bims-micesi Biomed News
on Mitotic cell signalling
Issue of 2022‒09‒11
fourteen papers selected by
Valentina Piano
Max Planck Institute of Molecular Physiology


  1. Methods Mol Biol. 2023 ;2519 27-40
      Cell cycle-dependent regulation of chromosome is a dynamic event. After replication in S phase, sister chromatids show dynamic behavior including condensation, alignment, and segregation in M phase. These beautiful behaviors of chromosomes observed through the microscope have fascinated people since more than 100 years ago, and now we can sketch the dynamics of regulatory proteins and their posttranscriptional modifications through the fluorescent microscope. The purpose of this chapter is describing the basic methods of immunofluorescence analysis of mitotic cells and chromosomes. Besides, the key ideas for improving the preparation of the specimen are also described. Because the characteristic of the proteins of your interest differs one by one, modifying the method might cause the crucial improvement in the observation.
    Keywords:  Antibody; Chromatin; Chromosome; Immunofluorescence; Immunostaining; Microscopy; Mitosis
    DOI:  https://doi.org/10.1007/978-1-0716-2433-3_4
  2. Curr Biol. 2022 Aug 27. pii: S0960-9822(22)01303-3. [Epub ahead of print]
      Chromosome alignment to the spindle equator is a hallmark of mitosis thought to promote chromosome segregation fidelity in metazoans. Yet chromosome alignment is only indirectly supervised by the spindle assembly checkpoint (SAC) as a byproduct of chromosome bi-orientation, and the consequences of defective chromosome alignment remain unclear. Here, we investigated how human cells respond to chromosome alignment defects of distinct molecular nature by following the fate of live HeLa cells after RNAi-mediated depletion of 125 proteins previously implicated in chromosome alignment. We confirmed chromosome alignment defects upon depletion of 108/125 proteins. Surprisingly, in all confirmed cases, depleted cells frequently entered anaphase after a delay with misaligned chromosomes. Using depletion of prototype proteins resulting in defective chromosome alignment, we show that misaligned chromosomes often satisfy the SAC and directly missegregate without lagging behind in anaphase. In-depth analysis of specific molecular perturbations that prevent proper kinetochore-microtubule attachments revealed that misaligned chromosomes that missegregate frequently result in micronuclei. Higher-resolution live-cell imaging indicated that, contrary to most anaphase lagging chromosomes that correct and reintegrate the main nuclei, misaligned chromosomes are a strong predictor of micronuclei formation in a cancer cell model of chromosomal instability, but not in non-transformed near-diploid cells. We provide evidence supporting that intrinsic differences in kinetochore-microtubule attachment stability on misaligned chromosomes account for this distinct outcome. Thus, misaligned chromosomes that satisfy the SAC may represent a previously overlooked mechanism driving chromosomal/genomic instability during cancer cell division, and we unveil genetic conditions predisposing for these events.
    Keywords:  Mad2; aneuploidy; cancer; chromosomal instability; chromosome congression; cyclin B1; kinetochore; micronuclei; mitosis; spindle assembly checkpoint
    DOI:  https://doi.org/10.1016/j.cub.2022.08.026
  3. J Mol Cell Biol. 2022 Sep 07. pii: mjac051. [Epub ahead of print]
      Error-free mitosis depends on accurate chromosome attachment to spindle microtubules via a fine structure called the centromere that is epigenetically specified by the enrichment of CENP-A nucleosomes. Centromere maintenance during mitosis requires CENP-A-mediated deposition of constitutive centromere-associated network (CCAN) that establishes the inner kinetochore and connects centromeric chromatin to spindle microtubules during mitosis. Although previously proposed to be an adaptor of retinoic acid receptor, here, we show that CENP-R synergizes with CENP-OPQU to regulate kinetochore-microtubule attachment stability and ensure accurate chromosome segregation in mitosis. We found that a phospho-mimicking mutation of CENP-R weakened its localization to the kinetochore, suggesting that phosphorylation may regulate its localization. Perturbation of CENP-R phosphorylation is shown to prevent proper kinetochore-microtubule attachment at metaphase. Mechanistically, CENP-R phosphorylation disrupts its binding with CENP-U. Thus, we speculate that Aurora B-mediated CENP-R phosphorylation promotes the correction of improper kinetochore-microtubule attachment in mitosis. As CENP-R is absent from yeast, we reasoned that metazoan evolved an elaborate chromosome stability control machinery to ensure faithful chromosome segregation in mitosis.
