bims-mideyd Biomed News
on Mitochondrial dysfunction in eye diseases
Issue of 2022‒10‒30
eleven papers selected by
Raji Shyam
Indiana University Bloomington


  1. J Vis Exp. 2022 Sep 23.
      The retinal pigment epithelium (RPE) is a monolayer of polarized pigmented epithelial cells, located between the choroid and neuroretina in the retina. Multiple functions, including phagocytosis, nutrient/metabolite transportation, vitamin A metabolism, etc., are conducted by the RPE on a daily basis. RPE cells are terminally differentiated epithelial cells with little or no regenerative capacity. Loss of RPE cells results in multiple eye diseases leading to visual impairment, such as age-related macular degeneration. Therefore, the establishment of an in vitro culture model of primary RPE cells, which more closely resembles the RPE in vivo than cell lines, is critical for the characteristic and mechanistic studies of RPE cells. Considering the fact that the source of human eyeballs is limited, we create a protocol to culture primary porcine RPE cells. By using this protocol, RPE cells can be easily dissociated from adult porcine eyeballs. Subsequently, these dissociated cells attach to culture dishes/inserts, proliferate to form a confluent monolayer, and quickly re-establish key features of epithelial tissue in vivo within 2 wks. By qRT-PCR, it is demonstrated that primary porcine RPE cells express multiple signature genes at comparable levels with native RPE tissue, while the expressions of most of these genes are lost/highly reduced in human RPE-like cells, ARPE-19. Moreover, the immunofluorescence staining shows the distribution of tight junction, tissue polarity, and cytoskeleton proteins, as well as the presence of RPE65, an isomerase critical for vitamin A metabolism, in cultured primary cells. Altogether, we have developed an easy-to-follow approach to culture primary porcine RPE cells with high purity and native RPE features, which could serve as a good model to understand RPE physiology, study cell toxicities, and facilitate drug screenings.
    DOI:  https://doi.org/10.3791/64244
  2. Mol Med. 2022 Oct 22. 28(1): 125
      BACKGROUND: Oxidative stress-caused damage to the retinal pigment epithelium (RPE) underlies the onset and progression of age-related macular degeneration (AMD). Impaired mitochondrial biogenesis sensitizes RPE cells to mitochondrial dysfunction, energy insufficiency and death. Src-homology 2 domain-containing phosphatase (SHP)-1 is important in regulating immune responses and cell survival. However, its roles in cell survival are not always consistent. Until now, the effects of SHP-1 on RPE dysfunction, especially mitochondrial homeostasis, remain to be elucidated. We sought to clarify the effects of SHP-1 in RPE cells in response to atRAL-induced oxidative stress and determine the regulatory mechanisms involved.METHODS: In the all trans retinal (atRAL)-induced oxidative stress model, we used the vector of lentivirus to knockdown the expression of SHP-1 in ARPE-19 cells. CCK-8 assay, Annexin V/PI staining and JC-1 staining were utilized to determine the cell viability, cell apoptosis and mitochondrial membrane potential. We also used immunoprecipitation to examine the ubiquitination modification of stimulator of interferon genes (STING) and its interaction with SHP-1. The expression levels of mitochondrial marker, proteins related to mitochondrial biogenesis, and signaling molecules involved were examined by western blotting analysis.
    RESULTS: We found that SHP-1 knockdown predisposed RPE cells to apoptosis, aggravated mitochondrial damage, and repressed mitochondrial biogenesis after treatment with atRAL. Immunofluoresent staining and immunoprecipitation analysis confirmed that SHP-1 interacted with the endoplasmic reticulum-resident STING and suppressed K63-linked ubiquitination and activation of STING. Inhibition of STING with the specific antagonist H151 attenuated the effects of SHP-1 knockdown on mitochondrial biogenesis and oxidative damage. The adenosine monophosphate-activated protein kinase (AMPK) pathway acted as the crucial downstream target of STING and was involved in the regulatory processes.
    CONCLUSIONS: These findings suggest that SHP-1 knockdown potentiates STING overactivation and represses mitochondrial biogenesis and cell survival, at least in part by blocking the AMPK pathway in RPE cells. Therefore, restoring mitochondrial health by regulating SHP-1 in RPE cells may be a potential therapeutic strategy for degenerative retinal diseases including AMD.
