bims-micesi Biomed News
on Mitotic cell signalling
Issue of 2022‒11‒06
eight papers selected by
Valentina Piano
Uniklinik Köln


  1. Open Biol. 2022 Nov;12(11): 220203
      The spindle position checkpoint (SPOC) is a mitotic surveillance mechanism in Saccharomyces cerevisiae that prevents cells from completing mitosis in response to spindle misalignment, thereby contributing to genomic integrity. The kinase Kin4, one of the most downstream SPOC components, is essential to stop the mitotic exit network (MEN), a signalling pathway that promotes the exit from mitosis and cell division. Previous work, however, suggested that a Kin4-independent pathway contributes to SPOC, yet the underlying mechanisms remain elusive. Here, we established the glycogen-synthase-kinase-3 (GSK-3) homologue Mck1, as a novel component that works independently of Kin4 to engage SPOC. Our data indicate that both Kin4 and Mck1 work in parallel to counteract MEN activation by the Cdc14 early anaphase release (FEAR) network. We show that Mck1's function in SPOC is mediated by the pre-replication complex protein and mitotic cyclin-dependent kinase (M-Cdk) inhibitor, Cdc6, which is degraded in a Mck1-dependent manner prior to mitosis. Moderate overproduction of Cdc6 phenocopies MCK1 deletion and causes SPOC deficiency via its N-terminal, M-Cdk inhibitory domain. Our data uncover an unprecedented role of GSK-3 kinases in coordinating spindle orientation with cell cycle progression.
    Keywords:  Cdc6; MCK1; budding yeast; cell division; checkpoint control; mitotic exit
    DOI:  https://doi.org/10.1098/rsob.220203
  2. Biol Open. 2022 Oct 31. pii: bio.059474. [Epub ahead of print]
      During mitosis, spindle assembly relies on centrosomal and acentrosomal microtubule nucleation pathways that all require the γ-Tubulin Ring Complex (γ-TuRC) and its adaptor protein NEDD1. The activity of these different pathways needs to be coordinated to ensure bipolar spindle assembly (Cavazza et al., 2016) but the underlying mechanism is still unclear. Previous studies have identified three sites in NEDD1 (S377, S405 and S411) that when phosphorylated drive MT nucleation at the centrosomes, around the chromosomes and on pre-existing MTs respectively (Luders et al., 2006; Pinyol et al., 2013; Sdelci et al., 2012). Here we aimed at getting additional insights into the mechanism that coordinates the different MT nucleation pathways in dividing cells using a collection of HeLa stable inducible cell lines expressing NEDD1 phospho variants at these three sites and Xenopus egg extracts. Our results provide further support for the essential role of phosphorylation at the three residues. Moreover, we directly demonstrate that S411 phosphorylation is essential for MT branching using TIRF microscopy in Xenopus egg extracts and we show that it plays a critical role to ensure the balance between centrosome and chromosome dependent MT nucleation required for bipolar spindle assembly in mitotic cells.
    Keywords:  Centrosome; Microtubule branching; Microtubule nucleation; NEDD1 phosphorylation; RanGTP; Spindle
    DOI:  https://doi.org/10.1242/bio.059474
  3. Front Cell Dev Biol. 2022 ;10 1018161
      Increased Aurora B protein expression, which is common in cancers, is expected to increase Aurora B kinase activity, yielding elevated phosphorylation of Aurora B substrates. In contrast, here we show that elevated expression of Aurora B reduces phosphorylation of six different Aurora B substrates across three species and causes defects consistent with Aurora B inhibition. Complexes of Aurora B and its binding partner INCENP autophosphorylate in trans to achieve full Aurora B activation. Increased expression of Aurora B mislocalizes INCENP, reducing the local concentration of Aurora B:INCENP complexes at the inner centromere/kinetochore. Co-expression of INCENP rescues Aurora B kinase activity and mitotic defects caused by elevated Aurora B. However, INCENP expression is not elevated in concert with Aurora B in breast cancer, and increased expression of Aurora B causes resistance rather than hypersensitivity to Aurora B inhibitors. Thus, increased Aurora B expression reduces, rather than increases, Aurora B kinase activity.
    Keywords:  CIN; aurora kinase inhibitor; mitosis; mitotic checkpoint; spindle assembly checkpoint
    DOI:  https://doi.org/10.3389/fcell.2022.1018161
  4. Proc Natl Acad Sci U S A. 2022 Nov 08. 119(45): e2116167119
      How cells adjust their growth to the spatial and mechanical constraints of their surrounding environment is central to many aspects of biology. Here, we examined how extracellular matrix (ECM) rigidity affects cell division. We found that cells divide more rapidly when cultured on rigid substrates. While we observed no effect of ECM rigidity on rounding or postmitotic spreading duration, we found that changes in matrix stiffness impact mitosis progression. We noticed that ECM elasticity up-regulates the expression of the linker of nucleoskeleton and cytoskeleton (LINC) complex component SUN2, which in turn promotes metaphase-to-anaphase transition by acting on mitotic spindle formation, whereas when cells adhere to soft ECM, low levels of SUN2 expression perturb astral microtubule organization and delay the onset of anaphase.