    Keywords:  Aurora B; CCAN; CENP-R; kinetochore; microtubule; phosphorylation
    DOI:  https://doi.org/10.1093/jmcb/mjac051
  4. mBio. 2022 Sep 07. e0185922
      Centrosomes are the main microtubule-organizing center of the cell. They are normally formed by two centrioles, embedded in a cloud of proteins known as pericentriolar material (PCM). The PCM ascribes centrioles with their microtubule nucleation capacity. Toxoplasma gondii, the causative agent of toxoplasmosis, divides by endodyogeny. Successful cell division is critical for pathogenesis. The centrosome, one of the microtubule organizing centers of the cell, plays central roles in orchestrating the temporal and physical coordination of major organelle segregation and daughter cell formation during endodyogeny. The Toxoplasma centrosome is constituted by multiple domains: an outer core, distal from the nucleus; a middle core; and an inner core, proximal to the nucleus. This modular organization has been proposed to underlie T. gondii's cell division plasticity. However, the role of the inner core remains undeciphered. Here, we focus on understanding the function of the inner core by finely studying the localization and role of its only known molecular marker; TgCep250L1. We show that upon conditional degradation of TgCep250L1 parasites are unable to survive. Mutants exhibit severe nuclear segregation defects. In addition, the rest of the centrosome, defined by the position of the centrioles, disconnects from the nucleus. We explore the structural defects underlying these phenotypes by ultrastructure expansion microscopy. We show that TgCep250L1's location changes with respect to other markers, and these changes encompass the formation of the mitotic spindle. Moreover, we show that in the absence of TgCep250L1, the microtubule binding protein TgEB1, fails to localize at the mitotic spindle, while unsegregated nuclei accumulate at the residual body. Overall, our data support a model in which the inner core of the T. gondii centrosome critically participates in cell division by directly impacting the formation or stability of the mitotic spindle. IMPORTANCE Toxoplasma gondii parasites cause toxoplasmosis, arguably the most widespread and prevalent parasitosis of humans and animals. During the clinically relevant stage of its life cycle, the parasites divide by endodyogeny. In this mode of division, the nucleus, containing loosely packed chromatin and a virtually intact nuclear envelope, parcels into two daughter cells generated within a common mother cell cytoplasm. The centrosome is a microtubule-organizing center critical for orchestrating the multiple simultaneously occurring events of endodyogeny. It is organized in two distinct domains: the outer and inner cores. We demonstrate here that the inner core protein TgCEP250L1 is required for replication of T. gondii. Lack of TgCEP250L1 renders parasites able to form daughter cells, while unable to segregate their nuclei. We determine that, in the absence of TgCEP250L1, the mitotic spindle, which is responsible for karyokinesis, does not assemble. Our results support a role for the inner core in nucleation or stabilization of the mitotic spindle in T. gondii.
    Keywords:  Toxoplasma; cell division; centrosome; endodyogeny; mitosis; mitotic spindle; ultrastructure expansion microscopy
    DOI:  https://doi.org/10.1128/mbio.01859-22
  5. MicroPubl Biol. 2022 ;2022
      We previously showed that the silkworm holocentric spindles are square-shaped, compared to the canonical oval shape of human monocentric spindles (Vanpoperinghe et al. 2021). Further, while kinesin-5 depletion resulted in monopolar spindles in both cells, kinesin-14 depletion affected only the silkworm cells, resulting in mal-shaped spindles (Vanpoperinghe et al. 2021). We now extend our study to quantify the effect of kinesin-5 and kinesin-14 on spindle assembly dynamics and chromosome segregation in holocentric silkworm BmN4 cells. We find that mal-shaped spindle and prolonged mitosis duration are highly correlated with chromosome segregation error, leading to aneuploidy and cell death in BmN4 cells. Further, double RNAi-mediated depletion of kinesin-5 and kinesin-14 partially rescue the monopolar spindle and mal-shaped spindle phenotypes in kinesin-5 and kinesin 14-depleted cells, respectively.
