bims-micpro Biomed News
on Discovery and characterization of microproteins
Issue of 2022‒04‒03
seven papers selected by
Thomas Farid Martínez
University of California, Irvine

  1. EMBO Rep. 2022 Mar 28. e53475
      Recent evidence has revealed that small polypeptides (containing fewer than 100 amino acids) can be translated from noncoding RNAs (ncRNAs), which are usually defined as RNA molecules that do not encode proteins. However, studies on functional products translated from primary transcripts of microRNA (pri-miRNA) are quite limited. Here, we describe a peptide termed miPEP31 that is encoded by pri-miRNA-31. miPEP31 is highly expressed in Foxp3+ regulatory T cells (Tregs ) and significantly promotes the differentiation of Tregs without affecting their inhibitory ability. Our results show that miPEP31 is a cell-penetrating peptide both in vitro and in vivo. miPEP31 downregulates miR-31 expression, enhances peripheral Treg induction, and dramatically suppresses experimental autoimmune encephalomyelitis. Mechanistically, we show that miPEP31 acts as a transcriptional repressor inhibiting the expression of miRNA-31, a negative regulator of Tregs . Our results reveal an indispensable role of miPEP31 in maintaining immune homeostasis by promoting Treg differentiation and also present a potential therapeutic peptide for modulating miRNA expression and treating autoimmune diseases.
    Keywords:  Treg; autoimmune disease; miPEP31; miR-31; transcriptional repressor
  2. Fungal Genet Biol. 2022 Mar 23. pii: S1087-1845(22)00032-9. [Epub ahead of print]160 103688
      Short open reading frame (sORF)-encoded peptides (sPEPs) have been found across a wide range of genomic locations in a variety of species. To date, their identification, validation, and characterisation in the human fungal pathogen Cryptococcus neoformans has been limited due to a lack of standardised protocols. We have developed an enrichment process that enables sPEP detection within a protein sample from this polysaccharide-encapsulated yeast, and implemented proteogenomics to provide insights into the validity of predicted and hypothetical sORFs annotated in the C. neoformans genome. Novel sORFs were discovered within the 5' and 3' UTRs of known transcripts as well as in "non-coding" RNAs. One novel candidate, dubbed NPB1, that resided in an RNA annotated as "non-coding", was chosen for characterisation. Through the creation of both specific point mutations and a full deletion allele, the function of the new sPEP, Npb1, was shown to resemble that of the bacterial trans-translation protein SmpB.
    Keywords:  Cryptococcus neoformans; Fungi; Genetics; Pathogen; Proteogenomics; Proteomics; Small peptides; sPEPs
  3. Elife. 2022 Mar 28. pii: e73980. [Epub ahead of print]11
      Most bacterial ORFs are identified by automated prediction algorithms. However, these algorithms often fail to identify ORFs lacking canonical features such as a length of >50 codons or the presence of an upstream Shine-Dalgarno sequence. Here, we use ribosome profiling approaches to identify actively translated ORFs in Mycobacterium tuberculosis. Most of the ORFs we identify have not been previously described, indicating that the M. tuberculosis transcriptome is pervasively translated. The newly described ORFs are predominantly short, with many encoding proteins of ≤50 amino acids. Codon usage of the newly discovered ORFs suggests that most have not been subject to purifying selection, and hence are unlikely to contribute to cell fitness. Nevertheless, we identify 90 new ORFs (median length of 52 codons) that bear the hallmarks of purifying selection. Thus, our data suggest that pervasive translation of short ORFs in Mycobacterium tuberculosis serves as a rich source for the evolution of new functional proteins.
