bims-mideyd Biomed News
on Mitochondrial dysfunction in eye diseases
Issue of 2024‒01‒28
five papers selected by
Raji Shyam, Indiana University Bloomington



  1. Mol Vis. 2023 ;29 338-356
      Purpose: Inflammation and oxidative stress contribute to age-related macular degeneration (AMD) and other retinal diseases. We tested a cell-penetrating peptide from the kinase inhibitory region of an intracellular checkpoint inhibitor suppressor of cytokine signaling 3 (R9-SOCS3-KIR) peptide for its ability to blunt the inflammatory or oxidative pathways leading to AMD.Methods: We used anaphylatoxin C5a to mimic the effect of activated complement, lipopolysaccharide (LPS), and tumor necrosis factor alpha (TNFα) to stimulate inflammation and paraquat to induce mitochondrial oxidative stress. We used a human retinal pigment epithelium (RPE) cell line (ARPE-19) as proliferating cells and a mouse macrophage cell line (J774A.1) to follow cell propagation using microscopy or cell titer assays. We evaluated inflammatory pathways by monitoring the nuclear translocation of NF-κB p65 and mitogen-activated protein kinase p38. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to evaluate the induction of inflammatory markers. In differentiated ARPE-19 monolayers, we evaluated the integrity of tight junction proteins through microscopy and the measurement of transepithelial electrical resistance (TEER). We used intraperitoneal injection of sodium iodate in mice to test the ability of R9-SOC3-KIR to prevent RPE and retinal injury, as assessed by fundoscopy, optical coherence tomography, and histology.
    Results: R9-SOCS3-KIR treatment suppressed C5a-induced nuclear translocation of the NF-kB activation domain p65 in undifferentiated ARPE-19 cells. TNF-mediated damage to tight junction proteins in RPE, and the loss of TEER was prevented in the presence of R9-SOCS3-KIR. Treatment with the R9-SOCS3-KIR peptide blocked the C5a-induced expression of inflammatory genes. The R9-SOCS3-KIR treatment also blocked the LPS-induced expression of interleukin-6, MCP1, cyclooxygenase 2, and interleukin-1 beta. R9-SOCS3-KIR prevented paraquat-mediated cell death and enhanced the levels of antioxidant effectors. Daily eye drop treatment with R9-SOCS3-KIR protected against retinal injury caused by i.p. administration of sodium iodate.
    Conclusions: R9-SOCS3-KIR blocks the induction of inflammatory signaling in cell culture and reduces retinal damage in a widely used RPE/retinal oxidative injury model. As this peptide can be administered through corneal instillation, this treatment may offer a convenient way to slow down the progression of ocular diseases arising from inflammation and chronic oxidative stress.
  2. Viruses. 2023 Dec 28. pii: 49. [Epub ahead of print]16(1):
      Human cytomegalovirus (HCMV) has a broad cellular tropism and epithelial cells are important physiological targets during infection. The retinal pigment epithelial cell line ARPE-19 has been used to model HCMV infection in epithelial cells for decades and remains a commonly used cell type for studying viral entry, replication, and the cellular response to infection. We previously found that ARPE-19 cells, despite being derived from an epithelial cell explant, express extremely low levels of canonical epithelial proteins, such as E-cadherin and EpCAM. Here, we perform comparative studies of ARPE-19 and additional epithelial cell lines with strong epithelial characteristics. We find that ARPE-19 cells cultured under subconfluent conditions resemble mesenchymal fibroblasts, rather than epithelial cells; this is consistent with previous studies showing that ARPE-19 cultures require extended periods of high confluency culture to maintain epithelial characteristics. By reanalyzing public gene expression data and using machine learning, we find evidence that ARPE-19 cultures maintained across many labs exhibit mesenchymal characteristics and that the majority of studies employing ARPE-19 use them in a mesenchymal state. Lastly, by performing experimental HCMV infections across mesenchymal and epithelial cell lines, we find that ARPE-19 cells behave like mesenchymal fibroblasts, producing logarithmic yields of cell-free infectious progeny, while cell lines with strong epithelial character exhibit an atypical infectious cycle and naturally restrict the production of cell-free progeny. Our work highlights important characteristics of the ARPE-19 cell line and suggests that subconfluent ARPE-19 cells may not be optimal for modeling epithelial infection with HCMV or other human viruses. It also suggests that HCMV biosynthesis and/or spread may occur quite differently in epithelial cells compared to mesenchymal cells. These differences could contribute to viral persistence or pathogenesis in epithelial tissues.