    DOI:  https://doi.org/10.17912/micropub.biology.000630
  6. Methods Mol Biol. 2023 ;2519 17-26
      Cellular division is a fundamental process of cellular growth. First, cells replicate their DNA in S phase and then undergo mitosis which, under normal conditions, leads to complete cell division. Moreover, mitotic activity correlates to cellular growth activity. The simplest and classical method to measure mitotic activity (mitotic index (MI)), is the manual counting of mitotic cells among a given cell population of interest. The latter can be accomplished via phase contrast microscope observation. However, Giemsa staining may improve accuracy and consistency. Fluorescence immunostaining targeting specific phosphorylations of proteins at critical cell cycle steps will provide further improved analysis via high-throughput capacity of flow or imaging cytometer. Finally, time lapse image analysis provides quantitative and qualitative metrics delineating the process of cellular division including timing of division, duration of mitosis, and failure to procced through or complete mitosis.
    Keywords:  Histone H3 serine residue 10; Mitotic index; Time lapse image analysis
    DOI:  https://doi.org/10.1007/978-1-0716-2433-3_3
  7. Methods Mol Biol. 2022 ;2478 653-676
      Optical traps have enabled foundational studies of how mechanoenzymes such as kinesins and dynein motors walk along microtubules, how myosins move along F-actin, and how nucleic acid enzymes move along DNA or RNA. Often the filamentous substrates serve merely as passive tracks for mechanoenzymes but microtubules and F-actin are themselves dynamic protein polymers, capable of generating movement and force independently of conventional motors. Microtubule-driven forces are particularly important during mitosis, when they align duplicated chromosomes at the metaphase plate and then pull them apart during anaphase. These vital movements depend on specialized protein assemblies called kinetochores that couple the chromosomes to the tips of dynamic microtubule filaments, thereby allowing filament shortening to produce pulling forces. Although great strides have been made toward understanding the structures and functions of many kinetochore subcomplexes, the biophysical basis for their coupling to microtubule tips remains unclear. During tip disassembly, strain energy is released when straight protofilaments in the microtubule lattice curl outward, creating a conformational wave that propagates down the microtubule. A popular viewpoint is that the protofilaments as they curl outward hook elements of the kinetochore and tug on them, transferring some of their curvature strain energy to the kinetochore. As a first step toward testing this idea, we recently developed a laser trap assay to directly measure the working strokes generated by curling protofilaments. Our "wave" assay is based on an earlier pioneering study, with improvements that allow measurement of curl-driven movements as functions of force and quantification of their conformational strain energy. In this chapter, we provide a detailed protocol for our assay and describe briefly our instrument setup and data analysis methods.
    Keywords:  Anaphase; Kinetochore; Mitotic spindle; Ram’s horns
    DOI:  https://doi.org/10.1007/978-1-0716-2229-2_23
  8. Sci Adv. 2022 Sep 09. 8(36): eabq4293
      Inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) are standard first-line treatments for metastatic ER+ breast cancer. However, acquired resistance to CDK4/6i invariably develops, and the molecular phenotypes and exploitable vulnerabilities associated with resistance are not yet fully characterized. We developed a panel of CDK4/6i-resistant breast cancer cell lines and patient-derived organoids and demonstrate that a subset of resistant models accumulates mitotic segregation errors and micronuclei, displaying increased sensitivity to inhibitors of mitotic checkpoint regulators TTK and Aurora kinase A/B. RB1 loss, a well-recognized mechanism of CDK4/6i resistance, causes such mitotic defects and confers enhanced sensitivity to TTK inhibition. In these models, inhibition of TTK with CFI-402257 induces premature chromosome segregation, leading to excessive mitotic segregation errors, DNA damage, and cell death. These findings nominate the TTK inhibitor CFI-402257 as a therapeutic strategy for a defined subset of ER+ breast cancer patients who develop resistance to CDK4/6i.