    Keywords:  Adenosine monophosphate-activated protein kinase; Age-related macular degeneration; All trans retinal; Mitochondrial biogenesis; Retinal pigment epithelium; Src-homology 2 domain-containing phosphatase-1; Stimulator of interferon genes
    DOI:  https://doi.org/10.1186/s10020-022-00554-w
  3. J Neuroinflammation. 2022 Oct 22. 19(1): 260
      BACKGROUND: Forkhead-Box-Protein P3 (FoxP3) is a transcription factor and marker of regulatory T cells, converting naive T cells into Tregs that can downregulate the effector function of other T cells. We previously detected the expression of FoxP3 in retinal pigment epithelial (RPE) cells, forming the outer blood-retina barrier of the immune privileged eye.METHODS: We investigated the expression, subcellular localization, and phosphorylation of FoxP3 in RPE cells in vivo and in vitro after treatment with various stressors including age, retinal laser burn, autoimmune inflammation, exposure to cigarette smoke, in addition of IL-1β and mechanical cell monolayer destruction. Eye tissue from humans, mouse models of retinal degeneration and rats, and ARPE-19, a human RPE cell line for in vitro experiments, underwent immunohistochemical, immunofluorescence staining, and PCR or immunoblot analysis to determine the intracellular localization and phosphorylation of FoxP3. Cytokine expression of stressed cultured RPE cells was investigated by multiplex bead analysis. Depletion of the FoxP3 gene was performed with CRISPR/Cas9 editing.
    RESULTS: RPE in vivo displayed increased nuclear FoxP3-expression with increases in age and inflammation, long-term exposure of mice to cigarette smoke, or after laser burn injury. The human RPE cell line ARPE-19 constitutively expressed nuclear FoxP3 under non-confluent culture conditions, representing a regulatory phenotype under chronic stress. Confluently grown cells expressed cytosolic FoxP3 that was translocated to the nucleus after treatment with IL-1β to imitate activated macrophages or after mechanical destruction of the monolayer. Moreover, with depletion of FoxP3, but not of a control gene, by CRISPR/Cas9 gene editing decreased stress resistance of RPE cells.
    CONCLUSION: Our data suggest that FoxP3 is upregulated by age and under cellular stress and might be important for RPE function.
    Keywords:  Age-related macular degeneration; CRISPR/Cas9; Ca-channels; FoxP3; IL-1β; Immune barrier; Immune privilege of the retina; Phosphorylation; RPE
    DOI:  https://doi.org/10.1186/s12974-022-02620-w
  4. Antioxidants (Basel). 2022 Sep 21. pii: 1864. [Epub ahead of print]11(10):
      Research has been conducted into vascular abnormalities in the pathogenesis of glaucoma, but conclusions remain controversial. Our aim was to test the hypothesis that retinal endothelial dysfunction induced by elevated intraocular pressure (IOP) persists after IOP normalization, further triggering retinal ganglion cell (RGC) loss. High intraocular pressure (HP) was induced in mice by episcleral vein occlusion (EVO). Retinal vascular function was measured via video microscopy in vitro. The IOP, RGC and their axons survival, levels of oxidative stress and inflammation as well as vascular pericytes coverage, were determined. EVO caused HP for two weeks, which returned to baseline afterwards. Mice with HP exhibited endothelial dysfunction in retinal arterioles, reduced density of RGC and their axons, and loss of pericytes in retinal arterioles. Notably, these values were similar to those of mice with recovered IOP (RP). Levels of oxidative stress and inflammation were increased in HP mice but went back to normal in the RP mice. Our data demonstrate that HP induces persistent endothelial dysfunction in retinal arterioles, which persists one month after RP. Oxidative stress, inflammation, and loss of pericytes appear to be involved in triggering vascular functional deficits. Our data also suggest that retinal endothelial dysfunction does not affect RGC and their axon survival.