    Keywords:  ARPE-19; EMT; HCMV; MCF10A; RWPE-1; cytomegalovirus; herpesvirus; human cytomegalovirus
    DOI:  https://doi.org/10.3390/v16010049
  3. Am J Pathol. 2024 Feb;pii: S0002-9440(23)00442-X. [Epub ahead of print]194(2): 307-320
      Sleep deprivation (SD) is a global public health burden, and has a detrimental role in the nervous system. Retina is an important part of the central nervous system; however, whether SD affects retinal structures and functions remains largely unknown. Herein, chronic SD mouse model indicated that loss of sleep for 4 months could result in reductions in the visual functions, but without obvious morphologic changes of the retina. Ultrastructural analysis by transmission electron microscope revealed the deterioration of mitochondria, which was accompanied with the decrease of multiple mitochondrial proteins in the retina. Mechanistically, oxidative stress was provoked by chronic SD, which could be ameliorated after rest, and thus restore retinal homeostasis. Moreover, the supplementation of two antioxidants, α-lipoic acid and N-acetyl-l-cysteine, could reduce retinal reactive oxygen species, repair damaged mitochondria, and, as a result, improve the retinal functions. Overall, this work demonstrated the essential roles of sleep in maintaining the integrity and health of the retina. More importantly, it points towards supplementation of antioxidants as an effective intervention strategy for people experiencing sleep shortages.
    DOI:  https://doi.org/10.1016/j.ajpath.2023.11.004
  4. Int J Mol Sci. 2024 Jan 20. pii: 1293. [Epub ahead of print]25(2):
      The retinal pigment epithelium (RPE) is an important monolayer of cells present in the outer retina, forming a major part of the blood-retina barrier (BRB). It performs many tasks essential for the maintenance of retinal integrity and function. With increasing knowledge of the retina, it is becoming clear that both common retinal disorders, like age-related macular degeneration, and rare genetic disorders originate in the RPE. This calls for a better understanding of the functions of various proteins within the RPE. In this regard, mice enabling an RPE-specific gene deletion are a powerful tool to study the role of a particular protein within the RPE cells in their native environment, simultaneously negating any potential influences of systemic changes. Moreover, since RPE cells interact closely with adjacent photoreceptors, these mice also provide an excellent avenue to study the importance of a particular gene function within the RPE to the retina as a whole. In this review, we outline and compare the features of various Cre mice created for this purpose, which allow for inducible or non-inducible RPE-specific knockout of a gene of interest. We summarize the various benefits and caveats involved in the use of such mouse lines, allowing researchers to make a well-informed decision on the choice of Cre mouse to use in relation to their research needs.
    Keywords:  Cre mice; knockout; mouse; retinal pigment epithelium
    DOI:  https://doi.org/10.3390/ijms25021293
  5. Int J Mol Sci. 2024 Jan 22. pii: 1349. [Epub ahead of print]25(2):
      Retinal ischemia plays a vital role in vision-threatening retinal ischemic disorders, such as diabetic retinopathy, age-related macular degeneration, glaucoma, etc. The aim of this study was to investigate the effects of S-allyl L-cysteine (SAC) and its associated therapeutic mechanism. Oxidative stress was induced by administration of 500 μM H2O2 for 24 h; SAC demonstrated a dose-dependent neuroprotective effect with significant cell viability effects at 100 μM, and it concurrently downregulated angiogenesis factor PKM2 and inflammatory biomarker MCP-1. In a Wistar rat model of high intraocular pressure (HIOP)-induced retinal ischemia and reperfusion (I/R), post-administration of 100 μM SAC counteracted the ischemic-associated reduction of ERG b-wave amplitude and fluorogold-labeled RGC reduction. This study supports that SAC could protect against retinal ischemia through its anti-oxidative, anti-angiogenic, anti-inflammatory, and neuroprotective properties.
    Keywords:  S-allyl L-cysteine; hydrogen peroxide; monocyte chemoattractant protein-1; oxidative stress; pyruvate kinase M2; retinal ganglion cell; retinal ischemia; retinal pigment epithelium
    DOI:  https://doi.org/10.3390/ijms25021349