    DOI:  https://doi.org/10.1126/sciadv.abq4293
  9. Cell Discov. 2022 Sep 09. 8(1): 90
      In mitosis, accurate chromosome segregation depends on kinetochores that connect centromeric chromatin to spindle microtubules. The centromeres of budding yeast, which are relatively simple, are connected to individual microtubules via a kinetochore constitutive centromere associated network (CCAN). However, the complex centromeres of human chromosomes comprise millions of DNA base pairs and attach to multiple microtubules. Here, by use of cryo-electron microscopy and functional analyses, we reveal the molecular basis of how human CCAN interacts with duplex DNA and facilitates accurate chromosome segregation. The overall structure relates to the cooperative interactions and interdependency of the constituent sub-complexes of the CCAN. The duplex DNA is topologically entrapped by human CCAN. Further, CENP-N does not bind to the RG-loop of CENP-A but to DNA in the CCAN complex. The DNA binding activity is essential for CENP-LN localization to centromere and chromosome segregation during mitosis. Thus, these analyses provide new insights into mechanisms of action underlying kinetochore assembly and function in mitosis.
    DOI:  https://doi.org/10.1038/s41421-022-00439-6
  10. Methods Mol Biol. 2023 ;2519 93-98
      After DNAs are damaged, DNA repair proteins accumulate and are activated at the DNA damaged site. These accumulated proteins are visualized as foci by fluorescent immunocytochemistry technique. This allows the DNA damage responses in interphase nuclei to be detected; it was earlier times difficult to analyze DNA damage in situ. In order to analyze DNA damage in interphase cells, either DNA is extracted to assay breaks biochemically, or premature chromosome condensation is conducted to observe as chromatin breaks. Although DNA damage-induced foci are typically analyzed in interphase cells, these foci can be also visualized on mitotic chromosomes. The foci where the repair proteins accumulate at the damage site is observed as mitotic chromosome break site. Since mitotic cells attach loosely or not attached to cell culture vessels, it is difficult to analyze foci on chromosomes in culture vessels under a microscope, so metaphase chromosome spread must be prepared for accurate analysis. The cytocentrifuge system is an ideal method to adhere mitotic cells to microscope slides for the fluorescent immunocytochemistry. This chapter introduces cytocentrifuge method to prepare metaphase spread for DNA damage foci analysis.
    Keywords:  Cytocentrifugation; DNA damage foci; Fluorescent immunocytochemistry
    DOI:  https://doi.org/10.1007/978-1-0716-2433-3_10
  11. J Clin Transl Hepatol. 2022 Aug 28. 10(4): 627-641
      Background and Aims: Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors. Spindle and kinetochore-associated (SKA) family genes are essential for the maintenance of the metaphase plate and spindle checkpoint silencing during mitosis. Recent studies have indicated that dysregulation of SKA family genes induces tumorigenesis, tumor progression, and chemoresistance via modulation of cell cycle and DNA replication. However, the differential transcription of SKAs in the context of HCC and its prognostic significance has not been demonstrated.Methods: Bioinformatics analyses were performed using TCGA, ONCOMINE, HCCDB, Kaplan-Meier plotter, STRING, GEPIA databases. qRT-PCR, western blot, and functional assays were utilized for in vitro experiments.
    Results: We found remarkable upregulation of transcripts of SKA family genes in HCC samples compared with normal liver samples on bioinformatics analyses and in vitro validation. Interaction analysis and enrichment analysis showed that SKA family members were mainly related to microtubule motor activity, mitosis, and cell cycle. Immuno-infiltration analysis showed a correlation of all SKA family genes with various immune cell subsets, especially T helper 2 (Th2) cells. Transcriptional levels of SKA family members were positively associated with histologic grade, T stage, and α-fetoprotein in HCC patients. Receiver operating characteristic curve analysis demonstrated a strong predictive ability of SKA1/2/3 for HCC. Increased expression of these SKAs was associated with unfavorable overall survival, progression-free survival, and disease-specific survival. On Cox proportional hazards regression analyses, SKA1 upregulation and pathological staging were independent predictors of overall survival and disease-specific survival of HCC patients. Finally, clinical tissue microarray validation and in vitro functional assays revealed SKA1 acts an important regulatory role in tumor malignant behavior.
