bims-micpro Biomed News
on Discovery and characterization of microproteins
Issue of 2022‒11‒20
one paper selected by
Thomas Farid Martínez
University of California, Irvine


  1. J Obstet Gynaecol Res. 2022 Nov 17.
      BACKGROUND: Endometrial dysfunction is closely correlated with the development of multiple severe gynecological disorders including intrauterine adhesion. Accumulating evidence supports that some long non-coding RNAs (lncRNAs) have peptide-coding potential. In this text, the peptide-coding ability of lncRNA SNHG6 was examined. Also, the effects of an SNHG6-encoded peptide on the viability and migration of human endometrial stromal cells (hESCs) and human endometrial epithelial cells (hEECs) and related molecular mechanisms were explored.METHODS: The peptide-encoding potential of SNHG6 was predicted by FuncPEP and getorf databases and validated by western blot assay. Cell viability was tested by cell counting kit-8 assay. Cell migratory ability was examined by wound healing and transwell migration assays. Protein levels of genes were measured by western blot assay.
    RESULTS: Prediction analysis suggested that SNHG6 had the potential peptide-coding ability and multiple open-reading frames (ORFs). Western blot validated that SNHG6 ORF#1 and ORF#2 could translate into short peptides. SNHG6 ORF#2 overexpression facilitated cell migration and epithelial-mesenchymal transition (EMT) in hESCs and hEECs, while these effects were abrogated by transforming growth factor-beta (TGF-β)/SMAD signaling inhibitor GW788388. Moreover, GW788388 inhibited the increase of p-SMAD2 and p-SMAD3 levels induced by SNHG6 ORF#2 in hESCs. SNHG6 ORF#2-encoded peptide did not influence endometrial stromal and epithelial cell viability.
    CONCLUSIONS: LncRNA SNHG6 ORF#1 and ORF#2 could translate into small peptides and SNHG6 ORF#2 overexpression promoted cell migration and EMT by activating the TGF-β/SMAD pathway in hESCs and hEECs, suggesting the potential roles of SNHG6-encoded peptides in the development of endometrial stromal and epithelial cells and related gynecological diseases.
    Keywords:  EMT; SMAD; SNHG6; TGF-β; lncRNA; migration; peptide
    DOI:  https://doi.org/10.1111/jog.15476