    Keywords:  LINC; matrix; mechanotransduction; mitosis; nucleus
    DOI:  https://doi.org/10.1073/pnas.2116167119
  5. Curr Biol. 2022 Oct 28. pii: S0960-9822(22)01622-0. [Epub ahead of print]
      Early embryogenesis is characterized by rapid and synchronous cleavage divisions, which are often controlled by wave-like patterns of Cdk1 activity. Two mechanisms have been proposed for mitotic waves: sweep and trigger waves.1,2 The two mechanisms give rise to different wave speeds, dependencies on physical and molecular parameters, and spatial profiles of Cdk1 activity: upward sweeping gradients versus traveling wavefronts. Both mechanisms hinge on the transient bistability governing the cell cycle and are differentiated by the speed of the cell-cycle progression: sweep and trigger waves arise for rapid and slow drives, respectively. Here, using quantitative imaging of Cdk1 activity and theory, we illustrate that sweep waves are the dominant mechanism in Drosophila embryos and test two fundamental predictions on the transition from sweep to trigger waves. We demonstrate that sweep waves can be turned into trigger waves if the cell cycle is slowed down genetically or if significant delays in the cell-cycle progression are introduced across the embryo by altering nuclear density. Our genetic experiments demonstrate that Polo kinase is a major rate-limiting regulator of the blastoderm divisions, and genetic perturbations reducing its activity can induce the transition from sweep to trigger waves. Furthermore, we show that changes in temperature cause an essentially uniform slowdown of interphase and mitosis. That results in sweep waves being observed across a wide temperature range despite the cell-cycle durations being significantly different. Collectively, our combination of theory and experiments elucidates the nature of mitotic waves in Drosophila embryogenesis, their control mechanisms, and their mutual transitions.
    Keywords:  Cdk1; Cullin-5; Drosophila; Polo; bistability; cell cycle; embryogenesis; mitotic waves; reaction-diffusion equations; temperature
    DOI:  https://doi.org/10.1016/j.cub.2022.10.014
  6. Mol Cell. 2022 Nov 03. pii: S1097-2765(22)00911-X. [Epub ahead of print]82(21): 4018-4032.e9
      Kinetochore assembly on centromeres is central for chromosome segregation, and defects in this process cause mitotic errors and aneuploidy. Besides the well-established protein network, emerging evidence suggests the involvement of regulatory RNA in kinetochore assembly; however, it has remained elusive about the identity of such RNA, let alone its mechanism of action in this critical process. Here, we report CCTT, a previously uncharacterized long non-coding RNA (lncRNA) transcribed from the arm of human chromosome 17, which plays a vital role in kinetochore assembly. We show that CCTT highly localizes to all centromeres via the formation of RNA-DNA triplex and specifically interacts with CENP-C to help engage this blueprint protein in centromeres, and consequently, CCTT loss triggers extensive mitotic errors and aneuploidy. These findings uncover a non-centromere-derived lncRNA that recruits CENP-C to centromeres and shed critical lights on the function of centromeric DNA sequences as anchor points for kinetochore assembly.
    Keywords:  CENP-C recruitment; aneuploidy; centromere; lncRNA; mitotic defects
    DOI:  https://doi.org/10.1016/j.molcel.2022.09.022
  7. Cell Death Differ. 2022 Nov 03.
      The anti-apoptotic MCL1 is critical for delaying apoptosis during mitotic arrest. MCL1 is degraded progressively during mitotic arrest, removing its anti-apoptotic function. We found that knockout of components of ubiquitin ligases including APC/C, SCF complexes, and the mitochondrial ubiquitin ligase MARCH5 did not prevent mitotic degradation of MCL1. Nevertheless, MARCH5 determined the initial level of MCL1-NOXA network upon mitotic entry and hence the window of time during MCL1 was present during mitotic arrest. Paradoxically, although knockout of MARCH5 elevated mitotic MCL1, mitotic apoptosis was in fact enhanced in a BAK-dependent manner. Mitotic apoptosis was accelerated after MARCH5 was ablated in both the presence and absence of MCL1. Cell death was not altered after disrupting other MARCH5-regulated BCL2 family members including NOXA, BIM, and BID. Disruption of the mitochondrial fission factor DRP1, however, reduced mitotic apoptosis in MARCH5-disrupted cells. These data suggest that MARCH5 regulates mitotic apoptosis through MCL1-independent mechanisms including mitochondrial maintenance that can overcome the stabilization of MCL1.
    DOI:  https://doi.org/10.1038/s41418-022-01080-2
  8. Sci Adv. 2022 Nov 04. 8(44): eabq5914
      Germline mutations leading to aneuploidy are rare, and their tumor-promoting properties are mostly unknown at the molecular level. We report here novel germline biallelic mutations in MAD1L1, encoding the spindle assembly checkpoint (SAC) protein MAD1, in a 36-year-old female with a dozen of neoplasias. Functional studies demonstrated lack of full-length protein and deficient SAC response, resulting in ~30 to 40% of aneuploid blood cells. Single-cell RNA analysis identified mitochondrial stress accompanied by systemic inflammation with enhanced interferon and NFκB signaling both in aneuploid and euploid cells, suggesting a non-cell autonomous response. MAD1L1 mutations resulted in specific clonal expansions of γδ T cells with chromosome 18 gains and enhanced cytotoxic profile as well as intermediate B cells with chromosome 12 gains and transcriptomic signatures characteristic of leukemia cells. These data point to MAD1L1 mutations as the cause of a new variant of mosaic variegated aneuploidy with systemic inflammation and unprecedented tumor susceptibility.
    DOI:  https://doi.org/10.1126/sciadv.abq5914