    Conclusions: SKA family members may potentially serve as diagnostic and prognostic markers in the context of HCC. The correlation between SKAs and immune cell infiltration provides a promising research direction for SKA-targeted immunotherapeutics for HCC.
    Keywords:  Bioinformatics analysis; Immune infiltration; Liver hepatocellular carcinoma; Prognostic value; Spindle and kinetochore-associated genes
    DOI:  https://doi.org/10.14218/JCTH.2021.00216
  12. Open Biol. 2022 Sep;12(9): 220134
      Aurora Kinase A (AURKA) is a positive regulator of mitosis with a strict cell cycle-dependent expression pattern. Recently, novel oncogenic roles of AURKA have been uncovered that are independent of the kinase activity and act within multiple signalling pathways, including cell proliferation, survival and cancer stem cell phenotypes. For this, cellular abundance of AURKA protein is per se crucial and must be tightly fine-tuned. Indeed, AURKA is found overexpressed in different cancers, typically as a result of gene amplification or enhanced transcription. It has however become clear that impaired processing, decay and translation of AURKA mRNA can also offer the basis for altered AURKA levels. Accordingly, the involvement of gene expression mechanisms controlling AURKA expression in human diseases is increasingly recognized and calls for much more research. Here, we explore and create an integrated view of the molecular processes regulating AURKA expression at the level of transcription, post-transcription and translation, intercalating discussion on how impaired regulation underlies disease. Given that targeting AURKA levels might affect more functions compared to inhibiting the kinase activity, deeper understanding of its gene expression may aid the design of alternative and therapeutically more successful ways of suppressing the AURKA oncogene.
    Keywords:  Aurora Kinase A; cell cycle; mRNA processing; oncogene; transcription; translation
    DOI:  https://doi.org/10.1098/rsob.220134
  13. PLoS Genet. 2022 Sep 09. 18(9): e1010358
      Stu2 in S. cerevisiae is a member of the XMAP215/Dis1/CKAP5/ch-TOG family of MAPs and has multiple functions in controlling microtubules, including microtubule polymerization, microtubule depolymerization, linking chromosomes to the kinetochore, and assembly of γ-TuSCs at the SPB. Whereas phosphorylation has been shown to be critical for Stu2 localization at the kinetochore, other regulatory mechanisms that control Stu2 function are still poorly understood. Here, we show that a novel form of Stu2 regulation occurs through the acetylation of three lysine residues at K252, K469, and K870, which are located in three distinct domains of Stu2. Alteration of acetylation through acetyl-mimetic and acetyl-blocking mutations did not impact the essential function of Stu2. Instead, these mutations lead to a decrease in chromosome stability, as well as changes in resistance to the microtubule depolymerization drug, benomyl. In agreement with our in silico modeling, several acetylation-mimetic mutants displayed increased interactions with γ-tubulin. Taken together, these data suggest that Stu2 acetylation can govern multiple Stu2 functions, including chromosome stability and interactions at the SPB.
    DOI:  https://doi.org/10.1371/journal.pgen.1010358
  14. Methods Mol Biol. 2023 ;2519 9-15
      Chromosomal aberrations are changes in structure and number of chromosomes. Metaphase chromosome can be analyzed by a standard light microscope to detect chromosomal aberrations. Recently, detailed analysis or rapid analysis was possible by using fluorescence probes and fluorescent microscope. The origins of chromosomal aberrations can be errors of DNA repair, cell divisions, and DNA synthesis. Analysis of chromosome aberrations can be used for the wide range of analysis. It includes a basic science connecting DNA damage to cellular death and mutagenesis and diagnostic tools for hereditary diseases and biodosimetry following radiation exposure.Specific DNA damages produce unique types of chromosomal aberrations. Analysis of chromosomal aberrations enables us to investigate the mechanisms of genotoxic stress. However, one type of DNA damage provides a variety of changes in chromosome structures. It is often confusing. This chapter introduces the standard technique of metaphase chromosome spread preparation and typical classification of chromosomal aberrations.
    Keywords:  Chromatid-type aberrations; Chromosomal aberrations; Chromosome type aberrations; Metaphase spread
    DOI:  https://doi.org/10.1007/978-1-0716-2433-3_2