    Keywords:  glaucoma; oxidative stress; retinal arterioles; retinal ganglion cells; vascular endothelial dysfunction
    DOI:  https://doi.org/10.3390/antiox11101864
  5. Int J Mol Sci. 2022 Oct 13. pii: 12234. [Epub ahead of print]23(20):
      Lipofuscin granules from retinal pigment epithelium (RPE) cells contain bisretinoid fluorophores, which are photosensitizers and are phototoxic to cells. In the presence of oxygen, bisretinoids are oxidized to form various products, containing aldehydes and ketones, which are also potentially cytotoxic. In a prior study, we identified that bisretinoid oxidation and degradation products have both hydrophilic and amphiphilic properties, allowing their diffusion through the lipofuscin granule membrane into the RPE cell cytoplasm, and are thiobarbituric acid (TBA)-active. The purpose of the present study was to determine if these products exhibit a toxic effect to the RPE cell also in the absence of light. The experiments were performed using the lipofuscin-fed ARPE-19 cell culture. The RPE cell viability analysis was performed with the use of flow cytofluorimetry and laser scanning confocal microscopy. The results obtained indicated that the cell viability of the lipofuscin-fed ARPE-19 sample was clearly reduced not immediately after visible light irradiation for 18 h, but after 4 days maintaining in the dark. Consequently, we could conclude that bisretinoid oxidation products have a damaging effect on the RPE cell in the dark and can be considered as an aggravating factor in age-related macular degeneration progression.
    Keywords:  age-related macular degeneration; bisretinoid fluorophores; bisretinoid oxidation and degradation products; cytotoxicity; lipofuscin granules; retinal pigment epithelium
    DOI:  https://doi.org/10.3390/ijms232012234
  6. Stem Cell Reports. 2022 Oct 19. pii: S2213-6711(22)00497-0. [Epub ahead of print]
      Stargardt retinopathy is an inherited form of macular degeneration caused by mutations in gene ABCA4 and characterized by the accumulation of lipid-rich deposits in the retinal pigment epithelium (RPE), RPE atrophy, and photoreceptor cell death. Inadequate mechanistic insights into pathophysiological changes occurring in Stargardt RPE have hindered disease treatments. Here, we show that ABCA4 knockout and induced pluripotent stem cell-derived RPE (STGD1-iRPE) from patients with Stargardt differentiate normally but display intracellular lipid and ceramide deposits reminiscent of the disease phenotype. STGD1-iRPE also shows defective photoreceptor outer segment (POS) processing and reduced cathepsin B activity-indicating higher lysosomal pH. Lipid deposits in STGD1-iRPE are lowered by increasing the activity of ABCA1, a lipid transporter, and ABCA4 ortholog. Our work suggests that ABCA4 is involved in POS and lipid handling in RPE cells and provides guidance for ongoing gene therapy approaches to target both RPE and photoreceptor cells for an effective treatment.
    Keywords:  ABCA1; ABCA4; AMD; RPE; lipid deposits; lipid handling; lysosome dysfunction; phagocytosis defects; retinal degeneration
    DOI:  https://doi.org/10.1016/j.stemcr.2022.10.001
  7. Bioengineering (Basel). 2022 Oct 14. pii: 556. [Epub ahead of print]9(10):
      The purpose of the present study was to examine the effect of the selective α1 antagonist tamsulosin (TAM) on human retinal pigment epithelium cells, ARPE 19. Two-dimension (2D) and three-dimension (3D) cultured ARPE 19 cells were used in the following characterizations: (1) ultrastructure by scanning electron microscopy (SEM) (2D); (2) barrier functions by transepithelial electrical resistance (TEER) measurements, and FITC-dextran permeability (2D); (3) real time cellular metabolisms by Seahorse Bioanalyzer (2D); (4) physical properties, size and stiffness measurements (3D); and (5) expression of extracellular matrix (ECM) proteins, including collagen1 (COL1), COL4, COL6 and fibronectin (FN) by qPCR and immunohistochemistry (2D and 3D). TAM induced significant effects including: (1) alteration of the localization of the ECM deposits; (2) increase and decrease of the TEER values and FITC-dextran permeability, respectively; (3) energy shift from glycolysis into mitochondrial oxidative phosphorylation (OXPHOS); (4) large and stiffened 3D spheroids; and (5) down-regulations of the mRNA expressions and immune labeling of most ECM proteins in a concentration-dependent manner. However, in some ECM proteins, COL1 and COL6, their immunolabeling intensities were increased at the lowest concentration (1 μM) of TAM. Such a discrepancy between the gene expressions and immunolabeling of ECM proteins may support alterations of ECM localizations as observed by SEM. The findings reported herein indicate that the selective α1 antagonist, TAM, significantly influenced ECM production and distribution as well as cellular metabolism levels in a concentration-dependent manner.
