - key factors involved in the development of mitochondria-containing EVs as a novel BBB-targeted stroke therapy.
    EXPERT OPINION: Mitochondria-containing MVs have demonstrated therapeutic benefits in ischemic stroke and other pathologies associated with mitochondrial dysfunction. Delivery of MV mitochondria to the BBB is expected to protect the BBB integrity and neurovascular unit post-stroke. MV mitochondria quality control, characterization, mechanistic understanding of its effects in vivo, safety and efficacy in different preclinical models, large-scale production, and establishment of regulatory guidelines are foreseeable milestones to harness the clinical potential of MV mitochondria delivery.
    Keywords:  BBB; Exosomes; Microvesicles; Mitochondria; extracellular vesicles; stroke
    DOI:  https://doi.org/10.1080/17425247.2023.2279115
  16. Science. 2023 Nov 02. eadf4154
      Mitochondria must maintain adequate amounts of metabolites for protective and biosynthetic functions. However, how mitochondria sense the abundance of metabolites and regulate metabolic homeostasis is not well understood. We focused on glutathione (GSH), a critical redox metabolite in mitochondria and identified a feedback mechanism that controls its abundance through the mitochondrial GSH transporter, SLC25A39. Under physiological conditions, SLC25A39 is rapidly degraded by a mitochondrial protease, AFG3L2. Depletion of GSH dissociates AFG3L2 from SLC25A39, causing a compensatory increase in mitochondrial GSH uptake. Genetic and proteomic analysis identified a putative iron-sulfur cluster in the matrix-facing loop of SLC25A39 to be essential for this regulation, coupling mitochondrial iron homeostasis to GSH import. Altogether, our work revealed a paradigm for the autoregulatory control of metabolic homeostasis in organelles.
    DOI:  https://doi.org/10.1126/science.adf4154
  17. Front Neurosci. 2023 ;17 1268883
      Ensuring mitochondrial quality is essential for maintaining neuronal homeostasis, and mitochondrial transport plays a vital role in mitochondrial quality control. In this review, we first provide an overview of neuronal mitochondrial transport, followed by a detailed description of the various motors and adaptors associated with the anterograde and retrograde transport of mitochondria. Subsequently, we review the modest evidence involving mitochondrial transport mechanisms that has surfaced in acute neurological disorders, including traumatic brain injury, spinal cord injury, spontaneous intracerebral hemorrhage, and ischemic stroke. An in-depth study of this area will help deepen our understanding of the mechanisms underlying the development of various acute neurological disorders and ultimately improve therapeutic options.
    Keywords:  TRAK; acute neurological disorders; dynein; kinesin; miro; myosin
    DOI:  https://doi.org/10.3389/fnins.2023.1268883
  18. Cell Rep. 2023 Nov 01. pii: S2211-1247(23)01226-3. [Epub ahead of print]42(11): 113214
      Phosphatidylglycerol (PG) is a mitochondrial phospholipid required for mitochondrial cristae structure and cardiolipin synthesis. PG must be remodeled to its mature form at the endoplasmic reticulum (ER) after mitochondrial biosynthesis to achieve its biological functions. Defective PG remodeling causes MEGDEL (non-alcohol fatty liver disease and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like) syndrome through poorly defined mechanisms. Here, we identify LPGAT1, an acyltransferase that catalyzes PG remodeling, as a candidate gene for MEGDEL syndrome. We show that PG remodeling by LPGAT1 at the ER is closely coordinated with mitochondrial transport through interaction with the prohibitin/TIMM14 mitochondrial import motor. Accordingly, ablation of LPGAT1 or TIMM14 not only causes aberrant fatty acyl compositions but also ER retention of newly remodeled PG, leading to profound loss in mitochondrial crista structure and respiration. Consequently, genetic deletion of the LPGAT1 in mice leads to cardinal features of MEGDEL syndrome, including 3-methylglutaconic aciduria, deafness, dilated cardiomyopathy, and premature death, which are highly reminiscent of those caused by TIMM14 mutations in humans.