    Keywords:  infectious disease; microbiology; none
  4. Front Genet. 2022 ;13 861096
      Background: More and more studies show that long non-coding RNAs (lncRNAs) have miniature open reading frames that can be translated into short peptides. Here, we identify the long non-coding gene LINC00665 and its short peptides (CIP2A-BP) in hepatocellular carcinoma (HCC) and explore how they contribute to HCC progression. Materials and methods: First, GSE101728 data were acquired through the Gene Expression Omnibus for identification of differentially expressed genes (DEGs), and gene set enrichment analysis (GSEA) was conducted to find enriched biological pathways. Then, further bioinformatics analysis was carried out on the screened long non-coding genes, and LINC00665 expression was detected in HCC and normal liver samples. The relations between LINC00665 expression, HCC prognosis, and clinical characteristics were studied. Receiver operating characteristic (ROC) analysis was also applied to verify the LINC00665 prediction in HCC prognosis. In addition, pertinent experiments on LINC00665 and CIP2A-BP were also carried out to explore their roles in the progression of HCC. Results: As a result, we screened out 332 DEGs in total, including 130 upregulated and 202 downregulated DEGs. These DEGs were mainly enriched in posttranscriptional regulation of gene expression, RNA processing, nucleolus, and gene silencing biological pathways. In addition, we found that LINC00665 was increased in HCC samples, which substantially indicated its poor prognosis. Compared with normal tissues, LINC00665 had higher expression in the pathological stages III and IV, tumor-free groups, people no more than 60 years old, and stages T3, T4, N0, N1, and M1. ROC curve indicated that the variable INC00665 had certain accuracy in predicting overall survival (OS). Moreover, in functional experiments, LINC00665 knockdown could significantly decrease HCC cell proliferation, migration, and invasion, while overexpressed CIP2A-BP could markedly increase HCC cell proliferation, invasion, and migration. Conclusion: Our findings not only disclose a unique mechanism by which CIP2A-BP encoded by LINC00665 promotes HCC carcinogenesis but suggest that these long non-coding genes and short peptides could be used as biomarkers for HCC diagnosis and prognosis and new targets for HCC therapy.
    Keywords:  CIP2A-BP; LINC00665; biological information analysis; biomarkers; hepatocellular carcinoma
  5. EMBO Rep. 2022 Mar 28. e54789
      Short open reading frame (sORF)-encoded peptides (SEPs) recently emerged as new key players in biology. Pioneering work first established that sORFs encoded by long non-coding RNAs (lncRNAs) are efficiently translated and produce functional peptides. In plants, primary transcripts of microRNAs (pri-miRNAs) also produce sORF-encoded peptides called miPEPs, which are involved in specific transcriptional autoregulatory feedback loops (Lauressergues et al, 2015). To what extend are such mechanisms conserved in other species, especially in animals? In this issue of EMBO reports, Zhou et al show that pri-miR-31 encodes a miPEP promoting Treg differentiation and downregulating pri-miR-31 expression (Zhou et al, 2022).
  6. Proc Natl Acad Sci U S A. 2022 Apr 05. 119(14): e2112516119
      SignificanceProteins are the machinery which execute essential cellular functions. However, measuring their abundance within an organism can be difficult and resource-intensive. Cells use a variety of mechanisms to control protein synthesis from mRNA, including short open reading frames (uORFs) that lie upstream of the main coding sequence. Ribosomes can preferentially translate uORFs instead of the main coding sequence, leading to reduced translation of the main protein. In this study, we show that uORF sequence variation between individuals can lead to different rates of protein translation and thus variable protein abundances. We also demonstrate that natural variation in uORFs occurs frequently and can be linked to whole-plant phenotypes, indicating that uORF sequence variation likely contributes to plant adaptation.
    Keywords:  gene expression; maize; proteome; rare alleles; uORF
  7. Autophagy. 2022 Apr 01.
      Macroautophagy/autophagy, a highly conserved catabolic pathway that maintains proper cellular homeostasis is stringently regulated by numerous autophagy-related (Atg) proteins. Many studies have investigated autophagy regulation at the transcriptional level; however, relatively little is known about translational control. Here, we report the upstream open reading frames (uORFs)-mediated translational control of multiple Atg proteins in Saccharomyces cerevisiae and in human cells. The translation of several essential autophagy regulators in yeast, including Atg13, is suppressed by canonical uORFs under nutrient-rich conditions, and is activated during nitrogen-starvation conditions. We also found that the predicted human ATG4B and ATG12 non-canonical uORFs suppress downstream coding sequence translation. These results demonstrate that uORF-mediated translational control is a widely used mechanism among ATG genes from yeast to human and suggest a model for how some ATG genes bypass the general translational suppression that occurs under stress conditions to maintain a proper level of autophagy.
    Keywords:  Autophagy; human; lysosome; stress; translational regulation; vacuole; yeast