    Keywords:  3D spheroid culture; ARPE19; tamsulosin; α1 antagonist
    DOI:  https://doi.org/10.3390/bioengineering9100556
  8. Cell Mol Life Sci. 2022 Oct 25. 79(11): 565
      Mitochondria are major sources of cytotoxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, that when uncontrolled contribute to cancer progression. Maintaining a finely tuned, healthy mitochondrial population is essential for cellular homeostasis and survival. Mitophagy, the selective elimination of mitochondria by autophagy, monitors and maintains mitochondrial health and integrity, eliminating damaged ROS-producing mitochondria. However, mechanisms underlying mitophagic control of mitochondrial homeostasis under basal conditions remain poorly understood. E3 ubiquitin ligase Gp78 is an endoplasmic reticulum membrane protein that induces mitochondrial fission and mitophagy of depolarized mitochondria. Here, we report that CRISPR/Cas9 knockout of Gp78 in HT-1080 fibrosarcoma cells increased mitochondrial volume, elevated ROS production and rendered cells resistant to carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced mitophagy. These effects were phenocopied by knockdown of the essential autophagy protein ATG5 in wild-type HT-1080 cells. Use of the mito-Keima mitophagy probe confirmed that Gp78 promoted both basal and damage-induced mitophagy. Application of a spot detection algorithm (SPECHT) to GFP-mRFP tandem fluorescent-tagged LC3 (tfLC3)-positive autophagosomes reported elevated autophagosomal maturation in wild-type HT-1080 cells relative to Gp78 knockout cells, predominantly in proximity to mitochondria. Mitophagy inhibition by either Gp78 knockout or ATG5 knockdown reduced mitochondrial potential and increased mitochondrial ROS. Live cell analysis of tfLC3 in HT-1080 cells showed the preferential association of autophagosomes with mitochondria of reduced potential. Xenograft tumors of HT-1080 knockout cells show increased labeling for mitochondria and the cell proliferation marker Ki67 and reduced labeling for the TUNEL cell death reporter. Basal Gp78-dependent mitophagic flux is, therefore, selectively associated with reduced potential mitochondria promoting maintenance of a healthy mitochondrial population, limiting ROS production and tumor cell proliferation.
    Keywords:  GFP-mRFP tandem fluorescent-tagged LC3; Gp78 ubiquitin ligase; Mitochondria; Mitophagy; Reactive oxygen species; SPECHT; Spot detection
    DOI:  https://doi.org/10.1007/s00018-022-04585-8
  9. Cells. 2022 Oct 11. pii: 3182. [Epub ahead of print]11(20):
      Mutations in the RB1 locus leading to a loss of functional Rb protein cause intraocular tumors, which uniquely affect children worldwide. These tumors demonstrate rapid proliferation, which has recently been shown to be associated with an altered metabolic signature. We found that retinoblastoma tumors and in-vitro models lack Hexokinase 1 (HK1) and exhibit elevated fatty acid oxidation. We show that ectopic expression of RB1 induces HK1 protein in Rb null cells, and both RB1 and HK1 can mediate a metabolic switch from OXPHOS to glycolysis with increased pyruvate levels, reduced ATP production and reduced mitochondrial mass. Further, cells lacking Rb or HK1 can flexibly utilize glutamine and fatty acids to enhance oxidative phosphorylation-dependent ATP generation, as revealed by metabolic and biochemical assays. Thus, loss of Rb and HK1 in retinoblastoma reprograms tumor metabolic circuits to enhance the glucose-independent TCA (tricarboxylic acid) cycle and the intermediate NAD+/NADH ratios, with a subsequent increase in fatty-acid derived L-carnitine to enhance mitochondrial OXPHOS for ATP production instead of glycolysis dependence. We also demonstrate that modulation of the Rb-regulated transcription factor E2F2 does not result in any of these metabolic perturbations. In conclusion, we demonstrate RB1 or HK1 as critical regulators of the cellular bioenergetic profile and identify the altered tumor metabolism as a potential therapeutic target for cancers lacking functional Rb protein.