    Keywords:  CP: Cell biology; LPGAT1; MEGDEL syndrome; mitochondrial dysfunction; phosphatidylglycerol; prohibitin/TIM complex
    DOI:  https://doi.org/10.1016/j.celrep.2023.113214
  19. Mol Biol Rep. 2023 Nov 03.
      BACKGROUND: Cardiac apoptosis plays a key role in increased morbidity associated with aging-induced-cardiac disorder. Mitochondria play an important role in cardiac apoptosis, and dynamin-related protein 1 (Drp1), as a main mediator of mitochondrial fission, can trigger the mitophagy process to sustain the mitochondrial quality. The present study was done to determine the effect of vitamin D (VitD) treatment on cardiac hypertrophy through mitophagy regulation in aged animals induced by D-galactose (D-GAL).METHODS AND RESULTS: Male Wistar rats were randomly divided into four groups: control, D-GAL (aging group), D-GAL co-injected with VitD (D-GAL ± VitD), and D-GAL plus ethanol (D-GAL ± Ethanol). Aging was induced by an intraperitoneal (i.p.) administration of D-GAL at 150 mg/kg daily for eight weeks and also VitD (400 IU/kg) or ethanol was injected (i.p.) into aging rats. Then, the levels of cardiac mitophagy and cardiac apoptosis were determined by measuring the expression of tensin homologue (PTEN)-induced putative kinase 1 (PINK1), Drp1, Bcl2-Associated X (Bax), and B-cell lymphoma 2 (Bcl2) genes. Aging in rats was associated with a reduction in mitophagy and also an increase in apoptosis of the heart through down-regulation of Drp1, PINK1, and Bcl2 genes and also up-regulation of Bax. However, VitD improved cardiac hypertrophy through cardiac mitophagy in D-GAL-induced aging rats.
    CONCLUSION: VitD can inhibit cardiac hypertrophy by an increase in mitophagy and a decrease in apoptosis in the aging heart. The illustration of the suggested mechanism underlying of Vitamin D in cardiac hypertrophy induced by aging.
    Keywords:  Aging; Apoptosis; Drp1; Mitophagy; PINK1; Vitamin D
    DOI:  https://doi.org/10.1007/s11033-023-08875-7
  20. Biochim Biophys Acta Mol Cell Res. 2023 Oct 30. pii: S0167-4889(23)00196-9. [Epub ahead of print] 119623
      Diabetic nephropathy (DN), one of the most common complications of Diabetes Mellitus, is the leading cause of end-stage renal diseases worldwide. Our previous study proved that hepatocyte growth factor (HGF) alleviated renal damages in mice with type 1 Diabetes Mellitus by suppressing overproduction of reactive oxygen species (ROS) in podocytes, while the further mechanism of how HGF lessens ROS production had not been clarified yet. ADP-ribosylation factor 6 (ARF6), the member of the small GTPases superfamilies, is widely spread among epithelial cells and can be activated by the HGF/c-Met signaling. Thus, this study was aimed to explore whether HGF could function on mitochondrial homeostasis, the main resource of ROS, in podocytes exposed to diabetic conditions via ARF6 activation. Our in vivo data showed that HGF markedly ameliorated the pathological damages in kidneys of db/db mice, especially the sharp decline of podocyte number, which was mostly blocked by the ARF6 inhibitor SecinH3. Correspondingly, our in vitro data revealed that HGF protected against high glucose-induced podocyte injuries by increasing ARF6 activity. Besides, this ARF6-dependent beneficial effect of HGF on podocytes was accompanied by improved mitochondrial dynamics and declined DRP1 translocation from cytosol to mitochondria. Collectively, our findings confirm the ability of HGF maintaining mitochondrial homeostasis in diabetic podocytes via decreasing ARF6-dependent DRP1 translocation and shed light on the novel mechanism of HGF treatment for DN.
    Keywords:  ADP-ribosylation factor 6; Dynamin related protein 1; Hepatocyte growth factor; Mitochondrial homeostasis; Podocyte
    DOI:  https://doi.org/10.1016/j.bbamcr.2023.119623