    Keywords:  OCR; OXPHOS; energetics; glycolysis; metabolism; retinoblastoma
    DOI:  https://doi.org/10.3390/cells11203182
  10. Biomolecules. 2022 Oct 02. pii: 1411. [Epub ahead of print]12(10):
      Leber hereditary optic neuropathy (LHON) is a rare syndrome that results in vision loss. A necessary but not sufficient condition for its onset is the existence of known mitochondrial DNA mutations that affect complex I biomolecular structure. Cybrids with LHON mutations generate higher rates of reactive oxygen species (ROS). This study models how ROS, particularly H2O2, could signal and execute the axonal degeneration process that underlies LHON. We modeled and explored several hypotheses regarding the influence of H2O2 on the dynamics of propagation of axonal degeneration in LHON. Zonal oxidative stress, corresponding to H2O2 gradients, correlated with the morphology of injury exhibited in the LHON pathology. If the axonal membrane is highly permeable to H2O2 and oxidative stress induces larger production of H2O2, small injuries could trigger cascading failures of neighboring axons. The cellular interdependence created by H2O2 diffusion, and the gradients created by tissue variations in H2O2 production and scavenging, result in injury patterns and surviving axonal loss distributions similar to LHON tissue samples. Specifically, axonal degeneration starts in the temporal optic nerve, where larger groups of small diameter fibers are located and propagates from that region. These findings correlate well with clinical observations of central loss of visual field, visual acuity, and color vision in LHON, and may serve as an in silico platform for modeling the mechanism of action for new therapeutics.
    Keywords:  Leber hereditary optic neuropathy; axonal degeneration; mitochondrial disease; optic nerve simulation; visual fields
    DOI:  https://doi.org/10.3390/biom12101411
  11. Antioxidants (Basel). 2022 Oct 01. pii: 1973. [Epub ahead of print]11(10):
      The ocular lens has a very high content of the antioxidant glutathione (GSH) and the enzymes that can recycle its oxidized form, glutathione disulfide (GSSG), for further use. It can be synthesized in the lens and, in part, transported from the neighboring anterior aqueous humor and posterior vitreous body. GSH is known to protect the thiols of the structural lens crystallin proteins from oxidation by reactive oxygen species (ROS) so the lens can maintain its transparency for proper visual function. Age-related lens opacity or senile cataract is the major visual impairment in the general population, and its cause is closely associated with aging and a constant exposure to environmental oxidative stress, such as ultraviolet light and the metabolic end product, H2O2. The mechanism for senile cataractogenesis has been hypothesized as the results of oxidation-induced protein-thiol mixed disulfide formation, such as protein-S-S-glutathione and protein-S-S-cysteine mixed disulfides, which if not reduced in time, can change the protein conformation to allow cascading modifications of various kinds leading to protein-protein aggregation and insolubilization. The consequence of such changes in lens structural proteins is lens opacity. Besides GSH, the lens has several antioxidation defense enzymes that can repair oxidation damage. One of the specific redox regulating enzymes that has been recently identified is thioltransferase (glutaredoxin 1), which works in concert with GSH, to reduce the oxidative stress as well as to regulate thiol/disulfide redox balance by preventing protein-thiol mixed disulfide accumulation in the lens. This oxidation-resistant and inducible enzyme has multiple physiological functions. In addition to protecting structural proteins and metabolic enzymes, it is able to regulate the redox signaling of the cells during growth factor-stimulated cell proliferation and other cellular functions. This review article focuses on describing the redox regulating functions of GSH and the thioltransferase enzyme in the ocular lens.
    Keywords:  cataract; cell proliferation; glutathione (GSH); protein-thiol mixed disulfide; reactive oxygen species (ROS); redox regulation; redox signaling; the ocular lens; thioltransferase (glutaredoxin)
    DOI:  https://doi.org/10.3390/antiox11101973